This file is indexed.

/usr/lib/python-escript/esys/downunder/seismic.py is in python-escript 5.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
##############################################################################
#
# Copyright (c) 2003-2017 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################

from __future__ import print_function, division

__copyright__="""Copyright (c) 2003-2017 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"

__all__ = ['SimpleSEGYWriter', 'Ricker', 'WaveBase', 'SonicWave', 'VTIWave',
'HTIWave', 'createAbsorbtionLayerFunction', 'createAbsorbtionLayerFunction',
'SonicHTIWave' , "TTIWave"]


from math import pi
import numpy as np
import sys
import time
from esys.escript import *
import esys.escript.unitsSI as U
from esys.escript.linearPDEs import LinearSinglePDE, LinearPDESystem, WavePDE, SolverOptions

OBSPY_AVAILABLE = False
try:
    from obspy import Trace, Stream, UTCDateTime
    try:
        # new interface
        from obspy.io.segy.segy import SEGYTraceHeader, SEGYBinaryFileHeader
    except:
        from obspy.segy.segy import SEGYTraceHeader, SEGYBinaryFileHeader
    from obspy.core import AttribDict
    OBSPY_AVAILABLE = True
except:
    pass

class Wavelet(object):
        """
        place holder for source wavelet
        """
        pass

class Ricker(Wavelet):
        """
        The Ricker Wavelet w=f(t)
        """
        def __init__(self, f_dom=40, t_dom=None):
                """
                Sets up a Ricker wavelet wih dominant frequence `f_dom` and
                center at time `t_dom`. If `t_dom` is not given an estimate
                for suitable `t_dom` is calculated so f(0)~0.

                :note: maximum frequence is about 2 x the dominant frequence.
                """
                drop=18
                self.__f=f_dom
                self.__f_max=sqrt(7)*f_dom
                self.__s=pi*self.__f
                if t_dom == None:
                        t_dom=sqrt(drop)/self.__s
                self.__t0=t_dom

        def getCenter(self):
               """
               Return value of wavelet center
               """
               return self.__t0

        def getTimeScale(self):
                """
                Returns the time scale which is the inverse of the largest
                frequence with a significant spectral component.
                """
                return 1/self.__f_max

        def getValue(self, t):
                """
                get value of wavelet at time `t`
                """
                e2=(self.__s*(t-self.__t0))**2
                return (1-2*e2)*exp(-e2)

        def getVelocity(self, t):
                """
                get the velocity f'(t) at time `t`
                """
                e2=(self.__s*(t-self.__t0))**2
                return (-3+2*e2)*exp(-e2)*2*self.__s**2*(t-self.__t0)

        def getAcceleration(self, t):
                """
                get the acceleration f''(t) at time `t`
                """
                e2=(self.__s*(t-self.__t0))**2
                return 2*self.__s**2*(-4*e2**2 + 12*e2 - 3)*exp(-e2)

class SimpleSEGYWriter(object):
        """
        A simple writer for 2D and 3D seismic lines, in particular for synthetic data

        Typical usage::

           from esys.escript import unitsSI as U
           sw=SimpleSEGYWriter([0.,100*U.m,200*U,m,300.], source=200*U.m, sampling_interval=4*U.msec)
           while n < 10:
               sw.addRecord([i*2., i*0.67, i**2, -i*7])
           sw.write('example.segy')

        :note: the writer uses `obspy`
        """
        COORDINATE_SCALE = 1000.
        def __init__(self, receiver_group=None, source=0., sampling_interval=4*U.msec, text="some seimic data"):
                """
                initalize writer

                :param receiver_group: list of receiver coordinates (in meters). For the 2D case a list of floats is given, for the 3D case a list of coordinate tuples
                                       are given
                :param source: coordinates of the source (in meters).  For the 2D case a single floats is given, for the 3D case a coordinate tuples
                :param sampling_interval: sample rate in seconds
                :param text: a text for the header file (e.g a description)
                """
                if isinstance(source, float) or  isinstance(source, int) :
                        DIM=1
                        source = (source, 0.)
                elif hasattr(source, '__len__'):
                        DIM=len(source)
                        if DIM == 1:
                            source = (source[0], 0.)
                        elif DIM==2:
                            source = (source[0], source[1] )
                        else:
                            raise ValueError("Only 1D or 2D arrays accepted.")
                else:
                    raise TypeError("illegal source type.")
                if receiver_group== None:
                        if DIM == 1:
                                receiver_group=[0.]
                        else:
                                receiver_group=[(0.,0.)]

                if isinstance(receiver_group, float) or  isinstance(receiver_group, int) :
                        if DIM == 1:
                            rg = [ (receiver_group, 0. ) ]
                        else:
                            raise TypeError("illegal receiver_group type.")
                elif hasattr(receiver_group, '__len__'):
                        if DIM == 1:
                            rg = [(c,0)  for c in receiver_group]
                        else:
                            rg = [(c[0],c[1])  for c in receiver_group]
                else:
                    raise TypeError("illegal receiver_group type.")

                self.__source=source
                self.__receiver_group=rg
                self.__text=text
                self.__trace = [ [] for i in self.__receiver_group ]
                self.__sampling_interval = sampling_interval

        def addRecord(self, record):
               """
               Adds a record to the traces. A time difference of sample_interval between two records is assumed.
               The record mast be a list of as many values as given receivers or a float if a single receiver is used.

               :param record: list of tracks to be added to the record.
               """
               if not len(self.__receiver_group) == len(record):
                         raise ValueError("expected number of records is %s but %s given."%(len(self.__receiver_group), len(record)))
               if len(self.__receiver_group) == 1:
                       if isinstance(self.__receiver_group, float) or isinstance(self.__receiver_group, int):
                                 self.__trace[0].append(record)
                       else:
                                 self.__trace[0].append(record[0])
               else:
                       for i in range(len(record)):
                               self.__trace[i].append(record[i])

        def getSamplingInterval(self):
               """
               returns the sampling interval in seconds.
               """
               return self.__sampling_interval

        def obspy_available(self):
            """
            for checking if the obspy module is available
            """
            return OBSPY_AVAILABLE

        def write(self, filename):
            """
            writes to segy file

            :param filename: file name
            :note: the function uses the `obspy` module.
            """

            if not OBSPY_AVAILABLE:
                raise RuntimeError("This feature (SimpleSEGYWriter.write())"+\
                        " depends on obspy, which is not installed, see "+\
                        "https://github.com/obspy/obspy for install guide")

            if getMPISizeWorld() > 1:
                raise RuntimeError("Writing segy files with multiple ranks is"+\
                        " not yet supported.")

            stream=Stream()

            for i in range(len(self.__receiver_group)):
                    trace = Trace(data=np.array(self.__trace[i], dtype='float32'))
                    # Attributes in trace.stats will overwrite everything in
                    # trace.stats.segy.trace_header (in Hz)
                    trace.stats.sampling_rate = 1./self.getSamplingInterval()
                    #trace.stats.starttime = UTCDateTime(2011,11,11,0,0,0)
                    if not hasattr(trace.stats, 'segy.trace_header'):
                        trace.stats.segy = {}
                    trace.stats.segy.trace_header = SEGYTraceHeader()
                    trace.stats.segy.trace_header.trace_identification_code=1
                    trace.stats.segy.trace_header.trace_sequence_number_within_line = i + 1
                    trace.stats.segy.trace_header.scalar_to_be_applied_to_all_coordinates = -int(self.COORDINATE_SCALE)
                    trace.stats.segy.trace_header.coordinate_units=1
                    trace.stats.segy.trace_header.source_coordinate_x=int(self.__source[0] * self.COORDINATE_SCALE)
                    trace.stats.segy.trace_header.source_coordinate_y=int(self.__source[1] * self.COORDINATE_SCALE)
                    trace.stats.segy.trace_header.group_coordinate_x=int(self.__receiver_group[i][0] * self.COORDINATE_SCALE)
                    trace.stats.segy.trace_header.group_coordinate_y=int(self.__receiver_group[i][1] * self.COORDINATE_SCALE)

                    # Add trace to stream
                    stream.append(trace)
            # A SEGY file has file wide headers. This can be attached to the stream
            # object.  If these are not set, they will be autocreated with default
            # values.
            stream.stats = AttribDict()
            stream.stats.textual_file_header = 'C.. '+self.__text+'\nC.. with esys.escript.downunder r%s\nC.. %s'%(getVersion(),time.asctime())
            stream.stats.binary_file_header = SEGYBinaryFileHeader()

            if getMPIRankWorld()<1:
                stream.write(filename, format="SEGY", data_encoding=1,byteorder=sys.byteorder)

class WaveBase(object):
      """
      Base for wave propagation using the Verlet scheme.

            ``u_tt = A(t,u), u(t=t0)=u0, u_t(t=t0)=v0``

      with a given acceleration force as function of time.

      a_n=A(t_{n-1})
      v_n=v_{n-1} +  dt *  a_n
      u_n=u_{n-1} +  dt *  v_n


      """
      def __init__(self, dt, u0, v0, t0=0.):
         """
         set up the wave base

         :param dt: time step size (need to be sufficiently small)
         :param u0: initial value
         :param v0: initial velocity
         :param t0: initial time
         """
         self.u=u0
         self.v=v0
         self.t=t0
         self.n=0
         self.t_last=t0
         self.__dt=dt

      def getTimeStepSize(self):
           return self.__dt

      def _getAcceleration(self, t, u):
           """
           returns the acceleraton for time `t` and solution `u` at time `t`
           : note: this function needs to be overwritten by a particular wave problem
           """
           pass

      def update(self, t):
             """
             returns the solution for the next time marker t which needs to greater than the time marker from the
             previous call.
             """
             if not self.t_last <= t:
                  raise ValueError("You can not move backward in time.")

             dt = self.getTimeStepSize()
             # apply Verlet scheme until
             while self.t < t:
                  a=self._getAcceleration(self.t, self.u)
                  self.v += dt * a
                  self.u += dt * self.v
                  self.t += dt
                  self.n += 1

             # now we work backwards
             self.t_last=t
             return t, self.u + self.v * (t-self.t)

def createAbsorbtionLayerFunction(x, absorption_zone=300*U.m,
        absorption_cut=1.e-2, top_absorption=False, top_absorbation=None):
    print("WARNING: createAbsorbtionLayerFunction(): function is deprecated, use createAbsorptionLayerFunction")

def createAbsorptionLayerFunction(x, absorption_zone=300*U.m,
        absorption_cut=1.e-2, top_absorption=False, top_absorbation=None):
    """
    Creates a distribution which is one in the interior of the domain of `x`
    and is falling down to the value 'absorption_cut' over a margin of thickness 'absorption_zone'
    toward each boundary except the top of the domain.

    :param x: location of points in the domain
    :type x: `Data`
    :param absorption_zone: thickness of the absorption zone
    :param absorption_cut: value of decay function on domain boundary
    :return: function on 'x' which is one in the iterior and decays to almost zero over a margin
             toward the boundary.
    """
    if top_absorbation is not None:
        print("WARNING: createAbsorptionLayerFunction(): top_absorbation is deprecated, use top_absorption")
        if top_absorption is False:
            top_absorption = top_absorbation

    if absorption_zone is None or absorption_zone == 0:
        return 1

    dom=x.getDomain()
    bb=boundingBox(dom)
    DIM=dom.getDim()
    decay=-log(absorption_cut)/absorption_zone**2
    f=1
    for i in range(DIM):
        x_i=x[i]
        x_l=x_i-(bb[i][0]+absorption_zone)
        m_l=whereNegative(x_l)
        f=f*( (exp(-decay*(x_l*m_l)**2)-1) * m_l+1 )
        if  top_absorption or not DIM-1 == i:
            x_r=(bb[i][1]-absorption_zone)-x_i
            m_r=whereNegative(x_r)
            f=f*( (exp(-decay*(x_r*m_r)**2)-1) * m_r+1 )
    return f

class SonicWave(WaveBase):
        """
        Solving the sonic wave equation

        `p_tt = (v_p**2 * p_i)_i  + f(t) * delta_s`   where (p-) velocity v_p.

        f(t) is wavelet acting at a point source term at positon s
        """
        def __init__(self, domain, v_p, wavelet, source_tag, dt=None, p0=None, p0_t=None, absorption_zone=300*U.m, absorption_cut=1e-2, lumping=True):
           """
           initialize the sonic wave solver

           :param domain: domain of the problem
           :type domain: `Domain`
           :param v_p: p-velocity field
           :type v_p: `Scalar`
           :param wavelet: wavelet to describe the time evolution of source term
           :type wavelet: `Wavelet`
           :param source_tag: tag of the source location
           :type source_tag: 'str' or 'int'
           :param dt: time step size. If not present a suitable time step size is calculated.
           :param p0: initial solution. If not present zero is used.
           :param p0_t: initial solution change rate. If not present zero is used.
           :param absorption_zone: thickness of absorption zone
           :param absorption_cut: boundary value of absorption decay factor
           :param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
           """
           f=createAbsorptionLayerFunction(Function(domain).getX(), absorption_zone, absorption_cut)
           v_p=v_p*f

           if p0 == None:
              p0=Scalar(0.,Solution(domain))
           else:
              p0=interpolate(p0, Solution(domain ))

           if p0_t == None:
              p0_t=Scalar(0.,Solution(domain))
           else:
              p0_t=interpolate(p0_t, Solution(domain ))

           if dt == None:
                  dt=min(inf((1./5.)*domain.getSize()/v_p), wavelet.getTimeScale())

           super(SonicWave, self).__init__( dt, u0=p0, v0=p0_t, t0=0.)

           self.__wavelet=wavelet
           self.__mypde=LinearSinglePDE(domain)
           if lumping: self.__mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
           self.__mypde.setSymmetryOn()
           self.__mypde.setValue(D=1./v_p**2)
           self.__source_tag=source_tag
           self.__r=Scalar(0., DiracDeltaFunctions(self.__mypde.getDomain()))


        def  _getAcceleration(self, t, u):
             """
             returns the acceleraton for time t and solution u at time t
             """
             self.__r.setTaggedValue(self.__source_tag, self.__wavelet.getValue(t))
             self.__mypde.setValue(X=-grad(u,Function(self.__mypde.getDomain())), y_dirac= self.__r)
             return self.__mypde.getSolution()


class VTIWave(WaveBase):
    """
    Solving the VTI wave equation

    :note: In case of a two dimensional domain the second spatial dimenion is depth.
    """
    def __init__(self, domain, v_p, v_s, wavelet, source_tag,
            source_vector = [0.,0.,1.], eps=0., gamma=0., delta=0., rho=1.,
            dt=None, u0=None, v0=None, absorption_zone=None,
            absorption_cut=1e-2, lumping=True, disable_fast_assemblers=False):
        """
        initialize the VTI wave solver

        :param domain: domain of the problem
        :type domain: `Domain`
        :param v_p: vertical p-velocity field
        :type v_p: `Scalar`
        :param v_s: vertical s-velocity field
        :type v_s: `Scalar`
        :param wavelet: wavelet to describe the time evolution of source term
        :type wavelet: `Wavelet`
        :param source_tag: tag of the source location
        :type source_tag: 'str' or 'int'
        :param source_vector: source orientation vector
        :param eps: first Thompsen parameter
        :param delta: second Thompsen parameter
        :param gamma: third Thompsen parameter
        :param rho: density
        :param dt: time step size. If not present a suitable time step size is calculated.
        :param u0: initial solution. If not present zero is used.
        :param v0: initial solution change rate. If not present zero is used.
        :param absorption_zone: thickness of absorption zone
        :param absorption_cut: boundary value of absorption decay factor
        :param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
        :param disable_fast_assemblers: if True, forces use of slower and more general PDE assemblers
        :type disable_fast_assemblers: `boolean`
        """
        DIM=domain.getDim()
        self.fastAssembler = hasattr(domain, "createAssembler") and not disable_fast_assemblers
        f=createAbsorptionLayerFunction(Function(domain).getX(), absorption_zone, absorption_cut)

        f = interpolate(f, Function(domain))

        v_p=v_p*f
        v_s=v_s*f

        if u0 == None:
          u0=Vector(0.,Solution(domain))
        else:
          u0=interpolate(p0, Solution(domain ))

        if v0 == None:
          v0=Vector(0.,Solution(domain))
        else:
          v0=interpolate(v0, Solution(domain ))

        if dt == None:
              dt=min((1./5.)*min(inf(domain.getSize()/v_p), inf(domain.getSize()/v_s)), wavelet.getTimeScale())

        super(VTIWave, self).__init__( dt, u0=u0, v0=v0, t0=0.)

        self.__wavelet=wavelet

        self.c33=v_p**2 * rho
        self.c44=v_s**2 * rho
        self.c11=(1+2*eps) * self.c33
        self.c66=(1+2*gamma) * self.c44
        self.c13=sqrt(2*self.c33*(self.c33-self.c44) * delta + (self.c33-self.c44)**2)-self.c44
        self.c12=self.c11-2*self.c66

        if self.fastAssembler:
            C = [("c11", self.c11),
                    ("c12", self.c12), ("c13", self.c13), ("c33", self.c33),
                    ("c44", self.c44), ("c66", self.c66)]
            if "speckley" in domain.getDescription().lower():
                C = [(n, interpolate(d, ReducedFunction(domain))) for n,d in C]
            self.__mypde=WavePDE(domain, C)
        else:
            self.__mypde=LinearPDESystem(domain)
            self.__mypde.setValue(X=self.__mypde.createCoefficient('X'))

        if lumping:
            self.__mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
        self.__mypde.setSymmetryOn()
        self.__mypde.setValue(D=rho*kronecker(DIM))
        self.__source_tag=source_tag

        if DIM ==2 :
          source_vector= [source_vector[0],source_vector[2]]

        self.__r=Vector(0, DiracDeltaFunctions(self.__mypde.getDomain()))
        self.__r.setTaggedValue(self.__source_tag, source_vector)


    def setQ(self,q):
        """
        sets the PDE q value

        :param q: the value to set
        """
        self.__mypde.setValue(q=q)

    def _getAcceleration(self, t, u):
        """
        returns the acceleraton for time `t` and solution `u` at time `t`
        """
        du = grad(u)
        if not self.fastAssembler:
            sigma=self.__mypde.getCoefficient('X')
            if self.__mypde.getDim() == 3:
                e11=du[0,0]
                e22=du[1,1]
                e33=du[2,2]
                sigma[0,0]=self.c11*e11+self.c12*e22+self.c13*e33
                sigma[1,1]=self.c12*e11+self.c11*e22+self.c13*e33
                sigma[2,2]=self.c13*(e11+e22)+self.c33*e33

                s=self.c44*(du[2,1]+du[1,2])
                sigma[1,2]=s
                sigma[2,1]=s

                s=self.c44*(du[2,0]+du[0,2])
                sigma[0,2]=s
                sigma[2,0]=s

                s=self.c66*(du[0,1]+du[1,0])
                sigma[0,1]=s
                sigma[1,0]=s


            else:
                e11=du[0,0]
                e22=du[1,1]
                sigma[0,0]=self.c11*e11+self.c13*e22
                sigma[1,1]=self.c13*e11+self.c33*e22
                s=self.c44*(du[1,0]+du[0,1])
                sigma[0,1]=s
                sigma[1,0]=s
            self.__mypde.setValue(X=-sigma, y_dirac= self.__r * self.__wavelet.getValue(t))

        else:
            self.__mypde.setValue(du=du, y_dirac= self.__r * self.__wavelet.getValue(t))

        return self.__mypde.getSolution()


class HTIWave(WaveBase):
    """
    Solving the HTI wave equation (along the x_0 axis)

    :note: In case of a two dimensional domain a horizontal domain is considered, i.e. the depth component is dropped.
    """

    def __init__(self, domain, v_p, v_s,   wavelet, source_tag,
            source_vector = [1.,0.,0.], eps=0., gamma=0., delta=0., rho=1.,
            dt=None, u0=None, v0=None, absorption_zone=None,
            absorption_cut=1e-2, lumping=True, disable_fast_assemblers=False):
       """
       initialize the VTI wave solver

       :param domain: domain of the problem
       :type domain: `Domain`
       :param v_p: vertical p-velocity field
       :type v_p: `Scalar`
       :param v_s: vertical s-velocity field
       :type v_s: `Scalar`
       :param wavelet: wavelet to describe the time evolution of source term
       :type wavelet: `Wavelet`
       :param source_tag: tag of the source location
       :type source_tag: 'str' or 'int'
       :param source_vector: source orientation vector
       :param eps: first Thompsen parameter
       :param delta: second Thompsen parameter
       :param gamma: third Thompsen parameter
       :param rho: density
       :param dt: time step size. If not present a suitable time step size is calculated.
       :param u0: initial solution. If not present zero is used.
       :param v0: initial solution change rate. If not present zero is used.
       :param absorption_zone: thickness of absorption zone
       :param absorption_cut: boundary value of absorption decay factor
       :param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
       :param disable_fast_assemblers: if True, forces use of slower and more general PDE assemblers
       """
       DIM=domain.getDim()
       self.fastAssembler = hasattr(domain, "createAssembler") and not disable_fast_assemblers
       f=createAbsorptionLayerFunction(v_p.getFunctionSpace().getX(), absorption_zone, absorption_cut)

       v_p=v_p*f
       v_s=v_s*f

       if u0 == None:
          u0=Vector(0.,Solution(domain))
       else:
          u0=interpolate(p0, Solution(domain ))

       if v0 == None:
          v0=Vector(0.,Solution(domain))
       else:
          v0=interpolate(v0, Solution(domain ))

       if dt == None:
            dt=min((1./5.)*min(inf(domain.getSize()/v_p), inf(domain.getSize()/v_s)), wavelet.getTimeScale())

       super(HTIWave, self).__init__( dt, u0=u0, v0=v0, t0=0.)

       self.__wavelet=wavelet

       self.c33 = v_p**2 * rho
       self.c44 = v_s**2 * rho
       self.c11 = (1+2*eps) * self.c33
       self.c66 = (1+2*gamma) * self.c44
       self.c13 = sqrt(2*self.c33*(self.c33-self.c44) * delta + (self.c33-self.c44)**2)-self.c44
       self.c23 = self.c33-2*self.c66

       if self.fastAssembler:
            C = [("c11", self.c11),
                ("c23", self.c23), ("c13", self.c13), ("c33", self.c33),
                ("c44", self.c44), ("c66", self.c66)]
            if "speckley" in domain.getDescription().lower():
                C = [(n, interpolate(d, ReducedFunction(domain))) for n,d in C]
            self.__mypde=WavePDE(domain, C)
       else:
            self.__mypde=LinearPDESystem(domain)
            self.__mypde.setValue(X=self.__mypde.createCoefficient('X'))

       if lumping:
            self.__mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
       self.__mypde.setSymmetryOn()
       self.__mypde.setValue(D=rho*kronecker(DIM))
       self.__source_tag=source_tag

       if DIM == 2:
          source_vector= [source_vector[0],source_vector[2]]

       self.__r=Vector(0, DiracDeltaFunctions(self.__mypde.getDomain()))
       self.__r.setTaggedValue(self.__source_tag, source_vector)


    def setQ(self,q):
        """
        sets the PDE q value

        :param q: the value to set
        """
        self.__mypde.setValue(q=q)

    def  _getAcceleration(self, t, u):
         """
         returns the acceleraton for time `t` and solution `u` at time `t`
         """
         du = grad(u)
         if self.fastAssembler:
            self.__mypde.setValue(du=du, y_dirac= self.__r * self.__wavelet.getValue(t))
         else:
             sigma=self.__mypde.getCoefficient('X')

             if self.__mypde.getDim() == 3:
                e11=du[0,0]
                e22=du[1,1]
                e33=du[2,2]

                sigma[0,0]=self.c11*e11+self.c13*(e22+e33)
                sigma[1,1]=self.c13*e11+self.c33*e22+self.c23*e33
                sigma[2,2]=self.c13*e11+self.c23*e22+self.c33*e33

                s=self.c44*(du[2,1]+du[1,2])
                sigma[1,2]=s
                sigma[2,1]=s

                s=self.c66*(du[2,0]+du[0,2])
                sigma[0,2]=s
                sigma[2,0]=s

                s=self.c66*(du[0,1]+du[1,0])
                sigma[0,1]=s
                sigma[1,0]=s

             else:
                e11=du[0,0]
                e22=du[1,1]
                sigma[0,0]=self.c11*e11+self.c13*e22
                sigma[1,1]=self.c13*e11+self.c33*e22

                s=self.c66*(du[1,0]+du[0,1])
                sigma[0,1]=s
                sigma[1,0]=s
             self.__mypde.setValue(X=-sigma, y_dirac= self.__r * self.__wavelet.getValue(t))

         return self.__mypde.getSolution()

class TTIWave(WaveBase):
        """
        Solving the 2D TTI wave equation with

        `sigma_xx= c11*e_xx + c13*e_zz + c15*e_xz`
        `sigma_zz= c13*e_xx + c33*e_zz + c35*e_xz`
        `sigma_xz= c15*e_xx + c35*e_zz + c55*e_xz`

        the coefficients `c11`, `c13`, etc are calculated from the tompsen parameters `eps`, `delta` and the tilt `theta`

        :note: currently only the 2D case is supported.
        """

        def __init__(self, domain, v_p, v_s,   wavelet, source_tag,
                source_vector = [0.,1.], eps=0., delta=0., theta=0., rho=1.,
                dt=None, u0=None, v0=None, absorption_zone=300*U.m,
                absorption_cut=1e-2, lumping=True):
           """
           initialize the TTI wave solver

           :param domain: domain of the problem
           :type domain: `Domain`
           :param v_p: vertical p-velocity field
           :type v_p: `Scalar`
           :param v_s: vertical s-velocity field
           :type v_s: `Scalar`
           :param wavelet: wavelet to describe the time evolution of source term
           :type wavelet: `Wavelet`
           :param source_tag: tag of the source location
           :type source_tag: 'str' or 'int'
           :param source_vector: source orientation vector
           :param eps: first Thompsen parameter
           :param delta: second Thompsen parameter
           :param theta: tilting (in Rad)
           :param rho: density
           :param dt: time step size. If not present a suitable time step size is calculated.
           :param u0: initial solution. If not present zero is used.
           :param v0: initial solution change rate. If not present zero is used.
           :param absorption_zone: thickness of absorption zone
           :param absorption_cut: boundary value of absorption decay factor
           :param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
           """
           DIM=domain.getDim()
           if not DIM == 2:
                raise ValueError("Only 2D is supported.")
           f=createAbsorptionLayerFunction(Function(domain).getX(), absorption_zone, absorption_cut)

           v_p=v_p*f
           v_s=v_s*f

           if u0 == None:
              u0=Vector(0.,Solution(domain))
           else:
              u0=interpolate(p0, Solution(domain ))

           if v0 == None:
              v0=Vector(0.,Solution(domain))
           else:
              v0=interpolate(v0, Solution(domain ))

           if dt == None:
                  dt=min((1./5.)*min(inf(domain.getSize()/v_p), inf(domain.getSize()/v_s)), wavelet.getTimeScale())

           super(TTIWave, self).__init__( dt, u0=u0, v0=v0, t0=0.)

           self.__wavelet=wavelet

           self.__mypde=LinearPDESystem(domain)
           if lumping: self.__mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
           self.__mypde.setSymmetryOn()
           self.__mypde.setValue(D=rho*kronecker(DIM), X=self.__mypde.createCoefficient('X'))
           self.__source_tag=source_tag

           self.__r=Vector(0, DiracDeltaFunctions(self.__mypde.getDomain()))
           self.__r.setTaggedValue(self.__source_tag, source_vector)

           c0_33=v_p**2 * rho
           c0_66=v_s**2 * rho
           c0_11=(1+2*eps) * c0_33
           c0_13=sqrt(2*c0_33*(c0_33-c0_66) * delta + (c0_33-c0_66)**2)-c0_66

           self.c11= c0_11*cos(theta)**4 - 2*c0_13*cos(theta)**4 + 2*c0_13*cos(theta)**2 + c0_33*sin(theta)**4 - 4*c0_66*cos(theta)**4 + 4*c0_66*cos(theta)**2
           self.c13= -c0_11*cos(theta)**4 + c0_11*cos(theta)**2 + c0_13*sin(theta)**4 + c0_13*cos(theta)**4 - c0_33*cos(theta)**4 + c0_33*cos(theta)**2 + 4*c0_66*cos(theta)**4 - 4*c0_66*cos(theta)**2
           self.c16= (-2*c0_11*cos(theta)**2 - 4*c0_13*sin(theta)**2 + 2*c0_13 + 2*c0_33*sin(theta)**2 - 8*c0_66*sin(theta)**2 + 4*c0_66)*sin(theta)*cos(theta)/2
           self.c33= c0_11*sin(theta)**4 - 2*c0_13*cos(theta)**4 + 2*c0_13*cos(theta)**2 + c0_33*cos(theta)**4 - 4*c0_66*cos(theta)**4 + 4*c0_66*cos(theta)**2
           self.c36= (2*c0_11*cos(theta)**2 - 2*c0_11 + 4*c0_13*sin(theta)**2 - 2*c0_13 + 2*c0_33*cos(theta)**2 + 8*c0_66*sin(theta)**2 - 4*c0_66)*sin(theta)*cos(theta)/2
           self.c66= -c0_11*cos(theta)**4 + c0_11*cos(theta)**2 + 2*c0_13*cos(theta)**4 - 2*c0_13*cos(theta)**2 - c0_33*cos(theta)**4 + c0_33*cos(theta)**2 + c0_66*sin(theta)**4 + 3*c0_66*cos(theta)**4 - 2*c0_66*cos(theta)**2

        def  _getAcceleration(self, t, u):
             """
             returns the acceleraton for time `t` and solution `u` at time `t`
             """
             du = grad(u)
             sigma=self.__mypde.getCoefficient('X')

             e_xx=du[0,0]
             e_zz=du[1,1]
             e_xz=du[0,1]+du[1,0]


             sigma[0,0]= self.c11 * e_xx + self.c13 * e_zz + self.c16 * e_xz
             sigma[1,1]= self.c13 * e_xx + self.c33 * e_zz + self.c36 * e_xz
             sigma_xz  = self.c16 * e_xx + self.c36 * e_zz + self.c66 * e_xz

             sigma[0,1]=sigma_xz
             sigma[1,0]=sigma_xz

             self.__mypde.setValue(X=-sigma, y_dirac= self.__r * self.__wavelet.getValue(t))
             return self.__mypde.getSolution()

class SonicHTIWave(WaveBase):
        """
        Solving the HTI wave equation (along the x_0 axis) with azimuth (rotation around verticle axis)
        under the assumption of zero shear wave velocities
        The unknowns are the transversal (along x_0) and vertial stress (Q, P)

        :note: In case of a two dimensional domain the second spatial dimenion is depth.
        """
        def __init__(self, domain, v_p, wavelet, source_tag, source_vector = [1.,0.], eps=0., delta=0., azimuth=0.,
                     dt=None, p0=None, v0=None, absorption_zone=300*U.m, absorption_cut=1e-2, lumping=True):
           """
           initialize the HTI wave solver

           :param domain: domain of the problem
           :type domain: `Doamin`
           :param v_p: vertical p-velocity field
           :type v_p: `Scalar`
           :param v_s: vertical s-velocity field
           :type v_s: `Scalar`
           :param wavelet: wavelet to describe the time evolution of source term
           :type wavelet: `Wavelet`
           :param source_tag: tag of the source location
           :type source_tag: 'str' or 'int'
           :param source_vector: source orientation vector
           :param eps: first Thompsen parameter
           :param azimuth: azimuth (rotation around verticle axis)
           :param gamma: third Thompsen parameter
           :param rho: density
           :param dt: time step size. If not present a suitable time step size is calculated.
           :param p0: initial solution (Q(t=0), P(t=0)). If not present zero is used.
           :param v0: initial solution change rate. If not present zero is used.
           :param absorption_zone: thickness of absorption zone
           :param absorption_cut: boundary value of absorption decay factor
           :param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
           """
           DIM=domain.getDim()
           f=createAbsorptionLayerFunction(v_p.getFunctionSpace().getX(), absorption_zone, absorption_cut)

           self.v2_p=v_p**2
           self.v2_t=self.v2_p*sqrt(1+2*delta)
           self.v2_n=self.v2_p*(1+2*eps)

           if p0 == None:
              p0=Data(0.,(2,),Solution(domain))
           else:
              p0=interpolate(p0, Solution(domain ))

           if v0 == None:
              v0=Data(0.,(2,),Solution(domain))
           else:
              v0=interpolate(v0, Solution(domain ))

           if dt == None:
                  dt=min(min(inf(domain.getSize()/sqrt(self.v2_p)), inf(domain.getSize()/sqrt(self.v2_t)), inf(domain.getSize()/sqrt(self.v2_n))) , wavelet.getTimeScale())*0.2

           super(SonicHTIWave, self).__init__( dt, u0=p0, v0=v0, t0=0.)

           self.__wavelet=wavelet

           self.__mypde=LinearPDESystem(domain)
           if lumping: self.__mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
           self.__mypde.setSymmetryOn()
           self.__mypde.setValue(D=kronecker(2), X=self.__mypde.createCoefficient('X'))
           self.__source_tag=source_tag


           self.__r=Vector(0, DiracDeltaFunctions(self.__mypde.getDomain()))
           self.__r.setTaggedValue(self.__source_tag, source_vector)

        def  _getAcceleration(self, t, u):
            """
            returns the acceleraton for time `t` and solution `u` at time `t`
            """
            dQ = grad(u[0])[0]
            dP = grad(u[1])[1:]
            sigma=self.__mypde.getCoefficient('X')

            sigma[0,0] = self.v2_n*dQ
            sigma[0,1:] = self.v2_t*dP
            sigma[1,0] = self.v2_t*dQ
            sigma[1,1:] = self.v2_p*dP

            self.__mypde.setValue(X=-sigma, y_dirac= self.__r * self.__wavelet.getValue(t))
            return self.__mypde.getSolution()