This file is indexed.

/usr/lib/python2.7/dist-packages/linop/blkop.py is in python-linop 0.8.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#Copyright (c) 2008-2013, Dominique Orban <dominique.orban@gerad.ca>
#All rights reserved.
#
#Copyright (c) 2013-2014, Ghislain Vaillant <ghisvail@gmail.com>
#All rights reserved.
#
#Redistribution and use in source and binary forms, with or without
#modification, are permitted provided that the following conditions
#are met:
#1. Redistributions of source code must retain the above copyright
#   notice, this list of conditions and the following disclaimer.
#2. Redistributions in binary form must reproduce the above copyright
#   notice, this list of conditions and the following disclaimer in the
#   documentation and/or other materials provided with the distribution.
#3. Neither the name of the linop developers nor the names of any contributors
#   may be used to endorse or promote products derived from this software
#   without specific prior written permission.
#
#THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
#ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
#IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
#ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
#FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
#DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
#OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
#HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
#LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
#OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
#SUCH DAMAGE.

from .linop import BaseLinearOperator, LinearOperator
from .linop import ShapeError, null_log
import numpy as np
import itertools
from functools import reduce


class BlockLinearOperator(LinearOperator):

    """
    A linear operator defined by blocks. Each block must be a linear operator.

    `blocks` should be a list of lists describing the blocks row-wise.
    If there is only one block row, it should be specified as
    `[[b1, b2, ..., bn]]`, not as `[b1, b2, ..., bn]`.

    If the overall linear operator is symmetric, only its upper triangle
    need be specified, e.g., `[[A,B,C], [D,E], [F]]`, and the blocks on the
    diagonal must be square and symmetric.

    """

    def __init__(self, blocks, symmetric=False, **kwargs):
        # If building a symmetric operator, fill in the blanks.
        # They're just references to existing objects.
        try:
            for block_row in blocks:
                for block_col in block_row:
                    op_shape = block_col.shape
        except (TypeError, AttributeError):
            raise ValueError('blocks should be a nested list of operators')

        if symmetric:
            nrow = len(blocks)
            ncol = len(blocks[0])
            if nrow != ncol:
                raise ShapeError('Inconsistent shape.')

            for block_row in blocks:
                if not block_row[0].symmetric:
                    raise ValueError('Blocks on diagonal must be symmetric.')

            self._blocks = blocks[:]
            for i in range(1, nrow):
                for j in range(i - 1, -1, -1):
                    self._blocks[i].insert(0, self._blocks[j][i].T)

        else:
            self._blocks = blocks

        log = kwargs.get('logger', null_log)
        log.debug('Building new BlockLinearOperator')

        nargins = [[blk.shape[-1] for blk in row] for row in self._blocks]
        log.debug('nargins = ' + repr(nargins))
        nargins_by_row = [nargin[0] for nargin in nargins]
        if min(nargins_by_row) != max(nargins_by_row):
            raise ShapeError('Inconsistent block shapes')

        nargouts = [[blk.shape[0] for blk in row] for row in self._blocks]
        log.debug('nargouts = ' + repr(nargouts))
        for row in nargouts:
            if min(row) != max(row):
                raise ShapeError('Inconsistent block shapes')

        nargin = sum(nargins[0])
        nargout = sum([out[0] for out in nargouts])

        # Create blocks of transpose operator.
        blocksT = list(map(lambda *row: [blk.T for blk in row], *self._blocks))

        def blk_matvec(x, blks):
            nargins = [[blk.shape[-1] for blk in blkrow] for blkrow in blks]
            nargouts = [[blk.shape[0] for blk in blkrow] for blkrow in blks]
            nargin = sum(nargins[0])
            nargout = sum([out[0] for out in nargouts])
            nx = len(x)
            self.logger.debug('Multiplying with a vector of size %d' % nx)
            self.logger.debug('nargin=%d, nargout=%d' % (nargin, nargout))
            if nx != nargin:
                raise ShapeError('Multiplying with vector of wrong shape.')

            result_type = np.result_type(self.dtype, x.dtype)
            y = np.zeros(nargout, dtype=result_type)

            nblk_row = len(blks)
            nblk_col = len(blks[0])

            row_start = col_start = 0
            for row in range(nblk_row):
                row_end = row_start + nargouts[row][0]
                yout = y[row_start:row_end]
                for col in range(nblk_col):
                    col_end = col_start + nargins[0][col]
                    xin = x[col_start:col_end]
                    B = blks[row][col]
                    yout[:] += B * xin
                    col_start = col_end
                row_start = row_end
                col_start = 0

            return y

        flat_blocks = list(itertools.chain(*blocks))
        blk_dtypes = [blk.dtype for blk in flat_blocks]
        op_dtype = np.result_type(*blk_dtypes)

        super(BlockLinearOperator, self).__init__(
            nargin, nargout,
            symmetric=symmetric,
            matvec=lambda x: blk_matvec(x, self._blocks),
            rmatvec=lambda x: blk_matvec(x, blocksT),
            dtype=op_dtype,
            **kwargs)

        self.H._blocks = blocksT

    @property
    def blocks(self):
        """The list of blocks defining the block operator."""
        return self._blocks

    def __getitem__(self, indices):
        blks = np.matrix(self._blocks, dtype=object)[indices]
        # If indexing narrowed it down to a single block, return it.
        if isinstance(blks, BaseLinearOperator):
            return blks
        # Otherwise, we have a matrix of blocks.
        return BlockLinearOperator(blks.tolist(), symmetric=False)

    def __contains__(self, op):
        flat_blocks = list(itertools.chain(*self.blocks))
        return op in flat_blocks

    def __iter__(self):
        for block in self._blocks:
            yield block


class BlockDiagonalLinearOperator(LinearOperator):

    """
    A block diagonal linear operator.

    Each block must be a linear operator.
    The blocks may be specified as one list, e.g., `[A, B, C]`.

    """

    def __init__(self, blocks, **kwargs):

        try:
            for block in blocks:
                op_shape = block.shape
        except (TypeError, AttributeError):
            raise ValueError('blocks should be a flattened list of operators')

        symmetric = reduce(
            lambda x, y: x and y, [blk.symmetric for blk in blocks])

        self._blocks = blocks

        log = kwargs.get('logger', null_log)
        log.debug('Building new BlockDiagonalLinearOperator')

        nargins = [blk.shape[-1] for blk in blocks]
        log.debug('nargins = ' + repr(nargins))

        nargouts = [blk.shape[0] for blk in blocks]
        log.debug('nargouts = ' + repr(nargouts))

        nargin = sum(nargins)
        nargout = sum(nargouts)

        # Create blocks of transpose operator.
        blocksT = [blk.T for blk in blocks]

        def blk_matvec(x, blks):
            nx = len(x)
            nargins = [blk.shape[-1] for blk in blocks]
            nargin = sum(nargins)
            nargouts = [blk.shape[0] for blk in blocks]
            nargout = sum(nargouts)
            self.logger.debug('Multiplying with a vector of size %d' % nx)
            self.logger.debug('nargin=%d, nargout=%d' % (nargin, nargout))
            if nx != nargin:
                raise ShapeError('Multiplying with vector of wrong shape.')

            result_type = np.result_type(self.dtype, x.dtype)
            y = np.empty(nargout, dtype=result_type)

            nblks = len(blks)

            row_start = col_start = 0
            for blk in range(nblks):
                row_end = row_start + nargouts[blk]
                yout = y[row_start:row_end]

                col_end = col_start + nargins[blk]
                xin = x[col_start:col_end]

                B = blks[blk]
                yout[:] = B * xin

                col_start = col_end
                row_start = row_end

            return y

        blk_dtypes = [blk.dtype for blk in blocks]
        op_dtype = np.result_type(*blk_dtypes)

        super(BlockDiagonalLinearOperator, self).__init__(
            nargin, nargout,
            symmetric=symmetric,
            matvec=lambda x: blk_matvec(x, self._blocks),
            rmatvec=lambda x: blk_matvec(x, blocksT),
            dtype=op_dtype,
            **kwargs)

        self.H._blocks = blocksT

    @property
    def blocks(self):
        """The list of blocks defining the block diagonal operator."""
        return self._blocks

    def __getitem__(self, idx):
        blks = self._blocks[idx]
        if isinstance(idx, slice):
            return BlockDiagonalLinearOperator(blks, symmetric=self.symmetric)
        return blks

    def __setitem__(self, idx, ops):
        if not isinstance(ops, BaseLinearOperator):
            if isinstance(ops, list) or isinstance(ops, tuple):
                for op in ops:
                    if not isinstance(op, BaseLinearOperator):
                        msg = 'Block operators can only contain'
                        msg += ' linear operators'
                        raise ValueError(msg)
        self._blocks[idx] = ops


class BlockPreconditioner(BlockLinearOperator):

    """An alias for ``BlockLinearOperator``.

    Holds an additional ``solve`` method equivalent to ``__mul__``.

    """

    def solve(self, x):
        """An alias to __call__."""
        return self.__call__(x)


class BlockDiagonalPreconditioner(BlockDiagonalLinearOperator):

    """
    An alias for ``BlockDiagonalLinearOperator``.

    Holds an additional ``solve`` method equivalent to ``__mul__``.

    """

    def solve(self, x):
        """An alias to __call__."""
        return self.__call__(x)


class BlockHorizontalLinearOperator(BlockLinearOperator):

    """
    A block horizontal linear operator.

    Each block must be a linear operator.
    The blocks must be specified as one list, e.g., `[A, B, C]`.

    """

    def __init__(self, blocks, **kwargs):

        try:
            for block in blocks:
                op_shape = block.shape
        except (TypeError, AttributeError):
            raise ValueError('blocks should be a flattened list of operators')

        blocks=[[blk for blk in blocks]]

        super(BlockHorizontalLinearOperator, self).__init__(
            blocks=blocks, symmetric=False, **kwargs)


class BlockVerticalLinearOperator(BlockLinearOperator):

    """
    A block vertical linear operator.

    Each block must be a linear operator.
    The blocks must be specified as one list, e.g., `[A, B, C]`.

    """

    def __init__(self, blocks, **kwargs):

        try:
            for block in blocks:
                op_shape = block.shape
        except (TypeError, AttributeError):
            raise ValueError('blocks should be a flattened list of operators')

        blocks=[[blk] for blk in blocks]

        super(BlockVerticalLinearOperator, self).__init__(
            blocks=blocks, symmetric=False, **kwargs)


# some shorter aliases
BlockOperator = BlockLinearOperator
BlockDiagonalOperator = BlockDiagonalLinearOperator
BlockHorizontalOperator = BlockHorizontalLinearOperator
BlockVerticalOperator = BlockVerticalLinearOperator