/usr/lib/python2.7/dist-packages/imexam/imexamine.py is in python-imexam 0.8.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 | """Licensed under a 3-clause BSD style license - see LICENSE.rst.
This class implements IRAF/imexamine type capabilities
for providing powerful diagnostic quick-look tools.
However, the power of this python tool is that it is essentially a library
of plotting and analysis routines which can be directed towards
any viewer. It can also be used without connecting to any viewer
since the calls take only data,x,y information. This means that
given a data array and a list of x,y positions you can creates
plots without havin to interact with the viewers.
Users can also register a custom function with the class
and have it available for use in either case.
The plots which are made are fully customizable
"""
from __future__ import print_function, division, absolute_import
import warnings
import numpy as np
import sys
import logging
import tempfile
from copy import deepcopy
import matplotlib.pyplot as plt
from matplotlib import get_backend
from IPython.display import Image
from astropy.io import fits
from astropy.modeling import models
try:
from scipy import stats
except ImportError:
print("Scipy not installed, describe stat unavailable")
from . import math_helper
from . import imexam_defpars
from .util import set_logging
if sys.version_info.major < 3:
PY3 = False
else:
PY3 = True
# turn on interactive mode for plotting
plt.ion()
# enable display plot in iPython notebook
try:
from io import StringIO
except:
from cString import StringIO
try:
import photutils
photutils_installed = True
except ImportError:
print("photutils not installed, photometry functionality "
"in imexam() not available")
photutils_installed = False
__all__ = ["Imexamine"]
class Imexamine(object):
"""The imexamine class controls plotting and analysis functions."""
def __init__(self):
"""do imexamine like routines on the current frame.
read the returned cursor key value to decide what to do
region_size is the default radius or side of the square for stat info
"""
self.set_option_funcs() # define the dictionary of keys and functions
self._data = np.zeros(0) # the data array
self._datafile = "" # the file from which the data came
# read from imexam_defpars which contains dicts
self._define_default_pars()
# default plot name saved with "s" key
self.plot_name = "imexam_plot.pdf"
# let users have multiple plot windows, the list stores their names
self._plot_windows = list()
# this contains the name of the current plotting window
self._figure_name = "imexam"
self._plot_windows.append(self._figure_name)
self._reserved_keys = ['q', '2'] # not to be changed with user funcs
self._fit_models = ["Gaussian1D", "Moffat1D", "MexicanHat1D"]
# see if the package logger was already started
self.log = logging.getLogger(__name__)
self.log = set_logging()
def setlog(self, filename=None, on=True, level=logging.INFO):
"""Turn on and off logging to a logfile or the screen.
Parameters
----------
filename: str, optional
Name of the output file to record log information
on: bool, optional
True by default, turn the logging on or off
level: logging class, optional
set the level for logging messages, turn off screen messages
by setting to logging.CRITICAL
"""
self.log = set_logging(filename, on, level)
def _close_plots(self):
"""Make sure to release plot memory at end of exam loop."""
for plot in self._plot_windows:
plt.close()
def close(self):
"""For use with the Imexamine object standalone."""
self._close_plots()
self.log = set_logging(on=False)
def show_fit_models(self):
"""Print the available astropy models for plot fits."""
self.log.info("The available astropy models for fitting"
"are: {}".format(self._fit_models))
def set_option_funcs(self):
"""Define the dictionary which maps imexam keys to their functions.
Notes
-----
The user can modify this dictionary to add or change options,
the first item in the tuple is the associated function
the second item in the tuple is the description of what the function
does when that key is pressed
"""
self.imexam_option_funcs = {'a': (self.aper_phot, 'Aperture sum, with radius region_size '),
'j': (self.line_fit, '1D [Gaussian1D default] line fit '),
'k': (self.column_fit, '1D [Gaussian1D default] column fit'),
'm': (self.report_stat, 'Square region stats, in [region_size],default is median'),
'x': (self.show_xy_coords, 'Return x,y,value of pixel'),
'y': (self.show_xy_coords, 'Return x,y,value of pixel'),
'l': (self.plot_line, 'Return line plot'),
'c': (self.plot_column, 'Return column plot'),
'g': (self.curve_of_growth, 'Return curve of growth plot'),
'r': (self.radial_profile, 'Return the radial profile plot'),
'h': (self.histogram, 'Return a histogram in the region around the cursor'),
'e': (self.contour, 'Return a contour plot in a region around the cursor'),
's': (self.save_figure, 'Save current figure to disk as [plot_name]'),
'b': (self.gauss_center, 'Return the 2D gauss fit center of the object'),
'w': (self.surface, 'Display a surface plot around the cursor location'),
'2': (self.new_plot_window, 'Make the next plot in a new window'),
't': (self.cutout, 'Make a fits image cutout using pointer location')
}
def print_options(self):
"""Print the imexam options to screen."""
keys = self.get_options()
for key in keys:
print("%s\t%s" % (key, self.option_descrip(key)))
def do_option(self, x, y, key):
"""Run the imexam option.
Parameters
----------
x: int
The x location of the cursor or data point
y: int
The y location of the cursor or data point
key: string
The key which was pressed
"""
self.log.debug("pressed: {0}, {1:s}".format(key, self.imexam_option_funcs[key][0].__name__))
self.imexam_option_funcs[key][0](x, y, self._data)
def get_options(self):
"""Return the imexam options as a key list."""
keys = sorted(self.imexam_option_funcs.keys())
return keys
def option_descrip(self, key, field=1):
"""Return the looked up dictionary of options.
Parameters
----------
key: string
The key which was pressed, it relates to the function to call
field: int
This tells where in the option dictionary the function name
can be found
"""
return self.imexam_option_funcs[key][field]
def set_data(self, data=np.zeros(0)):
"""initialize the data that imexamine uses."""
self._data = data
def set_plot_name(self, filename=None):
"""set the default plot name for the "s" key.
Parameters
----------
filename: string
The name which is used to save the current plotting window to a file
The extension on the name decides which file type is used
"""
if filename is None:
warnings.warn("No filename provided")
else:
self.plot_name = filename
def get_plot_name(self):
"""return the default plot name."""
return self.plot_name
def _define_default_pars(self):
"""Set all pars to their defaults, stored in a file with dicts."""
self.aper_phot_def_pars = imexam_defpars.aper_phot_pars
self.radial_profile_def_pars = imexam_defpars.radial_profile_pars
self.curve_of_growth_def_pars = imexam_defpars.curve_of_growth_pars
self.surface_def_pars = imexam_defpars.surface_pars
self.line_fit_def_pars = imexam_defpars.line_fit_pars
self.column_fit_def_pars = imexam_defpars.column_fit_pars
self.contour_def_pars = imexam_defpars.contour_pars
self.histogram_def_pars = imexam_defpars.histogram_pars
self.lineplot_def_pars = imexam_defpars.lineplot_pars
self.colplot_def_pars = imexam_defpars.colplot_pars
self.histogram_def_pars = imexam_defpars.histogram_pars
self.contour_def_pars = imexam_defpars.contour_pars
self.report_stat_def_pars = imexam_defpars.report_stat_pars
self.cutout_def_pars = imexam_defpars.cutout_pars
self._define_local_pars()
def _define_local_pars(self):
"""Set a copy of the default pars that users can alter."""
self.aper_phot_pars = deepcopy(self.aper_phot_def_pars)
self.radial_profile_pars = deepcopy(self.radial_profile_def_pars)
self.curve_of_growth_pars = deepcopy(self.curve_of_growth_def_pars)
self.surface_pars = deepcopy(self.surface_def_pars)
self.line_fit_pars = deepcopy(self.line_fit_def_pars)
self.column_fit_pars = deepcopy(self.column_fit_def_pars)
self.contour_pars = deepcopy(self.contour_def_pars)
self.histogram_pars = deepcopy(self.histogram_def_pars)
self.lineplot_pars = deepcopy(self.lineplot_def_pars)
self.colplot_pars = deepcopy(self.colplot_def_pars)
self.histogram_pars = deepcopy(self.histogram_def_pars)
self.contour_pars = deepcopy(self.contour_def_pars)
self.report_stat_pars = deepcopy(self.report_stat_def_pars)
self.cutout_pars = deepcopy(self.cutout_def_pars)
def unlearn_all(self):
"""reset the default parameters for all functions."""
self._define_local_pars()
def new_plot_window(self, x, y, data=None):
"""make the next plot in a new plot window.
Notes
-----
x,y, data, are not used here, but the calls are setup to take them
for all imexam options. Is there a better way to do the calls in
general? Once the new plotting window is open all plots will be
directed towards it. The old window cannot be used again.
"""
if data is None:
data = self._data
self._figure_name = "imexam" + str(len(self._plot_windows) + 1)
self._plot_windows.append(self._figure_name)
self.log.info("Plots now directed towards {0:s}".format(self._figure_name))
def plot_line(self, x, y, data=None, fig=None):
"""line plot of data at point x.
Parameters
----------
x: int
The x location of the object
y: int
The y location of the object
data: numpy array
The data array to work on
fig: figure object for redirect
Used for interaction with the ginga GUI
"""
if data is None:
data = self._data
self.log.info("Line at {0} {1}".format(x, y))
pfig = fig
if fig is None:
fig = plt.figure(self._figure_name)
fig.clf()
fig.add_subplot(111)
ax = fig.gca()
if self.lineplot_pars["title"][0] is None:
ax.set_title("{0:s} line at {1:d}".format(self._datafile, int(y)))
ax.set_xlabel(self.lineplot_pars["xlabel"][0])
ax.set_ylabel(self.lineplot_pars["ylabel"][0])
if not self.lineplot_pars["xmax"][0]:
xmax = len(data[y, :])
else:
xmax = self.lineplot_pars["xmax"][0]
ax.set_xlim(self.lineplot_pars["xmin"][0], xmax)
if self.lineplot_pars["logx"][0]:
ax.set_xscale("log")
if self.lineplot_pars["logy"][0]:
ax.set_yscale("log")
if bool(self.lineplot_pars["pointmode"][0]):
ax.plot(data[int(y), :], self.lineplot_pars["marker"][0])
else:
ax.plot(data[int(y), :])
if pfig is None and 'nbagg' not in get_backend().lower():
plt.draw()
plt.pause(0.001)
else:
fig.canvas.draw()
def plot_column(self, x, y, data=None, fig=None):
"""column plot of data at point y.
Parameters
----------
x: int
The x location of the object
y: int
The y location of the object
data: numpy array
The data array to work on
fig: figure name for redirect
Used for interaction with the ginga GUI
"""
if data is None:
data = self._data
self.log.info("Column at {0} {1}".format(x, y))
pfig = fig
if fig is None:
fig = plt.figure(self._figure_name)
fig.clf()
fig.add_subplot(111)
ax = fig.gca()
if self.colplot_pars["title"][0] is None:
ax.set_title("{0:s} column at {1:d}".format(self._datafile, int(x)))
else:
ax.set_title(self.colplot_pars["title"][0])
ax.set_xlabel(self.colplot_pars["xlabel"][0])
ax.set_ylabel(self.colplot_pars["ylabel"][0])
if not self.colplot_pars["xmax"][0]:
xmax = len(data[:, x])
else:
xmax = self.colplot_pars["xmax"][0]
ax.set_xlim(self.colplot_pars["xmin"][0], xmax)
if self.colplot_pars["logx"][0]:
ax.set_xscale("log")
if self.colplot_pars["logy"][0]:
ax.set_yscale("log")
if bool(self.colplot_pars["pointmode"][0]):
ax.plot(data[:, int(x)], self.colplot_pars["marker"][0])
else:
ax.plot(data[:, int(x)])
if pfig is None and 'nbagg' not in get_backend().lower():
plt.draw()
plt.pause(0.001)
else:
fig.canvas.draw()
def show_xy_coords(self, x, y, data=None):
"""print the x,y,value to the screen.
Parameters
----------
x: int
The x location of the object
y: int
The y location of the object
data: numpy array
The data array to work on
"""
if data is None:
data = self._data
info = "{0} {1} {2}".format(x, y, data[int(y), int(x)])
self.log.info(info)
def report_stat(self, x, y, data=None):
"""report the statisic of values in a box with side region_size.
The statistic can be any numpy function
Parameters
----------
x: int
The x location of the object
y: int
The y location of the object
data: numpy array
The data array to work on
"""
if data is None:
data = self._data
region_size = self.report_stat_pars["region_size"][0]
name = self.report_stat_pars["stat"][0]
dist = region_size / 2
xmin = int(x - dist)
xmax = int(x + dist)
ymin = int(y - dist)
ymax = int(y + dist)
if "describe" in name:
try:
stat = getattr(stats, "describe")
nobs, minmax, mean, var, skew, kurt = stat(data[ymin:ymax,
xmin:xmax].flatten())
pstr = ("[{0:d}:{1:d},{2:d}:{3:d}] {4:s}: \nnobs: "
"{5}\nminmax: {6}\nmean {7}\nvariance: {8}\nskew: "
"{9}\nkurtosis: {10}".format(ymin, ymax, xmin, xmax,
name, nobs, minmax, mean,
var, skew, kurt))
except AttributeError:
warnings.warn("Invalid stat specified")
else:
try:
stat = getattr(np, name)
pstr = "[{0:d}:{1:d},{2:d}:{3:d}] {4:s}: {5}".format(
ymin, ymax, xmin, xmax, name,
(stat(data[ymin:ymax, xmin:xmax])))
except AttributeError:
warnings.warn("Invalid stat specified")
self.log.info(pstr)
def save_figure(self, x, y, data=None, fig=None):
"""Save to file the figure that's currently displayed.
this is used for the imexam loop, because there is a standard api
for the loop
Parameters
----------
x: int
The x location of the object
y: int
The y location of the object
data: numpy array
The data array to work on
fig: figure for redirect
Used for interaction with the ginga GUI
"""
if data is None:
data = self._data
if fig is None:
fig = plt.figure(self._figure_name)
ax = fig.gca()
fig.savefig(self.plot_name)
pstr = "plot saved to {0:s}".format(self.plot_name)
self.log.info(pstr)
def save(self, filename=None, fig=None):
"""Save to file the figure that's currently displayed.
this is used for the standalone plotting
Parameters
----------
filename: string
Name of the file the plot will be saved to. The extension
on the filename determines the filetype
fig: figure name for redirect
Used for interaction with the ginga GUI
"""
if filename:
self.set_plot_name(filename)
else:
self.set_plot_name(self._figure_name + ".pdf")
if fig is None:
fig = plt.figure(self._figure_name)
ax = fig.gca()
fig.savefig(self.plot_name)
pstr = "plot saved to {0:s}".format(self.plot_name)
self.log.info(pstr)
def aper_phot(self, x, y, data=None):
"""Perform aperture photometry.
uses photutils functions, photutils must be available
Parameters
----------
x: int
The x location of the object
y: int
The y location of the object
data: numpy array
The data array to work on
"""
if data is None:
data = self._data
if not photutils_installed:
self.log.warning("Install photutils to enable")
else:
if self.aper_phot_pars["center"][0]:
center = True
delta = 10
amp, x, y, sigma, sigmay = self.gauss_center(x, y, data,
delta=delta)
radius = int(self.aper_phot_pars["radius"][0])
width = int(self.aper_phot_pars["width"][0])
inner = int(self.aper_phot_pars["skyrad"][0])
subsky = bool(self.aper_phot_pars["subsky"][0])
outer = inner + width
apertures = photutils.CircularAperture((x, y), radius)
rawflux_table = photutils.aperture_photometry(
data,
apertures,
subpixels=1,
method="center")
if subsky:
annulus_apertures = photutils.CircularAnnulus(
(x, y), r_in=inner, r_out=outer)
bkgflux_table = photutils.aperture_photometry(
data,
annulus_apertures)
# to calculate the mean local background, divide the circular
# annulus aperture sums by the area fo the circular annulus.
# The bkg sum with the circular aperture is then
# then mean local background tims the circular apreture area.
aperture_area = apertures.area()
annulus_area = annulus_apertures.area()
bkg_sum = float(
(bkgflux_table['aperture_sum'] *
aperture_area /
annulus_area)[0])
total_flux = rawflux_table['aperture_sum'][0] - bkg_sum
sky_per_pix = float(
bkgflux_table['aperture_sum'] /
annulus_area)
else:
total_flux = float(rawflux_table['aperture_sum'][0])
# compute the magnitude of the sky corrected flux
magzero = float(self.aper_phot_pars["zmag"][0])
mag = magzero - 2.5 * (np.log10(total_flux))
pheader = (
"x\ty\tradius\tflux\tmag(zpt={0:0.2f})"
"sky\t".format(magzero)).expandtabs(15)
if center:
pheader += ("fwhm")
pstr = "\n{0:.2f}\t{1:0.2f}\t{2:d}\t{3:0.2f}\t{4:0.2f}\
\t{5:0.2f}\t{6:0.2f}".format(x, y, radius,
total_flux, mag,
sky_per_pix,
math_helper.gfwhm(sigma)[0]).expandtabs(15)
else:
pstr = "\n{0:0.2f}\t{1:0.2f}\t{2:d}\t{3:0.2f}\
\t{4:0.2f}\t{5:0.2f}".format(x, y, radius,
total_flux, mag,
sky_per_pix,).expandtabs(15)
# print(pheader + pstr)
self.log.info(pheader + pstr)
def line_fit(self, x, y, data=None, form=None, genplot=True, fig=None):
"""compute the 1D fit to the line of data using the specified form.
Parameters
----------
x: int
The x location of the object
y: int
The y location of the object
data: numpy array
The data array to work on
form: string
This is the functional form specified in the line fit parameters
Currently Gaussian1D, Moffat1D, MexicanHat1D, Polynomial1D
genplot: bool
produce the plot or return the fit
fig: figure for redirect
Used for interaction with the ginga GUI
Notes
-----
The background is currently ignored
If centering is True in the parameter set, then the center
is fit with a 2d gaussian, not performed for Polynomial1D
"""
if data is None:
data = self._data
if form is None:
fitform = getattr(models, self.line_fit_pars["func"][0])
else:
fitform = getattr(models, form)
self.log.info("using model: {0}".format(fitform))
# Used for Polynomial1D fitting
degree = int(self.line_fit_pars["order"][0])
delta = int(self.line_fit_pars["rplot"][0])
if delta >= len(data)/4: # help with small data arrays and defaults
delta = delta/2
delta = int(delta)
xx = int(x)
yy = int(y)
# fit the center with a 2d gaussian
if self.line_fit_pars["center"][0]:
if fitform.name is not "Polynomial1D":
amp, xout, yout, sigma, sigmay = self.gauss_center(xx, yy, data,
delta=delta)
if (xout < 0 or yout < 0 or xout > data.shape[1] or
yout > data.shape[0]):
self.log.warning("Problem with centering, "
"pixel coords")
else:
xx = int(xout)
yy = int(yout)
line = data[yy, :]
chunk = line[xx - delta: xx + delta]
# fit model to data
if fitform.name is "Gaussian1D":
fitted = math_helper.fit_gauss_1d(chunk)
fitted.mean.value += (xx-delta)
elif fitform.name is "Moffat1D":
fitted = math_helper.fit_moffat_1d(chunk)
fitted.x_0.value += (xx-delta)
elif fitform.name is "MexicanHat1D":
fitted = math_helper.fit_mex_hat_1d(chunk)
fitted.x_0.value += (xx-delta)
elif fitform.name is "Polynomial1D":
fitted = math_helper.fit_poly_n(chunk, deg=degree)
if fitted is None:
raise ValueError("Problem with the Poly1D fit")
elif fitform.name is "AiryDisk2D":
fitted = math_helper.fit_airy_2d(chunk)
if fitted is None:
raise ValueError("Problem with the AiryDisk2D fit")
fitted.x_0.value += (xx-delta)
fitted.y_0.value += (yy-delta)
else:
self.log.info("{0:s} not implemented".format(fitform.name))
return
xline = np.arange(len(chunk)) + xx - delta
fline = np.linspace(xline[0], xline[-1], 100) # finer sample
yfit = fitted(fline)
# make a plot
if self.line_fit_pars["title"][0] is None:
title = "{0}: {1} {2}".format(self._datafile, int(x), int(y))
else:
title = self.line_fit_pars["title"][0]
if genplot:
pfig = fig
if fig is None:
fig = plt.figure(self._figure_name)
fig.clf()
fig.add_subplot(111)
ax = fig.gca()
ax.set_xlabel(self.line_fit_pars["xlabel"][0])
ax.set_ylabel(self.line_fit_pars["ylabel"][0])
if self.line_fit_pars["logx"][0]:
ax.set_xscale("log")
if self.line_fit_pars["logy"][0]:
ax.set_yscale("log")
if bool(self.line_fit_pars["pointmode"][0]):
ax.plot(xline, chunk, 'o', label="data")
else:
ax.plot(xline, chunk, label="data", linestyle='-')
if fitform.name is "Gaussian1D":
fwhmx, fwhmy = math_helper.gfwhm(fitted.stddev.value)
ax.set_title("{0:s} amp={1:8.2f} mean={2:9.2f},"
"fwhm={3:9.2f}".format(title,
fitted.amplitude.value,
fitted.mean.value,
fwhmx))
pstr = "({0:d},{1:d}) mean={2:9.2f}, fwhm={3:9.2f}".format(
int(x), int(y), fitted.mean.value, fwhmx)
self.log.info(pstr)
elif fitform.name is "Moffat1D":
mfwhm = math_helper.mfwhm(fitted.alpha.value,
fitted.gamma.value)
ax.set_title("{0:s} amp={1:8.2f} fwhm={2:9.2f}".format(
title, fitted.amplitude.value, mfwhm))
pstr = "({0:d},{1:d}) amp={2:8.2f} fwhm={3:9.2f}".format(
int(x), int(y), fitted.amplitude.value, mfwhm)
self.log.info(pstr)
elif fitform.name is "MexicanHat1D":
ax.set_title("{0:s} amp={1:8.2f} sigma={2:8.2f}".format(
title, fitted.amplitude.value, fitted.sigma.value))
pstr = "({0:d},{1:d}) amp={2:8.2f} sigma={3:9.2f}".format(
int(x), int(y), fitted.amplitude.value, fitted.sigma.value)
self.log.info(pstr)
elif fitform.name is "Polynomial1D":
ax.set_title("{0:s} degree={1:d}".format(title, degree))
pstr = "({0:d},{1:d}) degree={2:d}".format(
int(x), int(y), degree)
self.log.info(fitted.parameters)
self.log.info(pstr)
else:
warnings.warn("Unsupported functional form used in line_fit")
raise ValueError
ax.plot(fline, yfit, c='r', label=str(fitform.__name__) + " fit")
ax.legend()
if pfig is None and 'nbagg' not in get_backend().lower():
plt.draw()
plt.pause(0.001)
else:
fig.canvas.draw()
else:
return fitted
def column_fit(self, x, y, data=None, form=None, genplot=True, fig=None):
"""Compute the 1d fit to the column of data.
Parameters
----------
x: int
The x location of the object
y: int
The y location of the object
data: numpy array
The data array to work on
form: string
This is the functional form specified in the column fit parameters
genplot: int
produce the plot or return the fit model
fig: figure name for redirect
Used for interaction with the ginga GUI
Notes
-----
delta is the range of data values to use around the x,y location
The background is currently ignored
if centering is True, then the center is fit with a 2d gaussian,
but this is currently not done for Polynomial1D
"""
if data is None:
data = self._data
if form is None:
fitform = getattr(models, self.column_fit_pars["func"][0])
else:
fitform = getattr(models, form)
self.log.info("using model: {0}".format(fitform))
# Used for Polynomial1D fitting
degree = int(self.column_fit_pars["order"][0])
delta = int(self.column_fit_pars["rplot"][0])
if delta >= len(data)/4:
delta = int(delta/2)
# fit the center with a 2d gaussian
xx = int(x)
yy = int(y)
# fit the center with a 2d gaussian
if self.column_fit_pars["center"][0]:
if fitform.name is not "Polynomial1D":
amp, xout, yout, sigma, sigmay = self.gauss_center(x, y, data,
delta=delta)
if (xout < 0 or yout < 0 or xout > data.shape[1] or
yout > data.shape[0]):
self.log.info("Problem with centering, "
"using pixel coords")
else:
xx = int(xout)
yy = int(yout)
line = data[:, xx]
chunk = line[yy - delta:yy + delta]
# fit model to data
if fitform.name is "Gaussian1D":
fitted = math_helper.fit_gauss_1d(chunk)
fitted.mean.value += (yy-delta)
elif fitform.name is "Moffat1D":
fitted = math_helper.fit_moffat_1d(chunk)
fitted.x_0.value += (yy-delta)
elif fitform.name is "MexicanHat1D":
fitted = math_helper.fit_mex_hat_1d(chunk)
fitted.x_0.value += (yy-delta)
elif fitform.name is "Polynomial1D":
fitted = math_helper.fit_poly_n(chunk, deg=degree)
if fitted is None:
raise ValueError("Problem with the Poly1D fit")
else:
self.log.info("{0:s} not implemented".format(fitform.name))
return
yline = np.arange(len(chunk)) + yy - delta
fline = np.linspace(yline[0], yline[-1], 100) # finer sample
yfit = fitted(fline)
if self.column_fit_pars["title"][0] is None:
title = "{0}: {1} {2}".format(self._datafile, int(x), int(y))
else:
title = self.column_fit_pars["title"][0]
# make a plot
if genplot:
pfig = fig
if fig is None:
fig = plt.figure(self._figure_name)
fig.clf()
fig.add_subplot(111)
ax = fig.gca()
ax.set_xlabel(self.column_fit_pars["xlabel"][0])
ax.set_ylabel(self.column_fit_pars["ylabel"][0])
if self.column_fit_pars["logx"][0]:
ax.set_xscale("log")
if self.column_fit_pars["logy"][0]:
ax.set_yscale("log")
if bool(self.column_fit_pars["pointmode"][0]):
ax.plot(yline, chunk, 'o', label="data")
else:
ax.plot(yline, chunk, linestyle='-', label="data")
if fitform.name == "Gaussian1D":
fwhmx, fwhmy = math_helper.gfwhm(fitted.stddev.value)
ax.set_title("{0:s} amp={1:8.2f} mean={2:9.2f}, fwhm={3:9.2f}".format(
title, fitted.amplitude.value, fitted.mean.value, fwhmy))
pstr = "({0:d},{1:d}) mean={2:0.3f}, fwhm={3:0.2f}".format(
int(x), int(y), fitted.mean.value, fwhmy)
self.log.info(pstr)
self.log.info(fitted.parameters)
elif fitform.name is "Moffat1D":
mfwhm = math_helper.mfwhm(fitted.alpha.value,
fitted.gamma.value)
ax.set_title("{0:s} amp={1:8.2f} fwhm={2:9.2f}".format(
title, fitted.amplitude.value, mfwhm))
pstr = "({0:d},{1:d}) amp={2:8.2f} fwhm={3:9.2f}".format(
int(x), int(y), fitted.amplitude.value, mfwhm)
self.log.info(pstr)
self.log.info(fitted.parameters)
elif fitform.name is "MexicanHat1D":
ax.set_title("{0:s} amp={1:8.2f} sigma={2:8.2f}".format(
title, fitted.amplitude.value, fitted.sigma.value))
pstr = "({0:d},{1:d}) amp={2:8.2f} sigma={3:9.2f}".format(
int(x), int(y), fitted.amplitude.value, fitted.sigma.value)
self.log.info(pstr)
elif fitform.name is "Polynomial1D":
ax.set_title("{0:s} degree={1:d}".format(title, degree))
pstr = "({0:d},{1:d}) degree={2:d}".format(
int(x), int(y), degree)
self.log.info(pstr)
self.log.info(fitted.parameters)
else:
warnings.warn("Unsupported functional form used in column_fit")
raise ValueError
ax.plot(fline, yfit, c='r', label=str(fitform.__name__) + " fit")
ax.legend()
if pfig is None and 'nbagg' not in get_backend().lower():
plt.draw()
plt.pause(0.001)
else:
fig.canvas.draw()
else:
return fitted
def gauss_center(self, x, y, data=None, delta=10):
"""Return the 2d gaussian fit center of the data.
Parameters
----------
x: int
The x location of the object
y: int
The y location of the object
data: numpy array
The data array to work on
delta: int
The range of data values (bounding box) to use around the x,y
location for calculating the center
"""
if data is None:
data = self._data
# reset delta for small arrays
if delta >= len(data)/4:
delta = delta/2
delta = int(delta)
xx=int(x)
yy=int(y)
# flipped from xpa
chunk = data[yy - delta:yy + delta, xx - delta:xx + delta]
try:
fit = math_helper.gauss_center(chunk)
amp = fit.amplitude.value
xcenter = fit.x_mean.value
ycenter = fit.y_mean.value
xsigma = fit.x_stddev.value
ysigma = fit.y_stddev.value
pstr = "xc={0:4f}\tyc={1:4f}".format(
(xcenter + xx - delta),
(ycenter + yy - delta))
self.log.info(pstr)
return (amp,
xcenter + xx - delta,
ycenter + yy - delta,
xsigma,
ysigma)
except (RuntimeError, UserWarning) as e:
self.log.info("Warning: {0:s}, returning zeros "
"for fit".format(str(e)))
return (0, 0, 0, 0, 0)
def radial_profile(self, x, y, data=None, form=None,
genplot=True, fig=None):
"""Display the radial profile plot (intensity vs radius) for the object.
From the parameters Dictionary:
If pixel is True, then every pixel at each radius is plotted.
If pixel is False, then the sum of all pixels at each radius is plotted.
Background may be subtracted and centering can be done with a
2D Gaussian fit. These options are read from the plot parameters dict.
Parameters
----------
x: int
The x location of the object
y: int
The y location of the object
data: numpy array
The data array to work on
form: string
The string name of the form of the fit to use
genplot: bool
Generate the plot if True, else return the fit data
"""
subtract_background = bool(self.radial_profile_pars["background"][0])
if not photutils_installed and subtract_background:
self.log.warning("Install photutils to enable "
"background subtraction")
subtract_background = False
else:
if data is None:
data = self._data
if form is None:
form = getattr(models,
self.radial_profile_pars["fittype"][0])
getdata = bool(self.radial_profile_pars["getdata"][0])
# cut the data down to size
datasize = int(self.radial_profile_pars["rplot"][0])-1
delta = 10 # chunk size in pixels to find center
# center on image using a 2d gaussian
if self.radial_profile_pars["center"][0]:
# pull out a small chunk to get the center defined
amp, centerx, centery, sigma, sigmay = \
self.gauss_center(x, y, data, delta=delta)
else:
centery = y
centerx = x
icenterx = int(centerx)
icentery = int(centery)
# just grab the data box we want from the image
data_chunk = data[icentery-datasize:icentery+datasize,
icenterx-datasize:icenterx+datasize]
y, x = np.indices((data_chunk.shape)) # radii of all pixels
if self.radial_profile_pars["pixels"][0]:
r = np.sqrt((x - datasize+(centerx-icenterx))**2 +
(y - datasize + (centery-icentery))**2)
indices = np.argsort(r.flat) # sorted indices
radius = r.flat[indices]
flux = data_chunk.flat[indices]
else: # sum the flux in integer bins
r = np.sqrt((x - datasize)**2 + (y - datasize)**2)
r = r.astype(np.int)
flux = np.bincount(r.ravel(), data_chunk.ravel())
radius = np.arange(len(flux))
# Get a background measurement
if subtract_background:
inner = self.radial_profile_pars["skyrad"][0]
width = self.radial_profile_pars["width"][0]
annulus_apertures = photutils.CircularAnnulus(
(centerx, centery), r_in=inner, r_out=inner+width)
bkgflux_table = photutils.aperture_photometry(data,
annulus_apertures)
# to calculate the mean local background, divide the circular
# annulus aperture sums by the area of the circular annulus.
# The bkg sum with the circular aperture is then
# then mean local background times the circular apreture area.
annulus_area = annulus_apertures.area()
sky_per_pix = float(bkgflux_table['aperture_sum'] /
annulus_area)
self.log.info("Background per pixel: {0:f}".format(sky_per_pix))
if self.radial_profile_pars["pixels"][0]:
flux -= sky_per_pix
else:
flux -= np.bincount(r.ravel()) * sky_per_pix
if getdata:
self.log.info("Sky per pixel: {0} using "
"(rad={1}->{2})".format(sky_per_pix,
inner, inner+width))
if getdata:
info = "\nat (x,y)={0:f},{1:f}\n".format(centerx, centery)
self.log.info(info)
self.log.info(radius, flux)
# finish the plot
if genplot:
pfig = fig
if fig is None:
fig = plt.figure(self._figure_name)
fig.clf()
fig.add_subplot(111)
ax = fig.gca()
if self.radial_profile_pars["title"][0] is None:
title = "{0}: {1} {2}".format(self._datafile,
icenterx, icentery)
else:
title = self.radial_profile_pars["title"][0]
ax.set_xlabel(self.radial_profile_pars["xlabel"][0])
ax.set_ylabel(self.radial_profile_pars["ylabel"][0])
if bool(self.radial_profile_pars["pointmode"][0]):
ax.plot(radius, flux, self.radial_profile_pars["marker"][0])
else:
ax.plot(radius, flux)
ax.set_title(title)
ax.set_ylim(0,)
# over plot a gaussian fit to the data
if bool(self.radial_profile_pars["fitplot"][0]):
self.log.info("Fit overlay not yet implemented")
if pfig is None and 'nbagg' not in get_backend().lower():
plt.draw()
plt.pause(0.001)
else:
fig.canvas.draw()
else:
return radius, flux
def curve_of_growth(self, x, y, data=None, genplot=True, fig=None):
"""Display a curve of growth plot.
Parameters
----------
x: int
The x location of the object
y: int
The y location of the object
data: numpy array
The data array to work on
fig: figure name for redirect
Used for interaction with the ginga GUI
Notes
-----
the object photometry is taken from photutils
"""
if not photutils_installed:
self.log.warning("Install photutils to enable")
else:
if data is None:
data = self._data
delta = 10 # chunk size to find center
subpixels = 10 # for line fit later
# center using a 2d gaussian
if self.curve_of_growth_pars["center"][0]:
# pull out a small chunk
amp, centerx, centery, sigma, sigmay = \
self.gauss_center(x, y, data, delta=delta)
else:
centery = y
centerx = x
centerx = int(centerx)
centery = int(centery)
# now grab aperture sums going out from that central pixel
inner = self.curve_of_growth_pars["buffer"][0]
width = self.curve_of_growth_pars["width"][0]
router = self.curve_of_growth_pars["rplot"][0]
getdata = bool(self.curve_of_growth_pars["getdata"][0])
radius = list()
flux = list()
rapert = int(router) + 1
for rad in range(1, rapert, 1):
aper_flux, annulus_sky, skysub_flux = self._aperture_phot(
centerx, centery, data, radsize=rad, sky_inner=inner,
skywidth=width, method="exact", subpixels=subpixels)
radius.append(rad)
if self.curve_of_growth_pars["background"][0]:
if inner < router:
warnings.warn(
"Your sky annulus is inside your \
photometry radius rplot")
flux.append(skysub_flux)
else:
flux.append(aper_flux)
if getdata:
rapert = np.arange(1, rapert, 1)
info = "\nat (x,y)={0:d},{1:d}\nradii:{2}\nflux:{3}".format(
int(centerx), int(centery), rapert, flux)
self.log.info(info)
if genplot:
pfig = fig
if fig is None:
fig = plt.figure(self._figure_name)
fig.clf()
fig.add_subplot(111)
ax = fig.gca()
if self.curve_of_growth_pars["title"][0] is None:
title = "{0}: {1} {2}".format(self._datafile,
int(x),
int(y))
else:
title = self.curve_of_growth_pars["title"][0]
ax.set_xlabel(self.curve_of_growth_pars["xlabel"][0])
ax.set_ylabel(self.curve_of_growth_pars["ylabel"][0])
ax.plot(radius, flux, 'o')
ax.set_title(title)
if pfig is None and 'nbagg' not in get_backend().lower():
plt.draw()
plt.pause(0.001)
else:
fig.canvas.draw()
else:
return rapert, flux
def _aperture_phot(self, x, y, data=None, radsize=1,
sky_inner=5, skywidth=5,
method="subpixel", subpixels=4):
"""Perform sky subtracted aperture photometry.
uses photutils functions, photutil must be installed
Parameters
----------
x: int
The x location of the object
y: int
The y location of the object
data: numpy array
The data array to work on
radsize: int
Size of the radius
sky_inner: int
Inner radius of the sky annulus
skywidth: int
Width of the sky annulus
method: string
Pixel sampling method to use
subpixels: int
How many subpixels to use
Notes
-----
background is taken from sky annulus pixels, check into
masking bad pixels
"""
if not photutils_installed:
self.log.warning("Install photutils to enable")
else:
if data is None:
data = self._data
apertures = photutils.CircularAperture((x, y), radsize)
rawflux_table = photutils.aperture_photometry(
data,
apertures,
subpixels=1,
method="center")
outer = sky_inner + skywidth
annulus_apertures = photutils.CircularAnnulus(
(x, y), r_in=sky_inner, r_out=outer)
bkgflux_table = photutils.aperture_photometry(
data,
annulus_apertures)
# to calculate the mean local background, divide the circular
# annulus aperture sums
# by the area of the circular annulus. The bkg sum within the
# circular aperture is then
# then mean local background times the circular apreture area.
aperture_area = apertures.area()
annulus_area = annulus_apertures.area()
bkg_sum = (
bkgflux_table['aperture_sum'] *
aperture_area /
annulus_area)[0]
skysub_flux = rawflux_table['aperture_sum'][0] - bkg_sum
return (
float(rawflux_table['aperture_sum'][0]), bkg_sum, skysub_flux)
def histogram(self, x, y, data=None, genplot=True, fig=None):
"""Calulate a histogram of the data values.
Parameters
----------
x: int, required
The x location of the object
y: int, required
The y location of the object
data: numpy array, optional
The data array to work on
genplot: boolean, optional
If false, returns the hist, bin_edges tuple
fig: figure name for redirect
Used for interaction with the ginga GUI
Notes
-----
This functional originally used the pylab histogram routine for
plotting. In order to accomodate returning just the histogram data,
this was changed to the numpy histogram, with a subsequent plot if
genplot is True.
Does not yet support numpy v1.11 strings for bin estimation.
"""
if data is None:
data = self._data
deltax = int(self.histogram_pars["ncolumns"][0] / 2.)
deltay = int(self.histogram_pars["nlines"][0] / 2.)
yf = int(y)
xf = int(x)
data_cut = data[yf - deltay:yf + deltay, xf - deltax:xf + deltax]
# mask data for min and max intensity specified
if self.histogram_pars["z1"][0]:
mini = float(self.histogram_pars["z1"][0])
else:
mini = np.min(data_cut)
if self.histogram_pars["z2"][0]:
maxi = float(self.histogram_pars["z2"][0])
else:
maxi = np.max(data_cut)
lt = (data_cut < maxi)
gt = (data_cut > mini)
total_mask = lt * gt
flat_data = data_cut[total_mask].flatten()
if not maxi:
maxi = np.max(data_cut)
if not mini:
mini = np.min(data_cut)
num_bins = int(self.histogram_pars["nbins"][0])
if genplot:
pfig = fig
if fig is None:
fig = plt.figure(self._figure_name)
fig.clf()
fig.add_subplot(111)
ax = fig.gca()
if self.histogram_pars["title"][0] is None:
title = "{0}: {1} {2}".format(self._datafile, int(x), int(y))
else:
title = self.histogram_pars["title"][0]
ax.set_title(title)
ax.set_xlabel(self.histogram_pars["xlabel"][0])
ax.set_ylabel(self.histogram_pars["ylabel"][0])
if self.histogram_pars["logx"][0]:
ax.set_xscale("log")
if self.histogram_pars["logy"][0]:
ax.set_yscale("log")
n, bins, patches = ax.hist(
flat_data, num_bins, range=[mini, maxi], normed=False,
facecolor='green', alpha=0.5, histtype='bar')
self.log.info("{0} bins "
"range:[{1},{2}]".format(num_bins, mini, maxi))
if pfig is None and 'nbagg' not in get_backend().lower():
plt.draw()
plt.pause(0.001)
else:
fig.canvas.draw()
else:
hist, bin_edges = np.histogram(flat_data,
num_bins,
range=[mini, maxi],
normed=False)
return hist, bin_edges
def contour(self, x, y, data=None, fig=None):
"""plot contours in a region around the specified location.
Parameters
----------
x: int
The x location of the object
y: int
The y location of the object
data: numpy array
The data array to work on
fig: figure for redirect
Used for interaction with the ginga GUI
"""
if data is None:
data = self._data
pfig = fig
if fig is None:
fig = plt.figure(self._figure_name)
fig.clf()
fig.add_subplot(111)
ax = fig.gca()
if self.contour_pars["title"][0] is None:
title = "{0} {1} {2}".format(self._datafile, int(x), int(y))
else:
title = self.contour_pars["title"][0]
ax.set_title(title)
ax.set_xlabel(self.contour_pars["xlabel"][0])
ax.set_ylabel(self.contour_pars["ylabel"][0])
ncont = self.contour_pars["ncontours"][0]
colormap = self.contour_pars["cmap"][0]
lsty = self.contour_pars["linestyle"][0]
self.log.info("contour centered at: {0} {1}".format(x, y))
deltax = int(self.contour_pars["ncolumns"][0] / 2.)
deltay = int(self.contour_pars["nlines"][0] / 2.)
xx = int(x)
yy = int(y)
data_cut = data[yy - deltay:yy + deltay, xx - deltax:xx + deltax]
plt.rcParams['xtick.direction'] = 'out'
plt.rcParams['ytick.direction'] = 'out'
X, Y = np.meshgrid(np.arange(0, deltax, 0.5) + x - deltax / 2.,
np.arange(0, deltay, 0.5) + y - deltay / 2.)
C = ax.contour(
X,
Y,
data_cut,
ncont,
linewidth=.5,
colors='black',
linestyle=lsty)
# make the filled contour
ax.contourf(X, Y, data_cut, ncont, alpha=.75, cmap=colormap)
if self.contour_pars["label"][0]:
ax.clabel(C, inline=1, fontsize=10, fmt="%5.3f")
if pfig is None and 'nbagg' not in get_backend().lower():
plt.draw()
plt.pause(0.001)
else:
fig.canvas.draw()
def surface(self, x, y, data=None, fig=None):
"""plot a surface around the specified location.
Parameters
----------
x: int
The x location of the object
y: int
The y location of the object
data: numpy array
The data array to work on
fig: figure for redirect
Used for interaction with the ginga GUI
"""
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.ticker import LinearLocator, FormatStrFormatter
if data is None:
data = self._data
pfig = fig
if fig is None:
fig = plt.figure(self._figure_name)
fig.clf()
fig.add_subplot(111)
ax = fig.gca(projection='3d')
title = self.surface_pars["title"][0]
if title is None:
title = "{0}: {1} {2}".format(self._datafile, int(x), int(y))
ax.set_title(title)
ax.set_xlabel(self.surface_pars["xlabel"][0])
ax.set_ylabel(self.surface_pars["ylabel"][0])
if self.surface_pars["zlabel"][0]:
ax.set_zlabel("Flux")
fancy = self.surface_pars["fancy"][0]
deltax = self.surface_pars["ncolumns"][0]
deltay = self.surface_pars["nlines"][0]
minx = int(x - deltax) if x - deltax > 0 else 0
miny = int(y - deltay) if y - deltay > 0 else 0
maxx = int(x + deltax) if x + deltax < data.shape[-1] else data.shape[0]
maxy = int(y + deltay) if y + deltay < data.shape[0] else data.shape[0]
X = np.arange(minx, maxx, 1)
Y = np.arange(miny, maxy, 1)
X, Y = np.meshgrid(X, Y)
Z = data[miny:maxy, minx:maxx]
if self.surface_pars["floor"][0]:
zmin = float(self.surface_pars["floor"][0])
else:
zmin = np.min(Z)
if self.surface_pars["ceiling"][0]:
zmax = float(self.surface_pars["ceiling"][0])
else:
zmax = np.max(Z)
stride = int(self.surface_pars["stride"][0])
if fancy:
surf = ax.plot_surface(
X, Y, Z, rstride=stride, cstride=stride,
cmap=self.surface_pars["cmap"][0], alpha=0.6)
else:
surf = ax.plot_surface(X, Y, Z, rstride=stride, cstride=stride,
cmap=self.surface_pars["cmap"][0],
linewidth=0, antialiased=False)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.0f'))
ax.set_zlim(zmin, zmax)
if fancy:
xmin = minx
ymax = maxy
cset = ax.contour(
X,
Y,
Z,
zdir='z',
offset=zmax,
cmap=self.surface_pars["cmap"][0])
cset = ax.contour(
X,
Y,
Z,
zdir='x',
offset=xmin,
cmap=self.surface_pars["cmap"][0])
cset = ax.contour(
X,
Y,
Z,
zdir='y',
offset=ymax,
cmap=self.surface_pars["cmap"][0])
fig.colorbar(surf, shrink=0.5, aspect=5)
if self.surface_pars["azim"][0]:
ax.view_init(elev=10., azim=float(self.surface_pars["azim"][0]))
if pfig is None and 'nbagg' not in get_backend().lower():
plt.draw()
plt.pause(0.001)
else:
fig.canvas.draw()
def cutout(self, x, y, data=None, size=None, fig=None):
"""Make a fits cutout around the pointer location without wcs.
Parameters
----------
x: int
The x location of the object
y: int
The y location of the object
data: numpy array
The data array to work on
size: int
The radius of the cutout region
fig: figure for redirect
Used for interaction with the ginga GUI
"""
if data is None:
data = self._data
if size is None:
size = self.cutout_pars["size"][0]
prefix = "cutout_{0}_{1}_".format(int(x), int(y))
fname = tempfile.mkstemp(prefix=prefix, suffix=".fits", dir="./")[-1]
cutout = data[y-size:y+size, x-size:x+size]
hdu = fits.PrimaryHDU(cutout)
hdulist = fits.HDUList([hdu])
hdulist[0].header['EXTEND'] = False
hdulist.writeto(fname)
self.log.info("Cutout at ({0},{1}) saved to {2:s}".format(x, y, fname))
def register(self, user_funcs):
"""register a new imexamine function made by the user as an option.
Parameters
----------
user_funcs: dict
Contains a dictionary where each key is the binding for the
(function,description) tuple
Notes
-----
The new binding will be added to the dictionary of imexamine functions
as long as the key is unique. The new functions do not have to have
default dictionaries associated with them.
"""
if not isinstance(user_funcs, type(dict())):
warnings.warn("Your input needs to be a dictionary")
for key in user_funcs.keys():
if key in self.imexam_option_funcs.keys():
warnings.warn("{0:s} is not a unique key".format(key))
warnings.warn("{0:s}".format(self.imexam_option_funcs[key]))
raise ValueError("{0:s} is not a unique key".format(key))
elif key == 'q':
warnings.warn("q is reserved as the quit key")
raise ValueError("q is reserved for the quit key")
else:
func_name = user_funcs[key][0].__name__
self._add_user_function(user_funcs[key][0])
self.imexam_option_funcs[key] = (
self.__getattribute__(func_name), user_funcs[key][1])
self.log.info(
"User function: {0:s} added to imexam options with "
"key {1:s}".format(func_name, key))
@classmethod
def _add_user_function(cls, func):
import types
if PY3:
return setattr(cls, func.__name__, types.MethodType(func, cls))
else:
return setattr(cls, func.__name__,
types.MethodType(func, None, cls))
def showplt(self):
"""Show the plot."""
buf = StringIO.StringIO()
plt.savefig(buf, bbox_inches=0)
img = Image(data=bytes(buf.getvalue()),
format='png', embed=True)
buf.close()
return img
def set_aper_phot_pars(self, user_dict=None):
"""the user may supply a dictionary of par settings."""
if not user_dict:
self.aper_phot_pars = imexam_defpars.aper_phot_pars
else:
self.aper_phot_pars = user_dict
def set_radial_pars(self):
"""set parameters for radial profile plots."""
self.radial_profile_pars = imexam_defpars.radial_profile_pars
def set_curve_pars(self):
"""set parameters for curve of growth plots."""
self.curve_of_growth_pars = imexam_defpars.curve_of_growth_pars
def set_surface_pars(self):
"""set parameters for surface plots."""
self.surface_pars = imexam_defpars.surface_pars
def set_line_fit_pars(self):
"""set parameters for 1D line fit plots."""
self.line_fit_pars = imexam_defpars.line_fit_pars
def set_column_fit_pars(self):
"""set parameters for 1D line fit plots."""
self.column_fit_pars = imexam_defpars.column_fit_pars
def set_contour_pars(self):
"""set parameters for contour plots."""
self.contour_pars = imexam_defpars.contour_pars
def set_histogram_pars(self):
"""set parameters for histogram plots."""
self.histogram_pars = imexam_defpars.histogram_pars
def set_lineplot_pars(self):
"""set parameters for line plots."""
self.lineplot_pars = imexam_defpars.lineplot_pars
def set_colplot_pars(self):
"""set parameters for column plots."""
self.colplot_pars = imexam_defpars.colplot_pars
def set_cutout_pars(self):
"""set parameters for cutout images."""
self.cutout_pars = imexam_defpars.cutout_pars
def reset_defpars(self):
"""set all pars to their defaults."""
self._define_pars()
|