This file is indexed.

/usr/lib/python2.7/dist-packages/pyferret/fervar.py is in python-ferret 7.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
'''
Represents Ferret variables in Python.
'''

import numbers
import pyferret

# common regridding methods
REGRID_LINEAR = "@LIN"
REGRID_AVERAGE = "@AVE"
REGRID_ASSOCIATE = "@ASN"
REGRID_MEAN = "@BIN"
REGRID_NEAREST = "@NRST"
REGRID_MIN = "@MIN"
REGRID_MAX = "@MAX"
REGRID_EXACT = "@XACT"

_ADDED_ATTRIBUTES = ('data', 'grid', 'missval', 'unit')

class FerVar(object):
    '''
    Ferret variable object
    '''

    def __init__(self, defn=None, title=None):
        '''
        Creates a Ferret variable with (optionally) a title and a Ferret-syntax definition 
            defn (string): Ferret-syntax definition of the variable
            title (string): title (descriptive long name) for this variable
        '''
        # Record or generate the definition, or set to an empty string
        if defn:
            if not isinstance(defn, str):
                raise ValueError("defn is not a string")
            self._definition = defn
        else:
            self._definition = ''
        # Name of the variable in the dataset
        self._varname = ''
        # Name of the dataset
        self._dsetname = ''
        # Record the title for this variable, or am empty string if not given
        self.settitle(title)
        # Is this a file variable?
        self._isfilevar = False
        # The list of uppercase _varname's that are know to be used
        # in the definition.  This list is not guaranteed to be complete 
        # and is not used in comparisons.
        self._requires = set()
        # Call the unload method to create and set the defaults for 
        # _datagrid, _dataarray, _dataunit, and _missingvalue.
        #     _datagrid is a FerGrid describing the Ferret grid for the variable.
        #     _dataarray is a NumPy ndarray contains the Ferret data for the variable.
        #     _dataunit is a string given the unit of the data
        #     _missingvalue is the missing value used for the data
        self.unload()


    def copy(self):
        '''
        Return an anonymous copy (only the definition is copied) of this FerVar.
        '''
        newvar = FerVar(defn=self._definition)
        newvar._requires.update(self._requires)
        return newvar


    def settitle(self, title):
        '''
        Assigns the title (long descriptive name) for this FerVar.  If this
        variable is defined in Ferret, the title for the Ferret variable is
        also updated.
            title (string): title to assign
        Raises ValueError if title is not a string or if there is a problem 
            updating the title in Ferret
        '''
        if title:
            if not isinstance(title, str):
                raise ValueError("title is not a string")
            self._title = title
        else:
            self._title = ''
        if self._varname:
            cmdstr = 'SET VAR/TITLE="%s" %s' % (self._title, self.fername())
            (errval, errmsg) = pyferret.run(cmdstr)
            if errval != pyferret.FERR_OK:
                raise ValueError('problems updating the variable title in Ferret for ' + \
                                 '%s to "%s": %s' % (self.fername(), self._title, errmsg))
 

    def fername(self):
        ''' 
        Returns the Ferret name for this variable; namely,
            <_varname>[d=<_dsetname>]
        if _dsetname is given; otherwise, just
            <_varname>
        Raises ValueError if _varname is not defined
        '''
        if not self._varname:
            raise ValueError('this FerVar does not contain a Ferret variable name')
        if self._dsetname:
            fername = '%s[d=%s]' % (self._varname, self._dsetname)
        else:
            fername = '%s' % self._varname
        return fername


    def __repr__(self):
        '''
        Representation of this FerVar
        '''
        infostr = "FerVar(varname='%s', dsetname='%s', title = '%s', defn='%s')" \
                  % (self._varname, self._dsetname, self._title, self._definition)
        return infostr


    def __del__(self):
        '''
        Removes this variable, if possible, from Ferret.
        Any error are ignored.
        '''
        # Try to remove from Ferret but ignore errors
        try:
            self._removefromferret()
        except Exception:
            pass


    def __cmp__(self, other):
        '''
        FerVars are ordered alphabetically, case-insensitive, first by 
        the Ferret variable name, then by the dataset name, title, and 
        finally by the definition.  (Used by the "rich comparison" methods.)
        '''
        if not isinstance(other, FerVar):
            raise NotImplementedError('other is not a FerVar')
        supper = self._varname.upper()
        oupper = other._varname.upper()
        if supper < oupper:
            return -1
        if supper > oupper:
            return 1
        supper = self._dsetname.upper()
        oupper = other._dsetname.upper()
        if supper < oupper:
            return -1
        if supper > oupper:
            return 1
        supper = self._title.upper()
        oupper = other._title.upper()
        if supper < oupper:
            return -1
        if supper > oupper:
            return 1
        supper = self._definition.upper()
        oupper = other._definition.upper()
        if supper < oupper:
            return -1
        if supper > oupper:
            return 1
        return 0


    def __eq__(self, other):
        '''
        Two FerVars are equal if all of the following are True:
            they have the same Ferret variable name,
            they have the same dataset name, 
            they have the same title, and
            they have the same definition.
        All these comparisons are case-insensitive.
        '''
        try:
            return ( self.__cmp__(other) == 0 )
        except NotImplementedError:
            return NotImplemented


    def __ne__(self, other):
        '''
        Two FerVars are not equal if any of the following are True:
            they have different Ferret variable names,
            they have different dataset names,
            they have different titles, or
            they have different definitions.
        All these comparisons are case-insensitive.
        '''
        try:
            return ( self.__cmp__(other) != 0 )
        except NotImplementedError:
            return NotImplemented


    def __lt__(self, other):
        '''
        FerVars are ordered alphabetically, case-insensitive, first by 
        the Ferret variable name, then by the dataset name, title, and 
        finally by the definition.
        '''
        try:
            return ( self.__cmp__(other) < 0 )
        except NotImplementedError:
            return NotImplemented


    def __le__(self, other):
        '''
        FerVars are ordered alphabetically, case-insensitive, first by 
        the Ferret variable name, then by the dataset name, title, and 
        finally by the definition.
        '''
        try:
            return ( self.__cmp__(other) <= 0 )
        except NotImplementedError:
            return NotImplemented


    def __gt__(self, other):
        '''
        FerVars are ordered alphabetically, case-insensitive, first by 
        the Ferret variable name, then by the dataset name, title, and 
        finally by the definition.
        '''
        try:
            return ( self.__cmp__(other) > 0 )
        except NotImplementedError:
            return NotImplemented


    def __ge__(self, other):
        '''
        FerVars are ordered alphabetically, case-insensitive, first by 
        the Ferret variable name, then by the dataset name, title, and 
        finally by the definition.
        '''
        try:
            return ( self.__cmp__(other) >= 0 )
        except NotImplementedError:
            return NotImplemented


    def __nonzero__(self):
        '''
        Returns False if the Ferret variable name, dataset name, title, 
        and definition are all empty.  (For Python2.x)
        '''
        if self._varname:
            return True
        if self._dsetname:
            return True
        if self._title:
            return True
        if self._definition:
            return True
        return False


    def __bool__(self):
        '''
        Returns False if the Ferret variable name, dataset name, title 
        and definition are all empty.  (For Python3.x)
        '''
        return self.__nonzero__()


    def __add__(self, other):
        '''
        If other is a FerVar, returns an anonymous FerVar whose definition 
        is the sum of the FerVar definitions.
        If other is Real, returns an anonymous FerVar whose definition 
        is the sum of the FerVar definition with the number.
        If other is not a FerVar or Real, returns NotImplemented
        '''
        if isinstance(other, FerVar):
            newdef = '(%s) + (%s)' % (self._definition, other._definition)
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            newvar._requires.update(other._requires)
            return newvar
        if isinstance(other, numbers.Real):
            newdef = '(%s) + %s' % (self._definition, str(other))
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            return newvar
        return NotImplemented


    def __radd__(self, other):
        '''
        If other is a FerVar, returns an anonymous FerVar whose definition 
        is the sum of the FerVar definitions.
        If other is Real, returns an anonymous FerVar whose definition 
        is the sum of the FerVar definition with the number.
        If other is not a FerVar or Real, returns NotImplemented
        '''
        if isinstance(other, FerVar):
            newdef = '(%s) + (%s)' % (other._definition, self._definition)
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            newvar._requires.update(other._requires)
            return newvar
        if isinstance(other, numbers.Real):
            newdef = '%s + (%s)' % (str(other), self._definition)
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            return newvar
        return NotImplemented


    def __sub__(self, other):
        '''
        If other is a FerVar, returns an anonymous FerVar whose definition 
        is the difference (self - other) of the FerVar definitions.
        If other is Real, returns an anonymous FerVar whose definition 
        is the difference (self - other) of the FerVar definition with the number.
        If other is not a FerVar or Real, returns NotImplemented
        '''
        if isinstance(other, FerVar):
            newdef = '(%s) - (%s)' % (self._definition, other._definition)
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            newvar._requires.update(other._requires)
            return newvar
        if isinstance(other, numbers.Real):
            newdef = '(%s) - %s' % (self._definition, str(other))
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            return newvar
        return NotImplemented


    def __rsub__(self, other):
        '''
        If other is a FerVar, returns an anonymous FerVar whose definition 
        is the difference (other - self) of the FerVar definitions.
        If other is Real, returns an anonymous FerVar whose definition 
        is the difference (other - self) of the FerVar definition with the number.
        If other is not a FerVar or Real, returns NotImplemented
        '''
        if isinstance(other, FerVar):
            newdef = '(%s) - (%s)' % (other._definition, self._definition)
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            newvar._requires.update(other._requires)
            return newvar
        if isinstance(other, numbers.Real):
            newdef = '%s - (%s)' % (str(other), self._definition)
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            return newvar
        return NotImplemented


    def __mul__(self, other):
        '''
        If other is a FerVar, returns an anonymous FerVar whose definition 
        is the product of the FerVar definitions.
        If other is Real, returns an anonymous FerVar whose definition 
        is the product of the FerVar definition with the number.
        If other is not a FerVar or Real, returns NotImplemented
        '''
        if isinstance(other, FerVar):
            newdef = '(%s) * (%s)' % (self._definition, other._definition)
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            newvar._requires.update(other._requires)
            return newvar
        if isinstance(other, numbers.Real):
            newdef = '(%s) * %s' % (self._definition, str(other))
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            return newvar
        return NotImplemented


    def __rmul__(self, other):
        '''
        If other is a FerVar, returns an anonymous FerVar whose definition 
        is the product of the FerVar definitions.
        If other is Real, returns an anonymous FerVar whose definition 
        is the product of the FerVar definition with the number.
        If other is not a FerVar or Real, returns NotImplemented
        '''
        if isinstance(other, FerVar):
            newdef = '(%s) * (%s)' % (other._definition, self._definition)
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            newvar._requires.update(other._requires)
            return newvar
        if isinstance(other, numbers.Real):
            newdef = '%s * (%s)' % (str(other), self._definition)
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            return newvar
        return NotImplemented


    def __truediv__(self, other):
        '''
        If other is a FerVar, returns an anonymous FerVar whose definition 
        is the quotient (self / other) of the FerVar definitions.
        If other is Real, returns an anonymous FerVar whose definition 
        is the quotient (self / other) of the FerVar definition with the number.
        If other is not a FerVar or Real, returns NotImplemented
        (For Python3.x)
        '''
        if isinstance(other, FerVar):
            newdef = '(%s) / (%s)' % (self._definition, other._definition)
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            newvar._requires.update(other._requires)
            return newvar
        if isinstance(other, numbers.Real):
            newdef = '(%s) / %s' % (self._definition, str(other))
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            return newvar
        return NotImplemented


    def __rtruediv__(self, other):
        '''
        If other is a FerVar, returns an anonymous FerVar whose definition 
        is the quotient (other / self) of the FerVar definitions.
        If other is Real, returns an anonymous FerVar whose definition 
        is the quotient (other / self) of the FerVar definition with the number.
        If other is not a FerVar or Real, returns NotImplemented
        (For Python3.x)
        '''
        if isinstance(other, FerVar):
            newdef = '(%s) / (%s)' % (other._definition, self._definition)
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            newvar._requires.update(other._requires)
            return newvar
        if isinstance(other, numbers.Real):
            newdef = '%s / (%s)' % (str(other), self._definition)
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            return newvar
        return NotImplemented


    def __div__(self, other):
        '''
        If other is a FerVar, returns an anonymous FerVar whose definition 
        is the quotient (self / other) of the FerVar definitions.
        If other is Real, returns an anonymous FerVar whose definition 
        is the quotient (self / other) of the FerVar definition with the number.
        If other is not a FerVar or Real, returns NotImplemented
        (For Python2.x)
        '''
        return self.__truediv__(other)


    def __rdiv__(self, other):
        '''
        If other is a FerVar, returns an anonymous FerVar whose definition 
        is the quotient (other / self) of the FerVar definitions.
        If other is Real, returns an anonymous FerVar whose definition 
        is the quotient (other / self) of the FerVar definition with the number.
        If other is not a FerVar or Real, returns NotImplemented
        (For Python2.x)
        '''
        return self.__rtruediv__(other)


    def __pow__(self, other):
        '''
        If other is a FerVar, returns an anonymous FerVar whose definition 
        is the exponentiation (self ^ other) of the FerVar definitions.
        If other is Real, returns an anonymous FerVar whose definition 
        is the exponentiation (self ^ other) of the FerVar definition with the number.
        If other is not a FerVar or Real, returns NotImplemented
        '''
        if isinstance(other, FerVar):
            newdef = '(%s) ^ (%s)' % (self._definition, other._definition)
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            newvar._requires.update(other._requires)
            return newvar
        if isinstance(other, numbers.Real):
            newdef = '(%s) ^ %s' % (self._definition, str(other))
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            return newvar
        return NotImplemented


    def __rpow__(self, other):
        '''
        If other is a FerVar, returns an anonymous FerVar whose definition 
        is the exponentiation (other ^ self) of the FerVar definitions.
        If other is Real, returns an anonymous FerVar whose definition 
        is the exponentiation (other ^ self) of the FerVar definition with the number.
        If other is not a FerVar or Real, returns NotImplemented
        '''
        if isinstance(other, FerVar):
            newdef = '(%s) ^ (%s)' % (other._definition, self._definition)
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            newvar._requires.update(other._requires)
            return newvar
        if isinstance(other, numbers.Real):
            newdef = '%s ^ (%s)' % (str(other), self._definition)
            newvar = FerVar(defn=newdef)
            newvar._requires.update(self._requires)
            return newvar
        return NotImplemented


    def __neg__(self):
        '''
        Returns an anonymous FerVar whose definition is 
        the product of -1.0 and this FerVar definition.
        '''
        newdef = '-1.0 * (%s)' % self._definition
        newvar = FerVar(defn=newdef)
        newvar._requires.update(self._requires)
        return newvar


    def __pos__(self):
        '''
        Returns an anonymous FerVar whose definition is 
        the same as this FerVar definition.
        '''
        newvar = FerVar(defn=self._definition)
        newvar._requires.update(self._requires)
        return newvar


    def __abs__(self):
        '''
        Returns an anonymous FerVar whose definition is 
        the absolute value of this FerVar definition.
        '''
        newdef = 'abs(%s)' % self._definition
        newvar = FerVar(defn=newdef)
        newvar._requires.update(self._requires)
        return newvar


    def __getitem__(self, key):
        '''
        This FerVar must be assigned in Ferret.

        If key is 'data', returns the data array for this FerVar,
        loading it if necessary.
        If key is 'grid', returns the data grid for this FerVar,
        loading it if necessary.
        If key is 'missval', returns the value for missing data 
        for this FerVar.
        If key is 'unit', returns the data unit for this FerVar.

        Otherwise, assumes key is a slice or subset specification, 
        and returns an anonymous FerVar whose definition is a 
        subset of this FerVar.  
            key is an int, float, string, int slice, float slice, 
                string slice, or a tuple of these values.
                 - int are interpreted as index/indices
                 - floats are interpreted as axis values
                 - strings are interpreted as axis values possibly with units
        Units in a string designate an axis; otherwise the index
        within the given tuple (or zero if not a tuple) specifies the axis.
        For example ['20N':'50N'] will always be a latitude subset.

        TODO: handle step values
        '''
        if key is None:
            raise KeyError('None is not a valid key')
        if not self._varname:
            raise NotImplementedError('variable not assigned in Ferret')
        if key == 'data':
           return self.getdata()
        if key == 'grid':
           return self.getgrid()
        if key == 'missval':
           return self.getmissval()
        if key == 'unit':
           return self.getunit()

        coordlimits = [ None ] * pyferret.MAX_FERRET_NDIM
        indexlimits = [ None ] * pyferret.MAX_FERRET_NDIM
        changed = False
        # TODO: handle step values, try to condense code
        if isinstance(key, tuple):
            for k in range(len(key)):
                piece = key[k]
                if piece is None:
                    continue
                if isinstance(piece, slice):
                    try:
                        (axtype, start, stop, step) = pyferret.FerAxis._parsegeoslice(piece)
                    except Exception as ex:
                        raise KeyError('%s is not valid: %s' % (str(piece), str(ex)))
                    if step is not None:
                        raise KeyError('step values in slices are not supported at this time')
                    if axtype == pyferret.AXISTYPE_LONGITUDE:
                        if coordlimits[pyferret.X_AXIS] or indexlimits[pyferret.X_AXIS]:
                            raise KeyError('two longitude slices given')
                        coordlimits[pyferret.X_AXIS] = '%s:%s' % (str(start), str(stop))
                        changed = True
                    elif axtype == pyferret.AXISTYPE_LATITUDE:
                        if coordlimits[pyferret.Y_AXIS] or indexlimits[pyferret.Y_AXIS]:
                            raise KeyError('two latitude slices given')
                        coordlimits[pyferret.Y_AXIS] = '%s:%s' % (str(start), str(stop))
                        changed = True
                    elif axtype == pyferret.AXISTYPE_LEVEL:
                        if coordlimits[pyferret.Z_AXIS] or indexlimits[pyferret.Z_AXIS]:
                            raise KeyError('two level slices given')
                        coordlimits[pyferret.Z_AXIS] = '%s:%s' % (str(start), str(stop))
                        changed = True
                    elif axtype == pyferret.AXISTYPE_TIME:
                        if coordlimits[pyferret.T_AXIS] or indexlimits[pyferret.T_AXIS]:
                            raise KeyError('two time slices given')
                        starttime = pyferret.FerAxis._makedatestring(start)
                        stoptime = pyferret.FerAxis._makedatestring(stop)
                        coordlimits[pyferret.T_AXIS] = '%s:%s' % (starttime, stoptime)
                        changed = True
                    elif isinstance(start,int) and isinstance(stop,int):
                        if coordlimits[k] or indexlimits[k]:
                            raise KeyError('two slices for axis index %d given' % k)
                        # do not know the axis length at this time
                        if (start < 0) or (stop < 0):
                            raise KeyError('negative indices not supported at this time')
                        # Ferret indices start at 1
                        start += 1
                        stop += 1
                        indexlimits[k] = '%d:%d' % (start, stop)
                        changed = True
                    elif isinstance(start,numbers.Real) and isinstance(stop,numbers.Real):
                        if coordlimits[k] or indexlimits[k]:
                            raise KeyError('two slices for axis index %d given' % k)
                        coordlimits[k] = '%s:%s' % (str(start), str(stop))
                        changed = True
                    elif (start is None) and (stop is None):
                        # full range on this axis 
                        if coordlimits[k] or indexlimits[k]:
                            raise KeyError('two slices for axis index %d given' % k)
                        continue
                    else:
                        raise KeyError('%s in not valid' % str(piece))
                else:
                    try:
                        (axtype, val) = pyferret.FerAxis._parsegeoval(piece)
                    except Exception as ex:
                        raise KeyError('%s is not valid: %s' % (str(piece), str(ex)))
                    if axtype == pyferret.AXISTYPE_LONGITUDE:
                        if coordlimits[pyferret.X_AXIS] or indexlimits[pyferret.X_AXIS]:
                            raise KeyError('two longitude slices given')
                        coordlimits[pyferret.X_AXIS] = '%s' % str(val)
                        changed = True
                    elif axtype == pyferret.AXISTYPE_LATITUDE:
                        if coordlimits[pyferret.Y_AXIS] or indexlimits[pyferret.Y_AXIS]:
                            raise KeyError('two latitude slices given')
                        coordlimits[pyferret.Y_AXIS] = '%s' % str(val)
                        changed = True
                    elif axtype == pyferret.AXISTYPE_LEVEL:
                        if coordlimits[pyferret.Z_AXIS] or indexlimits[pyferret.Z_AXIS]:
                            raise KeyError('two level slices given')
                        coordlimits[pyferret.Z_AXIS] = '%s' % str(val)
                        changed = True
                    elif axtype == pyferret.AXISTYPE_TIME:
                        if coordlimits[pyferret.T_AXIS] or indexlimits[pyferret.T_AXIS]:
                            raise KeyError('two time slices given')
                        coordlimits[pyferret.T_AXIS] = pyferret.FerAxis._makedatestring(val)
                        changed = True
                    elif isinstance(val,int):
                        if coordlimits[k] or indexlimits[k]:
                            raise KeyError('two slices for axis index %d given' % k)
                        # do not know the axis length at this time
                        if val < 0: 
                            raise KeyError('negative indices not supported at this time')
                        # Ferret indices start at 1
                        val += 1
                        indexlimits[k] = '%d' % val
                        changed = True
                    elif isinstance(val,numbers.Real):
                        if coordlimits[k] or indexlimits[k]:
                            raise KeyError('two slices for axis index %d given' % k)
                        coordlimits[k] = '%s' % str(val)
                        changed = True
                    else:
                        raise KeyError('%s in not valid' % str(piece))
        elif isinstance(key, slice):
            try:
                (axtype, start, stop, step) = pyferret.FerAxis._parsegeoslice(key)
            except Exception as ex:
                raise KeyError('%s is not valid: %s' % (str(key), str(ex)))
            if step is not None:
                raise KeyError('step values in slices are not supported at this time')
            if axtype == pyferret.AXISTYPE_LONGITUDE:
                coordlimits[pyferret.X_AXIS] = '%s:%s' % (str(start), str(stop))
                changed = True
            elif axtype == pyferret.AXISTYPE_LATITUDE:
                coordlimits[pyferret.Y_AXIS] = '%s:%s' % (str(start), str(stop))
                changed = True
            elif axtype == pyferret.AXISTYPE_LEVEL:
                coordlimits[pyferret.Z_AXIS] = '%s:%s' % (str(start), str(stop))
                changed = True
            elif axtype == pyferret.AXISTYPE_TIME:
                starttime = pyferret.FerAxis._makedatestring(start)
                stoptime = pyferret.FerAxis._makedatestring(stop)
                coordlimits[pyferret.T_AXIS] = '%s:%s' % (starttime, stoptime)
                changed = True
            elif isinstance(start,int) and isinstance(stop,int):
                # do not know the axis length at this time
                if (start < 0) or (stop < 0):
                    raise KeyError('negative indices not supported at this time')
                # Ferret indices start at 1
                start += 1
                stop += 1
                indexlimits[0] = '%d:%d' % (start, stop)
                changed = True
            elif isinstance(start,numbers.Real) and isinstance(stop,numbers.Real):
                coordlimits[0] = '%s:%s' % (str(start), str(stop))
                changed = True
            elif (start is None) and (stop is None):
                # full range - standard way of generating a duplicate
                pass
            else:
                raise KeyError('%s in not valid' % str(key))
        else:
            try:
                (axtype, val) = pyferret.FerAxis._parsegeoval(key)
            except Exception as ex:
                raise KeyError('%s is not valid: %s' % (str(key), str(ex)))
            if axtype == pyferret.AXISTYPE_LONGITUDE:
                coordlimits[pyferret.X_AXIS] = '%s' % str(val)
                changed = True
            elif axtype == pyferret.AXISTYPE_LATITUDE:
                coordlimits[pyferret.Y_AXIS] = '%s' % str(val)
                changed = True
            elif axtype == pyferret.AXISTYPE_LEVEL:
                coordlimits[pyferret.Z_AXIS] = '%s' % str(val)
                changed = True
            elif axtype == pyferret.AXISTYPE_TIME:
                coordlimits[pyferret.T_AXIS] = pyferret.FerAxis._makedatestring(val)
                changed = True
            elif isinstance(val,int):
                # do not know the axis length at this time
                if val < 0: 
                    raise KeyError('negative indices not supported at this time')
                # Ferret indices start at 1
                val += 1
                indexlimits[k] = '%d' % val
                changed = True
            elif isinstance(start,numbers.Real):
                coordlimits[k] = '%s' % str(val)
                changed = True
            else:
                raise KeyError('%s in not valid' % str(key))
        if not changed:
            # the whole thing - definition is just this variable
            newvar = FerVar(defn=self.fername())
            newvar._requires.update(self._requires)
            return newvar
        # create the subset definition in Ferret
        if self._dsetname:
            newdef = '%s[d=%s,' % (self._varname, self._dsetname)
        else:
            newdef = '%s[' % self._varname
        if coordlimits[pyferret.X_AXIS]:
            newdef += 'X=%s,' % coordlimits[pyferret.X_AXIS]
        if indexlimits[pyferret.X_AXIS]:
            newdef += 'I=%s,' % indexlimits[pyferret.X_AXIS]
        if coordlimits[pyferret.Y_AXIS]:
            newdef += 'Y=%s,' % coordlimits[pyferret.Y_AXIS]
        if indexlimits[pyferret.Y_AXIS]:
            newdef += 'J=%s,' % indexlimits[pyferret.Y_AXIS]
        if coordlimits[pyferret.Z_AXIS]:
            newdef += 'Z=%s,' % coordlimits[pyferret.Z_AXIS]
        if indexlimits[pyferret.Z_AXIS]:
            newdef += 'K=%s,' % indexlimits[pyferret.Z_AXIS]
        if coordlimits[pyferret.T_AXIS]:
            newdef += 'T=%s,' % coordlimits[pyferret.T_AXIS]
        if indexlimits[pyferret.T_AXIS]:
            newdef += 'L=%s,' % indexlimits[pyferret.T_AXIS]
        if coordlimits[pyferret.E_AXIS]:
            newdef += 'E=%s,' % coordlimits[pyferret.E_AXIS]
        if indexlimits[pyferret.E_AXIS]:
            newdef += 'M=%s,' % indexlimits[pyferret.E_AXIS]
        if coordlimits[pyferret.F_AXIS]:
            newdef += 'F=%s,' % coordlimits[pyferret.F_AXIS]
        if indexlimits[pyferret.F_AXIS]:
            newdef += 'N=%s,' % indexlimits[pyferret.F_AXIS]
        # replace the final , with ]
        newdef = newdef[:-1] + ']'
        newvar = FerVar(defn=newdef)
        newvar._requires.update(self._requires)
        return newvar


    def __getattr__(self, name):
        '''
        Return the data array (if name='data'), data grid (if name='grid'), 
        name (if name='name'), or a copy of the coordinates (if name='coords')
        Note that this method is only called when the parent object 
        does not have an attribute with this name.
        '''
        try:
            if name in _ADDED_ATTRIBUTES:
                return self.__getitem__(name)
        except KeyError:
            pass
        raise AttributeError("unknown attribute '%s'" % name)


    def __dir__(self):
        '''
        Returns a list of known attributes, including those added 
        by the __getattr__ method.
        '''
        mydir = list(_ADDED_ATTRIBUTES)
        mydir.extend( dir(super(FerVar, self)) )
        return mydir


    def _markasknownvar(self, varname, dsetname, isfilevar):
        '''
        Marks this variable as a variable already defined in Ferret.
        '''
        if not varname:
            raise ValueError('varname is not given')
        if not isinstance(varname, str):
            raise ValueError('varname is not a string')
        if dsetname and not isinstance(varname, str):
            raise ValueError('dsetname name is not a string')
        self._varname = varname
        if dsetname:
            self._dsetname = dsetname
        else:
            self._dsetname = ''
        self._isfilevar = bool(isfilevar)
        self._definition = self.fername()
        self._requires.add(varname.upper())
        self.unload()


    def _assigninferret(self, varname, dsetname):
        '''
        Defines this FerVar in Ferret using the given variable name 
        associated with the given dataset name.
            varname (string): name for the variable in Ferret
            dsetname (string): name of the dataset to contain the variable
        Raises a ValueError if there is a problem.
        '''
        if not self._definition:
            raise ValueError('this FerVar does not contain a definition')
        if not varname:
            raise ValueError('variable name to be assigned is not given')
        if varname.upper() in self._requires:
            raise ValueError('recursive definitions cannot be implemented in Ferret')
        # Assign the variable in Ferret
        cmdstr = 'DEFINE VAR'
        if dsetname:
            cmdstr += '/D="%s"' % dsetname
        if self._title:
            cmdstr += '/TITLE="%s"' % self._title
        cmdstr += ' %s = %s' % (varname, self._definition)
        (errval, errmsg) = pyferret.run(cmdstr)
        if errval != pyferret.FERR_OK:
            raise ValueError('problems defining %s (%s) in Ferret: %s' % (varname, cmdstr, errmsg))
        # Revise the fields in this FerVar to reflect this assignment
        self._markasknownvar(varname, dsetname, False)


    def _removefromferret(self):
        '''
        Removes (cancels) this variable in Ferret, then unloads this FerVar 
        and erases _varname.  Raises a NotImplementedError is this is a file 
        variable.  Raises a ValueError if there is a Ferret problem.  This 
        normally is not called by the user; instead delete the FerVar from 
        the dataset.
        '''
        # ignore if this Ferrer variable has already been removed from Ferret
        if not self._varname:
            return
        fername = self.fername()
        if self._isfilevar:
            raise NotImplementedError('%s is a file variable; close the dataset to remove' % fername)
        cmdstr = 'CANCEL VAR %s' % fername
        (errval, errmsg) = pyferret.run(cmdstr)
        if errval != pyferret.FERR_OK:
            raise ValueError('unable to remove variable %s from Ferret: %s' % (fername, errmsg))
        self._varname = ''
        self.unload()


    def unload(self):
        '''
        Clears the grid and data stored in this FerVar.  After this call, any 
        request for the grid or data will automatically load the latest values 
        from Ferret.  This method should be called anytime there is a change 
        in the definition of this variable, or a variable this variable uses.
        '''
        self._datagrid = None
        self._dataarray = None
        self._dataunit = ''
        self._missingvalue = None


    def load(self):
        '''
        Retrieves the grid and data for this Ferret variable from Ferret.
        This method is automatically called before returning the grid or data 
        for the first time for this variable.  This can be called to update
        the grid or data in this FerVar after any change in the definition 
        of the variable.  Alternatively, cleardata can be called to clear any
        stored grid and data, delaying the update from Ferret until the grid
        or data is requested.
        Raises a ValueEror if problems occur.
        '''
        fername = self.fername()
        datadict = pyferret.getdata(fername, False)
        feraxes = [ ]
        for (axistype,axcoords,axunit,axname) in zip(
                datadict["axis_types"], datadict["axis_coords"], 
                datadict["axis_units"], datadict["axis_names"]):
            feraxes.append( pyferret.FerAxis(coords=axcoords, 
                    axtype=axistype, unit=axunit, name=axname) )
        self._datagrid = pyferret.FerGrid(axes=feraxes, name=fername)
        self._dataarray = datadict["data"]
        self._dataunit = datadict["data_unit"]
        self._missingvalue = datadict["missing_value"]


    def getdata(self):
        '''
        Returns a copy of the data array for this Ferret variable,
        first loading this variable if necessary.
        Raises a ValueError is a problem occurs.
        '''
        if (self._datagrid is None) or (self._dataarray is None):
            self.load()
        return self._dataarray.copy('A')


    def getgrid(self):
        '''
        Returns a copy of the data grid for this Ferret variable,
        first loading this variable if necessary.
        Raises a ValueError is a problem occurs.
        '''
        if (self._datagrid is None) or (self._dataarray is None):
            self.load()
        return self._datagrid.copy()


    def getmissval(self):
        '''
        Returns the value used for missing data for this Ferret 
        variable, first loading this variable if necessary.  
        Raises a ValueError is a problem occurs.
        '''
        if (self._datagrid is None) or (self._dataarray is None):
            self.load()
        # The missing value is a single-element ndarray
        return self._missingvalue[0]


    def getunit(self):
        '''
        Returns the unit string of the data for this Ferret
        variable, first loading this variable if necessary.
        Raises a ValueError is a problem occurs.
        '''
        if (self._datagrid is None) or (self._dataarray is None):
            self.load()
        return self._dataunit


    def showgrid(self, qual=''):
        '''
        Show the Ferret grid information about this variable.  This uses 
        the Ferret SHOW GRID command to create and display the information.
            qual (string): Ferret qualifiers to add to the SHOW GRID command
        '''
        if not isinstance(qual, str):
            raise ValueError('qual (Ferret qualifiers) must be a string')
        cmdstr = 'SHOW GRID'
        if qual:
            cmdstr += qual
        cmdstr += ' '
        cmdstr += self.fername()
        (errval, errmsg) = pyferret.run(cmdstr)
        if errval != pyferret.FERR_OK:
            raise ValueError('Ferret command "%s" failed: %s' % (cmdstr, errmsg))


    def regrid(self, newgrid, method=REGRID_LINEAR):
        '''
        Returns an anonymous FerVar that is this variable regridded to the grid
        implied by newgrid using the given method.
            newgrid (FerVar |  string | FerGrid): regrid to this implied grid;
                if a FerVar, the implied grid is the grid used by the Ferret variable,
                if a string, the implied grid is the grid known to Ferret by this name
                if a FerGrid, the implied grid is this grid (TODO: implement)
            method (string): method to perform the regridding; typically one of
                pyferret.REGRID_LINEAR (default)
                    (multi-axis) linear interpolation of nearest source points around destination point
                pyferret.REGRID_AVERAGE
                    length-weighted averaging of source point cells overlapping destination point cell
                pyferret.REGRID_ASSOCIATE
                    blind association of source points to destination points by indices
                pyferret.REGRID_MEAN
                    unweighted mean of source points in destination point cell
                pyferret.REGRID_NEAREST
                    value of source point nearest the destination point
                pyferret.REGRID_MIN
                    minimum value of source points in destination point cell 
                pyferret.REGRID_MAX
                    maximum value of source points in destination point cell 
                pyferret.REGRID_EXACT
                    copy values where source and destination points coincide; 
                    other destination points assigned missing value
        '''
        if not self._varname:
            raise NotImplementedError('regridding can only be performed on variables assigned in Ferret')
        if not ( isinstance(method, str) and (method[0] == '@') ):
            raise ValueError('invalid regridding method %s' % str(method))
        if isinstance(newgrid, FerVar):
            if not newgrid._varname:
                raise ValueError('FerVar used for the new grid is not assigned in Ferret')
            gridname = newgrid.fername()
        elif isinstance(newgrid, str):
            gridname = newgrid
        elif isinstance(newgrid, pyferret.FerGrid):
            raise NotImplementedError('regrid using FerGrid not implemented at this time')
        if self._dsetname:
            newdef = '%s[d=%s,g=%s%s]' % (self._varname, self._dsetname, gridname, method)
        else:
            newdef = '%s[g=%s%s]' % (self._varname, gridname, method)
        newvar = FerVar(defn=newdef)
        newvar._requires.update(self._requires)
        return newvar