This file is indexed.

/usr/lib/python2.7/dist-packages/geographiclib/geomath.py is in python-geographiclib 1.49-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""geomath.py: transcription of GeographicLib::Math class."""
# geomath.py
#
# This is a rather literal translation of the GeographicLib::Math class to
# python.  See the documentation for the C++ class for more information at
#
#    https://geographiclib.sourceforge.io/html/annotated.html
#
# Copyright (c) Charles Karney (2011-2017) <charles@karney.com> and
# licensed under the MIT/X11 License.  For more information, see
# https://geographiclib.sourceforge.io/
######################################################################

import sys
import math

class Math(object):
  """
  Additional math routines for GeographicLib.

  This defines constants:
    epsilon, difference between 1 and the next bigger number
    digits, the number of digits in the fraction of a real number
    minval, minimum normalized positive number
    maxval, maximum finite number
    nan, not a number
    inf, infinity
  """

  digits = 53
  epsilon = math.pow(2.0, 1-digits)
  minval = math.pow(2.0, -1022)
  maxval = math.pow(2.0, 1023) * (2 - epsilon)
  inf = float("inf") if sys.version_info > (2, 6) else 2 * maxval
  nan = float("nan") if sys.version_info > (2, 6) else inf - inf

  def sq(x):
    """Square a number"""

    return x * x
  sq = staticmethod(sq)

  def cbrt(x):
    """Real cube root of a number"""

    y = math.pow(abs(x), 1/3.0)
    return y if x >= 0 else -y
  cbrt = staticmethod(cbrt)

  def log1p(x):
    """log(1 + x) accurate for small x (missing from python 2.5.2)"""

    if sys.version_info > (2, 6):
      return math.log1p(x)

    y = 1 + x
    z = y - 1
    # Here's the explanation for this magic: y = 1 + z, exactly, and z
    # approx x, thus log(y)/z (which is nearly constant near z = 0) returns
    # a good approximation to the true log(1 + x)/x.  The multiplication x *
    # (log(y)/z) introduces little additional error.
    return x if z == 0 else x * math.log(y) / z
  log1p = staticmethod(log1p)

  def atanh(x):
    """atanh(x) (missing from python 2.5.2)"""

    if sys.version_info > (2, 6):
      return math.atanh(x)

    y = abs(x)                  # Enforce odd parity
    y = Math.log1p(2 * y/(1 - y))/2
    return -y if x < 0 else y
  atanh = staticmethod(atanh)

  def copysign(x, y):
    """return x with the sign of y (missing from python 2.5.2)"""

    if sys.version_info > (2, 6):
      return math.copysign(x, y)

    return math.fabs(x) * (-1 if y < 0 or (y == 0 and 1/y < 0) else 1)
  copysign = staticmethod(copysign)

  def norm(x, y):
    """Private: Normalize a two-vector."""
    r = math.hypot(x, y)
    return x/r, y/r
  norm = staticmethod(norm)

  def sum(u, v):
    """Error free transformation of a sum."""
    # Error free transformation of a sum.  Note that t can be the same as one
    # of the first two arguments.
    s = u + v
    up = s - v
    vpp = s - up
    up -= u
    vpp -= v
    t = -(up + vpp)
    # u + v =       s      + t
    #       = round(u + v) + t
    return s, t
  sum = staticmethod(sum)

  def polyval(N, p, s, x):
    """Evaluate a polynomial."""
    y = float(0 if N < 0 else p[s]) # make sure the returned value is a float
    while N > 0:
      N -= 1; s += 1
      y = y * x + p[s]
    return y
  polyval = staticmethod(polyval)

  def AngRound(x):
    """Private: Round an angle so that small values underflow to zero."""
    # The makes the smallest gap in x = 1/16 - nextafter(1/16, 0) = 1/2^57
    # for reals = 0.7 pm on the earth if x is an angle in degrees.  (This
    # is about 1000 times more resolution than we get with angles around 90
    # degrees.)  We use this to avoid having to deal with near singular
    # cases when x is non-zero but tiny (e.g., 1.0e-200).
    z = 1/16.0
    y = abs(x)
    # The compiler mustn't "simplify" z - (z - y) to y
    if y < z: y = z - (z - y)
    return 0.0 if x == 0 else (-y if x < 0 else y)
  AngRound = staticmethod(AngRound)

  def AngNormalize(x):
    """reduce angle to (-180,180]"""

    y = math.fmod(x, 360)
    # On Windows 32-bit with python 2.7, math.fmod(-0.0, 360) = +0.0
    # This fixes this bug.  See also Math::AngNormalize in the C++ library.
    # sincosd has a similar fix.
    y = x if x == 0 else y
    return (y + 360 if y <= -180 else
            (y if y <= 180 else y - 360))
  AngNormalize = staticmethod(AngNormalize)

  def LatFix(x):
    """replace angles outside [-90,90] by NaN"""

    return Math.nan if abs(x) > 90 else x
  LatFix = staticmethod(LatFix)

  def AngDiff(x, y):
    """compute y - x and reduce to [-180,180] accurately"""

    d, t = Math.sum(Math.AngNormalize(-x), Math.AngNormalize(y))
    d = Math.AngNormalize(d)
    return Math.sum(-180 if d == 180 and t > 0 else d, t)
  AngDiff = staticmethod(AngDiff)

  def sincosd(x):
    """Compute sine and cosine of x in degrees."""

    r = math.fmod(x, 360)
    q = Math.nan if Math.isnan(r) else int(math.floor(r / 90 + 0.5))
    r -= 90 * q; r = math.radians(r)
    s = math.sin(r); c = math.cos(r)
    q = q % 4
    if q == 1:
      s, c =  c, -s
    elif q == 2:
      s, c = -s, -c
    elif q == 3:
      s, c = -c,  s
    # Remove the minus sign on -0.0 except for sin(-0.0).
    # On Windows 32-bit with python 2.7, math.fmod(-0.0, 360) = +0.0
    # (x, c) here fixes this bug.  See also Math::sincosd in the C++ library.
    # AngNormalize has a similar fix.
    s, c = (x, c) if x == 0 else (0.0+s, 0.0+c)
    return s, c
  sincosd = staticmethod(sincosd)

  def atan2d(y, x):
    """compute atan2(y, x) with the result in degrees"""

    if abs(y) > abs(x):
      q = 2; x, y = y, x
    else:
      q = 0
    if x < 0:
      q += 1; x = -x
    ang = math.degrees(math.atan2(y, x))
    if q == 1:
      ang = (180 if y >= 0 else -180) - ang
    elif q == 2:
      ang =  90 - ang
    elif q == 3:
      ang = -90 + ang
    return ang
  atan2d = staticmethod(atan2d)

  def isfinite(x):
    """Test for finiteness"""

    return abs(x) <= Math.maxval
  isfinite = staticmethod(isfinite)

  def isnan(x):
    """Test if nan"""

    return math.isnan(x) if sys.version_info > (2, 6) else x != x
  isnan = staticmethod(isnan)