This file is indexed.

/usr/lib/python2.7/dist-packages/matplotlib/mlab.py is in python-matplotlib 2.1.1-2ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
"""

Numerical python functions written for compatability with MATLAB
commands with the same names.

MATLAB compatible functions
---------------------------

:func:`cohere`
    Coherence (normalized cross spectral density)

:func:`csd`
    Cross spectral density using Welch's average periodogram

:func:`detrend`
    Remove the mean or best fit line from an array

:func:`find`
    Return the indices where some condition is true;
    numpy.nonzero is similar but more general.

:func:`griddata`
    Interpolate irregularly distributed data to a
    regular grid.

:func:`prctile`
    Find the percentiles of a sequence

:func:`prepca`
    Principal Component Analysis

:func:`psd`
    Power spectral density using Welch's average periodogram

:func:`rk4`
    A 4th order runge kutta integrator for 1D or ND systems

:func:`specgram`
    Spectrogram (spectrum over segments of time)

Miscellaneous functions
-----------------------

Functions that don't exist in MATLAB, but are useful anyway:

:func:`cohere_pairs`
    Coherence over all pairs.  This is not a MATLAB function, but we
    compute coherence a lot in my lab, and we compute it for a lot of
    pairs.  This function is optimized to do this efficiently by
    caching the direct FFTs.

:func:`rk4`
    A 4th order Runge-Kutta ODE integrator in case you ever find
    yourself stranded without scipy (and the far superior
    scipy.integrate tools)

:func:`contiguous_regions`
    Return the indices of the regions spanned by some logical mask

:func:`cross_from_below`
    Return the indices where a 1D array crosses a threshold from below

:func:`cross_from_above`
    Return the indices where a 1D array crosses a threshold from above

:func:`complex_spectrum`
    Return the complex-valued frequency spectrum of a signal

:func:`magnitude_spectrum`
    Return the magnitude of the frequency spectrum of a signal

:func:`angle_spectrum`
    Return the angle (wrapped phase) of the frequency spectrum of a signal

:func:`phase_spectrum`
    Return the phase (unwrapped angle) of the frequency spectrum of a signal

:func:`detrend_mean`
    Remove the mean from a line.

:func:`demean`
    Remove the mean from a line. This function is the same as
    :func:`detrend_mean` except for the default *axis*.

:func:`detrend_linear`
    Remove the best fit line from a line.

:func:`detrend_none`
    Return the original line.

:func:`stride_windows`
    Get all windows in an array in a memory-efficient manner

:func:`stride_repeat`
    Repeat an array in a memory-efficient manner

:func:`apply_window`
    Apply a window along a given axis


record array helper functions
-----------------------------

A collection of helper methods for numpyrecord arrays

.. _htmlonly:

    See :ref:`misc-examples-index`

:func:`rec2txt`
    Pretty print a record array

:func:`rec2csv`
    Store record array in CSV file

:func:`csv2rec`
    Import record array from CSV file with type inspection

:func:`rec_append_fields`
    Adds  field(s)/array(s) to record array

:func:`rec_drop_fields`
    Drop fields from record array

:func:`rec_join`
    Join two record arrays on sequence of fields

:func:`recs_join`
    A simple join of multiple recarrays using a single column as a key

:func:`rec_groupby`
    Summarize data by groups (similar to SQL GROUP BY)

:func:`rec_summarize`
    Helper code to filter rec array fields into new fields

For the rec viewer functions(e rec2csv), there are a bunch of Format
objects you can pass into the functions that will do things like color
negative values red, set percent formatting and scaling, etc.

Example usage::

    r = csv2rec('somefile.csv', checkrows=0)

    formatd = dict(
        weight = FormatFloat(2),
        change = FormatPercent(2),
        cost   = FormatThousands(2),
        )


    rec2excel(r, 'test.xls', formatd=formatd)
    rec2csv(r, 'test.csv', formatd=formatd)
    scroll = rec2gtk(r, formatd=formatd)

    win = gtk.Window()
    win.set_size_request(600,800)
    win.add(scroll)
    win.show_all()
    gtk.main()


"""

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import six
from six.moves import map, xrange, zip

import copy
import csv
import operator
import os
import warnings

import numpy as np

import matplotlib.cbook as cbook
from matplotlib import docstring
from matplotlib.path import Path
import math


if six.PY3:
    long = int


def logspace(xmin, xmax, N):
    '''
    Return N values logarithmically spaced between xmin and xmax.

    '''
    return np.exp(np.linspace(np.log(xmin), np.log(xmax), N))


def _norm(x):
    '''
    Return sqrt(x dot x).

    '''
    return np.sqrt(np.dot(x, x))


def window_hanning(x):
    '''
    Return x times the hanning window of len(x).

    See Also
    --------
    :func:`window_none`
        :func:`window_none` is another window algorithm.
    '''
    return np.hanning(len(x))*x


def window_none(x):
    '''
    No window function; simply return x.

    See Also
    --------
    :func:`window_hanning`
        :func:`window_hanning` is another window algorithm.
    '''
    return x


def apply_window(x, window, axis=0, return_window=None):
    '''
    Apply the given window to the given 1D or 2D array along the given axis.

    Parameters
    ----------
    x : 1D or 2D array or sequence
        Array or sequence containing the data.

    window : function or array.
        Either a function to generate a window or an array with length
        *x*.shape[*axis*]

    axis : integer
        The axis over which to do the repetition.
        Must be 0 or 1.  The default is 0

    return_window : bool
        If true, also return the 1D values of the window that was applied
    '''
    x = np.asarray(x)

    if x.ndim < 1 or x.ndim > 2:
        raise ValueError('only 1D or 2D arrays can be used')
    if axis+1 > x.ndim:
        raise ValueError('axis(=%s) out of bounds' % axis)

    xshape = list(x.shape)
    xshapetarg = xshape.pop(axis)

    if cbook.iterable(window):
        if len(window) != xshapetarg:
            raise ValueError('The len(window) must be the same as the shape '
                             'of x for the chosen axis')
        windowVals = window
    else:
        windowVals = window(np.ones(xshapetarg, dtype=x.dtype))

    if x.ndim == 1:
        if return_window:
            return windowVals * x, windowVals
        else:
            return windowVals * x

    xshapeother = xshape.pop()

    otheraxis = (axis+1) % 2

    windowValsRep = stride_repeat(windowVals, xshapeother, axis=otheraxis)

    if return_window:
        return windowValsRep * x, windowVals
    else:
        return windowValsRep * x


def detrend(x, key=None, axis=None):
    '''
    Return x with its trend removed.

    Parameters
    ----------
    x : array or sequence
        Array or sequence containing the data.

    key : [ 'default' | 'constant' | 'mean' | 'linear' | 'none'] or function
        Specifies the detrend algorithm to use. 'default' is 'mean', which is
        the same as :func:`detrend_mean`. 'constant' is the same. 'linear' is
        the same as :func:`detrend_linear`. 'none' is the same as
        :func:`detrend_none`. The default is 'mean'. See the corresponding
        functions for more details regarding the algorithms. Can also be a
        function that carries out the detrend operation.

    axis : integer
        The axis along which to do the detrending.

    See Also
    --------
    :func:`detrend_mean`
        :func:`detrend_mean` implements the 'mean' algorithm.

    :func:`detrend_linear`
        :func:`detrend_linear` implements the 'linear' algorithm.

    :func:`detrend_none`
        :func:`detrend_none` implements the 'none' algorithm.
    '''
    if key is None or key in ['constant', 'mean', 'default']:
        return detrend(x, key=detrend_mean, axis=axis)
    elif key == 'linear':
        return detrend(x, key=detrend_linear, axis=axis)
    elif key == 'none':
        return detrend(x, key=detrend_none, axis=axis)
    elif isinstance(key, six.string_types):
        raise ValueError("Unknown value for key %s, must be one of: "
                         "'default', 'constant', 'mean', "
                         "'linear', or a function" % key)

    if not callable(key):
        raise ValueError("Unknown value for key %s, must be one of: "
                         "'default', 'constant', 'mean', "
                         "'linear', or a function" % key)

    x = np.asarray(x)

    if axis is not None and axis+1 > x.ndim:
        raise ValueError('axis(=%s) out of bounds' % axis)

    if (axis is None and x.ndim == 0) or (not axis and x.ndim == 1):
        return key(x)

    # try to use the 'axis' argument if the function supports it,
    # otherwise use apply_along_axis to do it
    try:
        return key(x, axis=axis)
    except TypeError:
        return np.apply_along_axis(key, axis=axis, arr=x)


def demean(x, axis=0):
    '''
    Return x minus its mean along the specified axis.

    Parameters
    ----------
    x : array or sequence
        Array or sequence containing the data
        Can have any dimensionality

    axis : integer
        The axis along which to take the mean.  See numpy.mean for a
        description of this argument.

    See Also
    --------
    :func:`delinear`

    :func:`denone`
        :func:`delinear` and :func:`denone` are other detrend algorithms.

    :func:`detrend_mean`
        This function is the same as :func:`detrend_mean` except for the
        default *axis*.
    '''
    return detrend_mean(x, axis=axis)


def detrend_mean(x, axis=None):
    '''
    Return x minus the mean(x).

    Parameters
    ----------
    x : array or sequence
        Array or sequence containing the data
        Can have any dimensionality

    axis : integer
        The axis along which to take the mean.  See numpy.mean for a
        description of this argument.

    See Also
    --------
    :func:`demean`
        This function is the same as :func:`demean` except for the default
        *axis*.

    :func:`detrend_linear`

    :func:`detrend_none`
        :func:`detrend_linear` and :func:`detrend_none` are other detrend
        algorithms.

    :func:`detrend`
        :func:`detrend` is a wrapper around all the detrend algorithms.
    '''
    x = np.asarray(x)

    if axis is not None and axis+1 > x.ndim:
        raise ValueError('axis(=%s) out of bounds' % axis)

    # short-circuit 0-D array.
    if not x.ndim:
        return np.array(0., dtype=x.dtype)

    # short-circuit simple operations
    if axis == 0 or axis is None or x.ndim <= 1:
        return x - x.mean(axis)

    ind = [slice(None)] * x.ndim
    ind[axis] = np.newaxis
    return x - x.mean(axis)[ind]


def detrend_none(x, axis=None):
    '''
    Return x: no detrending.

    Parameters
    ----------
    x : any object
        An object containing the data

    axis : integer
        This parameter is ignored.
        It is included for compatibility with detrend_mean

    See Also
    --------
    :func:`denone`
        This function is the same as :func:`denone` except for the default
        *axis*, which has no effect.

    :func:`detrend_mean`

    :func:`detrend_linear`
        :func:`detrend_mean` and :func:`detrend_linear` are other detrend
        algorithms.

    :func:`detrend`
        :func:`detrend` is a wrapper around all the detrend algorithms.
    '''
    return x


def detrend_linear(y):
    '''
    Return x minus best fit line; 'linear' detrending.

    Parameters
    ----------
    y : 0-D or 1-D array or sequence
        Array or sequence containing the data

    axis : integer
        The axis along which to take the mean.  See numpy.mean for a
        description of this argument.

    See Also
    --------
    :func:`delinear`
        This function is the same as :func:`delinear` except for the default
        *axis*.

    :func:`detrend_mean`

    :func:`detrend_none`
        :func:`detrend_mean` and :func:`detrend_none` are other detrend
        algorithms.

    :func:`detrend`
        :func:`detrend` is a wrapper around all the detrend algorithms.
    '''
    # This is faster than an algorithm based on linalg.lstsq.
    y = np.asarray(y)

    if y.ndim > 1:
        raise ValueError('y cannot have ndim > 1')

    # short-circuit 0-D array.
    if not y.ndim:
        return np.array(0., dtype=y.dtype)

    x = np.arange(y.size, dtype=float)

    C = np.cov(x, y, bias=1)
    b = C[0, 1]/C[0, 0]

    a = y.mean() - b*x.mean()
    return y - (b*x + a)


def stride_windows(x, n, noverlap=None, axis=0):
    '''
    Get all windows of x with length n as a single array,
    using strides to avoid data duplication.

    .. warning::

        It is not safe to write to the output array.  Multiple
        elements may point to the same piece of memory,
        so modifying one value may change others.

    Parameters
    ----------
    x : 1D array or sequence
        Array or sequence containing the data.

    n : integer
        The number of data points in each window.

    noverlap : integer
        The overlap between adjacent windows.
        Default is 0 (no overlap)

    axis : integer
        The axis along which the windows will run.

    References
    ----------
    `stackoverflow: Rolling window for 1D arrays in Numpy?
    <http://stackoverflow.com/a/6811241>`_
    `stackoverflow: Using strides for an efficient moving average filter
    <http://stackoverflow.com/a/4947453>`_
    '''
    if noverlap is None:
        noverlap = 0

    if noverlap >= n:
        raise ValueError('noverlap must be less than n')
    if n < 1:
        raise ValueError('n cannot be less than 1')

    x = np.asarray(x)

    if x.ndim != 1:
        raise ValueError('only 1-dimensional arrays can be used')
    if n == 1 and noverlap == 0:
        if axis == 0:
            return x[np.newaxis]
        else:
            return x[np.newaxis].transpose()
    if n > x.size:
        raise ValueError('n cannot be greater than the length of x')

    # np.lib.stride_tricks.as_strided easily leads to memory corruption for
    # non integer shape and strides, i.e. noverlap or n. See #3845.
    noverlap = int(noverlap)
    n = int(n)

    step = n - noverlap
    if axis == 0:
        shape = (n, (x.shape[-1]-noverlap)//step)
        strides = (x.strides[0], step*x.strides[0])
    else:
        shape = ((x.shape[-1]-noverlap)//step, n)
        strides = (step*x.strides[0], x.strides[0])
    return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides)


def stride_repeat(x, n, axis=0):
    '''
    Repeat the values in an array in a memory-efficient manner.  Array x is
    stacked vertically n times.

    .. warning::

        It is not safe to write to the output array.  Multiple
        elements may point to the same piece of memory, so
        modifying one value may change others.

    Parameters
    ----------
    x : 1D array or sequence
        Array or sequence containing the data.

    n : integer
        The number of time to repeat the array.

    axis : integer
        The axis along which the data will run.

    References
    ----------
    `stackoverflow: Repeat NumPy array without replicating data?
    <http://stackoverflow.com/a/5568169>`_
    '''
    if axis not in [0, 1]:
        raise ValueError('axis must be 0 or 1')
    x = np.asarray(x)
    if x.ndim != 1:
        raise ValueError('only 1-dimensional arrays can be used')

    if n == 1:
        if axis == 0:
            return np.atleast_2d(x)
        else:
            return np.atleast_2d(x).T
    if n < 1:
        raise ValueError('n cannot be less than 1')

    # np.lib.stride_tricks.as_strided easily leads to memory corruption for
    # non integer shape and strides, i.e. n. See #3845.
    n = int(n)

    if axis == 0:
        shape = (n, x.size)
        strides = (0, x.strides[0])
    else:
        shape = (x.size, n)
        strides = (x.strides[0], 0)

    return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides)


def _spectral_helper(x, y=None, NFFT=None, Fs=None, detrend_func=None,
                     window=None, noverlap=None, pad_to=None,
                     sides=None, scale_by_freq=None, mode=None):
    '''
    This is a helper function that implements the commonality between the
    psd, csd, spectrogram and complex, magnitude, angle, and phase spectrums.
    It is *NOT* meant to be used outside of mlab and may change at any time.
    '''
    if y is None:
        # if y is None use x for y
        same_data = True
    else:
        # The checks for if y is x are so that we can use the same function to
        # implement the core of psd(), csd(), and spectrogram() without doing
        # extra calculations.  We return the unaveraged Pxy, freqs, and t.
        same_data = y is x

    if Fs is None:
        Fs = 2
    if noverlap is None:
        noverlap = 0
    if detrend_func is None:
        detrend_func = detrend_none
    if window is None:
        window = window_hanning

    # if NFFT is set to None use the whole signal
    if NFFT is None:
        NFFT = 256

    if mode is None or mode == 'default':
        mode = 'psd'
    elif mode not in ['psd', 'complex', 'magnitude', 'angle', 'phase']:
        raise ValueError("Unknown value for mode %s, must be one of: "
                         "'default', 'psd', 'complex', "
                         "'magnitude', 'angle', 'phase'" % mode)

    if not same_data and mode != 'psd':
        raise ValueError("x and y must be equal if mode is not 'psd'")

    # Make sure we're dealing with a numpy array. If y and x were the same
    # object to start with, keep them that way
    x = np.asarray(x)
    if not same_data:
        y = np.asarray(y)

    if sides is None or sides == 'default':
        if np.iscomplexobj(x):
            sides = 'twosided'
        else:
            sides = 'onesided'
    elif sides not in ['onesided', 'twosided']:
        raise ValueError("Unknown value for sides %s, must be one of: "
                         "'default', 'onesided', or 'twosided'" % sides)

    # zero pad x and y up to NFFT if they are shorter than NFFT
    if len(x) < NFFT:
        n = len(x)
        x = np.resize(x, (NFFT,))
        x[n:] = 0

    if not same_data and len(y) < NFFT:
        n = len(y)
        y = np.resize(y, (NFFT,))
        y[n:] = 0

    if pad_to is None:
        pad_to = NFFT

    if mode != 'psd':
        scale_by_freq = False
    elif scale_by_freq is None:
        scale_by_freq = True

    # For real x, ignore the negative frequencies unless told otherwise
    if sides == 'twosided':
        numFreqs = pad_to
        if pad_to % 2:
            freqcenter = (pad_to - 1)//2 + 1
        else:
            freqcenter = pad_to//2
        scaling_factor = 1.
    elif sides == 'onesided':
        if pad_to % 2:
            numFreqs = (pad_to + 1)//2
        else:
            numFreqs = pad_to//2 + 1
        scaling_factor = 2.

    result = stride_windows(x, NFFT, noverlap, axis=0)
    result = detrend(result, detrend_func, axis=0)
    result, windowVals = apply_window(result, window, axis=0,
                                      return_window=True)
    result = np.fft.fft(result, n=pad_to, axis=0)[:numFreqs, :]
    freqs = np.fft.fftfreq(pad_to, 1/Fs)[:numFreqs]

    if not same_data:
        # if same_data is False, mode must be 'psd'
        resultY = stride_windows(y, NFFT, noverlap)
        resultY = apply_window(resultY, window, axis=0)
        resultY = detrend(resultY, detrend_func, axis=0)
        resultY = np.fft.fft(resultY, n=pad_to, axis=0)[:numFreqs, :]
        result = np.conj(result) * resultY
    elif mode == 'psd':
        result = np.conj(result) * result
    elif mode == 'magnitude':
        result = np.abs(result) / np.abs(windowVals).sum()
    elif mode == 'angle' or mode == 'phase':
        # we unwrap the phase later to handle the onesided vs. twosided case
        result = np.angle(result)
    elif mode == 'complex':
        result /= np.abs(windowVals).sum()

    if mode == 'psd':

        # Also include scaling factors for one-sided densities and dividing by
        # the sampling frequency, if desired. Scale everything, except the DC
        # component and the NFFT/2 component:

        # if we have a even number of frequencies, don't scale NFFT/2
        if not NFFT % 2:
            slc = slice(1, -1, None)
        # if we have an odd number, just don't scale DC
        else:
            slc = slice(1, None, None)

        result[slc] *= scaling_factor

        # MATLAB divides by the sampling frequency so that density function
        # has units of dB/Hz and can be integrated by the plotted frequency
        # values. Perform the same scaling here.
        if scale_by_freq:
            result /= Fs
            # Scale the spectrum by the norm of the window to compensate for
            # windowing loss; see Bendat & Piersol Sec 11.5.2.
            result /= (np.abs(windowVals)**2).sum()
        else:
            # In this case, preserve power in the segment, not amplitude
            result /= np.abs(windowVals).sum()**2

    t = np.arange(NFFT/2, len(x) - NFFT/2 + 1, NFFT - noverlap)/Fs

    if sides == 'twosided':
        # center the frequency range at zero
        freqs = np.concatenate((freqs[freqcenter:], freqs[:freqcenter]))
        result = np.concatenate((result[freqcenter:, :],
                                 result[:freqcenter, :]), 0)
    elif not pad_to % 2:
        # get the last value correctly, it is negative otherwise
        freqs[-1] *= -1

    # we unwrap the phase here to handle the onesided vs. twosided case
    if mode == 'phase':
        result = np.unwrap(result, axis=0)

    return result, freqs, t


def _single_spectrum_helper(x, mode, Fs=None, window=None, pad_to=None,
                            sides=None):
    '''
    This is a helper function that implements the commonality between the
    complex, magnitude, angle, and phase spectrums.
    It is *NOT* meant to be used outside of mlab and may change at any time.
    '''
    if mode is None or mode == 'psd' or mode == 'default':
        raise ValueError('_single_spectrum_helper does not work with %s mode'
                         % mode)

    if pad_to is None:
        pad_to = len(x)

    spec, freqs, _ = _spectral_helper(x=x, y=None, NFFT=len(x), Fs=Fs,
                                      detrend_func=detrend_none, window=window,
                                      noverlap=0, pad_to=pad_to,
                                      sides=sides,
                                      scale_by_freq=False,
                                      mode=mode)
    if mode != 'complex':
        spec = spec.real

    if spec.ndim == 2 and spec.shape[1] == 1:
        spec = spec[:, 0]

    return spec, freqs


# Split out these keyword docs so that they can be used elsewhere
docstring.interpd.update(Spectral=cbook.dedent("""
    Fs : scalar
        The sampling frequency (samples per time unit).  It is used
        to calculate the Fourier frequencies, freqs, in cycles per time
        unit. The default value is 2.

    window : callable or ndarray
        A function or a vector of length *NFFT*. To create window
        vectors see :func:`window_hanning`, :func:`window_none`,
        :func:`numpy.blackman`, :func:`numpy.hamming`,
        :func:`numpy.bartlett`, :func:`scipy.signal`,
        :func:`scipy.signal.get_window`, etc. The default is
        :func:`window_hanning`.  If a function is passed as the
        argument, it must take a data segment as an argument and
        return the windowed version of the segment.

    sides : [ 'default' | 'onesided' | 'twosided' ]
        Specifies which sides of the spectrum to return.  Default gives the
        default behavior, which returns one-sided for real data and both
        for complex data.  'onesided' forces the return of a one-sided
        spectrum, while 'twosided' forces two-sided.
"""))


docstring.interpd.update(Single_Spectrum=cbook.dedent("""
    pad_to : integer
        The number of points to which the data segment is padded when
        performing the FFT.  While not increasing the actual resolution of
        the spectrum (the minimum distance between resolvable peaks),
        this can give more points in the plot, allowing for more
        detail. This corresponds to the *n* parameter in the call to fft().
        The default is None, which sets *pad_to* equal to the length of the
        input signal (i.e. no padding).
"""))


docstring.interpd.update(PSD=cbook.dedent("""
    pad_to : integer
        The number of points to which the data segment is padded when
        performing the FFT.  This can be different from *NFFT*, which
        specifies the number of data points used.  While not increasing
        the actual resolution of the spectrum (the minimum distance between
        resolvable peaks), this can give more points in the plot,
        allowing for more detail. This corresponds to the *n* parameter
        in the call to fft(). The default is None, which sets *pad_to*
        equal to *NFFT*

    NFFT : integer
        The number of data points used in each block for the FFT.
        A power 2 is most efficient.  The default value is 256.
        This should *NOT* be used to get zero padding, or the scaling of the
        result will be incorrect. Use *pad_to* for this instead.

    detrend : {'default', 'constant', 'mean', 'linear', 'none'} or callable
        The function applied to each segment before fft-ing,
        designed to remove the mean or linear trend.  Unlike in
        MATLAB, where the *detrend* parameter is a vector, in
        matplotlib is it a function.  The :mod:`~matplotlib.pylab`
        module defines :func:`~matplotlib.pylab.detrend_none`,
        :func:`~matplotlib.pylab.detrend_mean`, and
        :func:`~matplotlib.pylab.detrend_linear`, but you can use
        a custom function as well.  You can also use a string to choose
        one of the functions.  'default', 'constant', and 'mean' call
        :func:`~matplotlib.pylab.detrend_mean`.  'linear' calls
        :func:`~matplotlib.pylab.detrend_linear`.  'none' calls
        :func:`~matplotlib.pylab.detrend_none`.

    scale_by_freq : boolean, optional
        Specifies whether the resulting density values should be scaled
        by the scaling frequency, which gives density in units of Hz^-1.
        This allows for integration over the returned frequency values.
        The default is True for MATLAB compatibility.
"""))


@docstring.dedent_interpd
def psd(x, NFFT=None, Fs=None, detrend=None, window=None,
        noverlap=None, pad_to=None, sides=None, scale_by_freq=None):
    r"""
    Compute the power spectral density.

    Call signature::

        psd(x, NFFT=256, Fs=2, detrend=mlab.detrend_none,
            window=mlab.window_hanning, noverlap=0, pad_to=None,
            sides='default', scale_by_freq=None)

    The power spectral density :math:`P_{xx}` by Welch's average
    periodogram method.  The vector *x* is divided into *NFFT* length
    segments.  Each segment is detrended by function *detrend* and
    windowed by function *window*.  *noverlap* gives the length of
    the overlap between segments.  The :math:`|\mathrm{fft}(i)|^2`
    of each segment :math:`i` are averaged to compute :math:`P_{xx}`.

    If len(*x*) < *NFFT*, it will be zero padded to *NFFT*.

    Parameters
    ----------
    x : 1-D array or sequence
        Array or sequence containing the data

    %(Spectral)s

    %(PSD)s

    noverlap : integer
        The number of points of overlap between segments.
        The default value is 0 (no overlap).

    Returns
    -------
    Pxx : 1-D array
        The values for the power spectrum `P_{xx}` (real valued)

    freqs : 1-D array
        The frequencies corresponding to the elements in *Pxx*

    References
    ----------
    Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John
    Wiley & Sons (1986)

    See Also
    --------
    :func:`specgram`
        :func:`specgram` differs in the default overlap; in not returning the
        mean of the segment periodograms; and in returning the times of the
        segments.

    :func:`magnitude_spectrum`
        :func:`magnitude_spectrum` returns the magnitude spectrum.

    :func:`csd`
        :func:`csd` returns the spectral density between two signals.
    """
    Pxx, freqs = csd(x=x, y=None, NFFT=NFFT, Fs=Fs, detrend=detrend,
                     window=window, noverlap=noverlap, pad_to=pad_to,
                     sides=sides, scale_by_freq=scale_by_freq)
    return Pxx.real, freqs


@docstring.dedent_interpd
def csd(x, y, NFFT=None, Fs=None, detrend=None, window=None,
        noverlap=None, pad_to=None, sides=None, scale_by_freq=None):
    """
    Compute the cross-spectral density.

    Call signature::

        csd(x, y, NFFT=256, Fs=2, detrend=mlab.detrend_none,
            window=mlab.window_hanning, noverlap=0, pad_to=None,
            sides='default', scale_by_freq=None)

    The cross spectral density :math:`P_{xy}` by Welch's average
    periodogram method.  The vectors *x* and *y* are divided into
    *NFFT* length segments.  Each segment is detrended by function
    *detrend* and windowed by function *window*.  *noverlap* gives
    the length of the overlap between segments.  The product of
    the direct FFTs of *x* and *y* are averaged over each segment
    to compute :math:`P_{xy}`, with a scaling to correct for power
    loss due to windowing.

    If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero
    padded to *NFFT*.

    Parameters
    ----------
    x, y : 1-D arrays or sequences
        Arrays or sequences containing the data

    %(Spectral)s

    %(PSD)s

    noverlap : integer
        The number of points of overlap between segments.
        The default value is 0 (no overlap).

    Returns
    -------
    Pxy : 1-D array
        The values for the cross spectrum `P_{xy}` before scaling (real valued)

    freqs : 1-D array
        The frequencies corresponding to the elements in *Pxy*

    References
    ----------
    Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John
    Wiley & Sons (1986)

    See Also
    --------
    :func:`psd`
        :func:`psd` is the equivalent to setting y=x.
    """
    if NFFT is None:
        NFFT = 256
    Pxy, freqs, _ = _spectral_helper(x=x, y=y, NFFT=NFFT, Fs=Fs,
                                     detrend_func=detrend, window=window,
                                     noverlap=noverlap, pad_to=pad_to,
                                     sides=sides, scale_by_freq=scale_by_freq,
                                     mode='psd')

    if Pxy.ndim == 2:
        if Pxy.shape[1] > 1:
            Pxy = Pxy.mean(axis=1)
        else:
            Pxy = Pxy[:, 0]
    return Pxy, freqs


@docstring.dedent_interpd
def complex_spectrum(x, Fs=None, window=None, pad_to=None,
                     sides=None):
    """
    Compute the complex-valued frequency spectrum of *x*.  Data is padded to a
    length of *pad_to* and the windowing function *window* is applied to the
    signal.

    Parameters
    ----------
    x : 1-D array or sequence
        Array or sequence containing the data

    %(Spectral)s

    %(Single_Spectrum)s

    Returns
    -------
    spectrum : 1-D array
        The values for the complex spectrum (complex valued)

    freqs : 1-D array
        The frequencies corresponding to the elements in *spectrum*

    See Also
    --------
    :func:`magnitude_spectrum`
        :func:`magnitude_spectrum` returns the absolute value of this function.

    :func:`angle_spectrum`
        :func:`angle_spectrum` returns the angle of this function.

    :func:`phase_spectrum`
        :func:`phase_spectrum` returns the phase (unwrapped angle) of this
        function.

    :func:`specgram`
        :func:`specgram` can return the complex spectrum of segments within the
        signal.
    """
    return _single_spectrum_helper(x=x, Fs=Fs, window=window, pad_to=pad_to,
                                   sides=sides, mode='complex')


@docstring.dedent_interpd
def magnitude_spectrum(x, Fs=None, window=None, pad_to=None,
                       sides=None):
    """
    Compute the magnitude (absolute value) of the frequency spectrum of
    *x*.  Data is padded to a length of *pad_to* and the windowing function
    *window* is applied to the signal.

    Parameters
    ----------
    x : 1-D array or sequence
        Array or sequence containing the data

    %(Spectral)s

    %(Single_Spectrum)s

    Returns
    -------
    spectrum : 1-D array
        The values for the magnitude spectrum (real valued)

    freqs : 1-D array
        The frequencies corresponding to the elements in *spectrum*

    See Also
    --------
    :func:`psd`
        :func:`psd` returns the power spectral density.

    :func:`complex_spectrum`
        This function returns the absolute value of :func:`complex_spectrum`.

    :func:`angle_spectrum`
        :func:`angle_spectrum` returns the angles of the corresponding
        frequencies.

    :func:`phase_spectrum`
        :func:`phase_spectrum` returns the phase (unwrapped angle) of the
        corresponding frequencies.

    :func:`specgram`
        :func:`specgram` can return the magnitude spectrum of segments within
        the signal.
    """
    return _single_spectrum_helper(x=x, Fs=Fs, window=window, pad_to=pad_to,
                                   sides=sides, mode='magnitude')


@docstring.dedent_interpd
def angle_spectrum(x, Fs=None, window=None, pad_to=None,
                   sides=None):
    """
    Compute the angle of the frequency spectrum (wrapped phase spectrum) of
    *x*.  Data is padded to a length of *pad_to* and the windowing function
    *window* is applied to the signal.

    Parameters
    ----------
    x : 1-D array or sequence
        Array or sequence containing the data

    %(Spectral)s

    %(Single_Spectrum)s

    Returns
    -------
    spectrum : 1-D array
        The values for the angle spectrum in radians (real valued)

    freqs : 1-D array
        The frequencies corresponding to the elements in *spectrum*

    See Also
    --------
    :func:`complex_spectrum`
        This function returns the angle value of :func:`complex_spectrum`.

    :func:`magnitude_spectrum`
        :func:`angle_spectrum` returns the magnitudes of the corresponding
        frequencies.

    :func:`phase_spectrum`
        :func:`phase_spectrum` returns the unwrapped version of this function.

    :func:`specgram`
        :func:`specgram` can return the angle spectrum of segments within the
        signal.
    """
    return _single_spectrum_helper(x=x, Fs=Fs, window=window, pad_to=pad_to,
                                   sides=sides, mode='angle')


@docstring.dedent_interpd
def phase_spectrum(x, Fs=None, window=None, pad_to=None,
                   sides=None):
    """
    Compute the phase of the frequency spectrum (unwrapped angle spectrum) of
    *x*.  Data is padded to a length of *pad_to* and the windowing function
    *window* is applied to the signal.

    Parameters
    ----------
    x : 1-D array or sequence
        Array or sequence containing the data

    %(Spectral)s

    %(Single_Spectrum)s

    Returns
    -------
    spectrum : 1-D array
        The values for the phase spectrum in radians (real valued)

    freqs : 1-D array
        The frequencies corresponding to the elements in *spectrum*

    See Also
    --------
    :func:`complex_spectrum`
        This function returns the angle value of :func:`complex_spectrum`.

    :func:`magnitude_spectrum`
        :func:`magnitude_spectrum` returns the magnitudes of the corresponding
        frequencies.

    :func:`angle_spectrum`
        :func:`angle_spectrum` returns the wrapped version of this function.

    :func:`specgram`
        :func:`specgram` can return the phase spectrum of segments within the
        signal.
    """
    return _single_spectrum_helper(x=x, Fs=Fs, window=window, pad_to=pad_to,
                                   sides=sides, mode='phase')


@docstring.dedent_interpd
def specgram(x, NFFT=None, Fs=None, detrend=None, window=None,
             noverlap=None, pad_to=None, sides=None, scale_by_freq=None,
             mode=None):
    """
    Compute a spectrogram.

    Compute and plot a spectrogram of data in x.  Data are split into
    NFFT length segments and the spectrum of each section is
    computed.  The windowing function window is applied to each
    segment, and the amount of overlap of each segment is
    specified with noverlap.

    Parameters
    ----------
    x : array_like
        1-D array or sequence.

    %(Spectral)s

    %(PSD)s

    noverlap : int, optional
        The number of points of overlap between blocks.  The default
        value is 128.
    mode : str, optional
        What sort of spectrum to use, default is 'psd'.
            'psd'
                Returns the power spectral density.

            'complex'
                Returns the complex-valued frequency spectrum.

            'magnitude'
                Returns the magnitude spectrum.

            'angle'
                Returns the phase spectrum without unwrapping.

            'phase'
                Returns the phase spectrum with unwrapping.

    Returns
    -------
    spectrum : array_like
        2-D array, columns are the periodograms of successive segments.

    freqs : array_like
        1-D array, frequencies corresponding to the rows in *spectrum*.

    t : array_like
        1-D array, the times corresponding to midpoints of segments
        (i.e the columns in *spectrum*).

    See Also
    --------
    psd : differs in the overlap and in the return values.
    complex_spectrum : similar, but with complex valued frequencies.
    magnitude_spectrum : similar single segment when mode is 'magnitude'.
    angle_spectrum : similar to single segment when mode is 'angle'.
    phase_spectrum : similar to single segment when mode is 'phase'.

    Notes
    -----
    detrend and scale_by_freq only apply when *mode* is set to 'psd'.

    """
    if noverlap is None:
        noverlap = 128  # default in _spectral_helper() is noverlap = 0
    if NFFT is None:
        NFFT = 256  # same default as in _spectral_helper()
    if len(x) <= NFFT:
        warnings.warn("Only one segment is calculated since parameter NFFT " +
                      "(=%d) >= signal length (=%d)." % (NFFT, len(x)))

    spec, freqs, t = _spectral_helper(x=x, y=None, NFFT=NFFT, Fs=Fs,
                                      detrend_func=detrend, window=window,
                                      noverlap=noverlap, pad_to=pad_to,
                                      sides=sides,
                                      scale_by_freq=scale_by_freq,
                                      mode=mode)

    if mode != 'complex':
        spec = spec.real  # Needed since helper implements generically

    return spec, freqs, t


_coh_error = """Coherence is calculated by averaging over *NFFT*
length segments.  Your signal is too short for your choice of *NFFT*.
"""


@docstring.dedent_interpd
def cohere(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning,
           noverlap=0, pad_to=None, sides='default', scale_by_freq=None):
    """
    The coherence between *x* and *y*.  Coherence is the normalized
    cross spectral density:

    .. math::

        C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}}

    Parameters
    ----------
    x, y
        Array or sequence containing the data

    %(Spectral)s

    %(PSD)s

    noverlap : integer
        The number of points of overlap between blocks.  The default value
        is 0 (no overlap).

    Returns
    -------
    The return value is the tuple (*Cxy*, *f*), where *f* are the
    frequencies of the coherence vector. For cohere, scaling the
    individual densities by the sampling frequency has no effect,
    since the factors cancel out.

    See Also
    --------
    :func:`psd`, :func:`csd` :
        For information about the methods used to compute :math:`P_{xy}`,
        :math:`P_{xx}` and :math:`P_{yy}`.
    """

    if len(x) < 2 * NFFT:
        raise ValueError(_coh_error)
    Pxx, f = psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides,
                 scale_by_freq)
    Pyy, f = psd(y, NFFT, Fs, detrend, window, noverlap, pad_to, sides,
                 scale_by_freq)
    Pxy, f = csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides,
                 scale_by_freq)
    Cxy = np.abs(Pxy) ** 2 / (Pxx * Pxy)
    return Cxy, f


def donothing_callback(*args):
    pass


def cohere_pairs(X, ij, NFFT=256, Fs=2, detrend=detrend_none,
                 window=window_hanning, noverlap=0,
                 preferSpeedOverMemory=True,
                 progressCallback=donothing_callback,
                 returnPxx=False):

    """
    Compute the coherence and phase for all pairs *ij*, in *X*.

    *X* is a *numSamples* * *numCols* array

    *ij* is a list of tuples.  Each tuple is a pair of indexes into
    the columns of X for which you want to compute coherence.  For
    example, if *X* has 64 columns, and you want to compute all
    nonredundant pairs, define *ij* as::

      ij = []
      for i in range(64):
          for j in range(i+1,64):
              ij.append( (i,j) )

    *preferSpeedOverMemory* is an optional bool. Defaults to true. If
    False, limits the caching by only making one, rather than two,
    complex cache arrays. This is useful if memory becomes critical.
    Even when *preferSpeedOverMemory* is False, :func:`cohere_pairs`
    will still give significant performace gains over calling
    :func:`cohere` for each pair, and will use subtantially less
    memory than if *preferSpeedOverMemory* is True.  In my tests with
    a 43000,64 array over all nonredundant pairs,
    *preferSpeedOverMemory* = True delivered a 33% performance boost
    on a 1.7GHZ Athlon with 512MB RAM compared with
    *preferSpeedOverMemory* = False.  But both solutions were more
    than 10x faster than naively crunching all possible pairs through
    :func:`cohere`.

    Returns
    -------
    Cxy : dictionary of (*i*, *j*) tuples -> coherence vector for
        that pair.  i.e., ``Cxy[(i,j) = cohere(X[:,i], X[:,j])``.
        Number of dictionary keys is ``len(ij)``.

    Phase : dictionary of phases of the cross spectral density at
        each frequency for each pair.  Keys are (*i*, *j*).

    freqs : vector of frequencies, equal in length to either the
         coherence or phase vectors for any (*i*, *j*) key.

    e.g., to make a coherence Bode plot::

          subplot(211)
          plot( freqs, Cxy[(12,19)])
          subplot(212)
          plot( freqs, Phase[(12,19)])

    For a large number of pairs, :func:`cohere_pairs` can be much more
    efficient than just calling :func:`cohere` for each pair, because
    it caches most of the intensive computations.  If :math:`N` is the
    number of pairs, this function is :math:`O(N)` for most of the
    heavy lifting, whereas calling cohere for each pair is
    :math:`O(N^2)`.  However, because of the caching, it is also more
    memory intensive, making 2 additional complex arrays with
    approximately the same number of elements as *X*.

    See :file:`test/cohere_pairs_test.py` in the src tree for an
    example script that shows that this :func:`cohere_pairs` and
    :func:`cohere` give the same results for a given pair.

    See Also
    --------
    :func:`psd`
        For information about the methods used to compute :math:`P_{xy}`,
        :math:`P_{xx}` and :math:`P_{yy}`.
    """
    numRows, numCols = X.shape

    # zero pad if X is too short
    if numRows < NFFT:
        tmp = X
        X = np.zeros((NFFT, numCols), X.dtype)
        X[:numRows, :] = tmp
        del tmp

    numRows, numCols = X.shape
    # get all the columns of X that we are interested in by checking
    # the ij tuples
    allColumns = set()
    for i, j in ij:
        allColumns.add(i)
        allColumns.add(j)
    Ncols = len(allColumns)

    # for real X, ignore the negative frequencies
    if np.iscomplexobj(X):
        numFreqs = NFFT
    else:
        numFreqs = NFFT//2+1

    # cache the FFT of every windowed, detrended NFFT length segement
    # of every channel.  If preferSpeedOverMemory, cache the conjugate
    # as well
    if cbook.iterable(window):
        if len(window) != NFFT:
            raise ValueError("The length of the window must be equal to NFFT")
        windowVals = window
    else:
        windowVals = window(np.ones(NFFT, X.dtype))
    ind = list(xrange(0, numRows-NFFT+1, NFFT-noverlap))
    numSlices = len(ind)
    FFTSlices = {}
    FFTConjSlices = {}
    Pxx = {}
    slices = range(numSlices)
    normVal = np.linalg.norm(windowVals)**2
    for iCol in allColumns:
        progressCallback(i/Ncols, 'Cacheing FFTs')
        Slices = np.zeros((numSlices, numFreqs), dtype=np.complex_)
        for iSlice in slices:
            thisSlice = X[ind[iSlice]:ind[iSlice]+NFFT, iCol]
            thisSlice = windowVals*detrend(thisSlice)
            Slices[iSlice, :] = np.fft.fft(thisSlice)[:numFreqs]

        FFTSlices[iCol] = Slices
        if preferSpeedOverMemory:
            FFTConjSlices[iCol] = np.conj(Slices)
        Pxx[iCol] = np.divide(np.mean(abs(Slices)**2, axis=0), normVal)
    del Slices, ind, windowVals

    # compute the coherences and phases for all pairs using the
    # cached FFTs
    Cxy = {}
    Phase = {}
    count = 0
    N = len(ij)
    for i, j in ij:
        count += 1
        if count % 10 == 0:
            progressCallback(count/N, 'Computing coherences')

        if preferSpeedOverMemory:
            Pxy = FFTSlices[i] * FFTConjSlices[j]
        else:
            Pxy = FFTSlices[i] * np.conj(FFTSlices[j])
        if numSlices > 1:
            Pxy = np.mean(Pxy, axis=0)
#       Pxy = np.divide(Pxy, normVal)
        Pxy /= normVal
#       Cxy[(i,j)] = np.divide(np.absolute(Pxy)**2, Pxx[i]*Pxx[j])
        Cxy[i, j] = abs(Pxy)**2 / (Pxx[i]*Pxx[j])
        Phase[i, j] = np.arctan2(Pxy.imag, Pxy.real)

    freqs = Fs/NFFT*np.arange(numFreqs)
    if returnPxx:
        return Cxy, Phase, freqs, Pxx
    else:
        return Cxy, Phase, freqs


def entropy(y, bins):
    r"""
    Return the entropy of the data in *y* in units of nat.

    .. math::

      -\sum p_i \ln(p_i)

    where :math:`p_i` is the probability of observing *y* in the
    :math:`i^{th}` bin of *bins*.  *bins* can be a number of bins or a
    range of bins; see :func:`numpy.histogram`.

    Compare *S* with analytic calculation for a Gaussian::

      x = mu + sigma * randn(200000)
      Sanalytic = 0.5 * ( 1.0 + log(2*pi*sigma**2.0) )
    """
    n, bins = np.histogram(y, bins)
    n = n.astype(float)

    n = np.take(n, np.nonzero(n)[0])         # get the positive

    p = np.divide(n, len(y))

    delta = bins[1] - bins[0]
    S = -1.0 * np.sum(p * np.log(p)) + np.log(delta)
    return S


def normpdf(x, *args):
    "Return the normal pdf evaluated at *x*; args provides *mu*, *sigma*"
    mu, sigma = args
    return 1./(np.sqrt(2*np.pi)*sigma)*np.exp(-0.5 * (1./sigma*(x - mu))**2)


def find(condition):
    "Return the indices where ravel(condition) is true"
    res, = np.nonzero(np.ravel(condition))
    return res


def longest_contiguous_ones(x):
    """
    Return the indices of the longest stretch of contiguous ones in *x*,
    assuming *x* is a vector of zeros and ones.  If there are two
    equally long stretches, pick the first.
    """
    x = np.ravel(x)
    if len(x) == 0:
        return np.array([])

    ind = (x == 0).nonzero()[0]
    if len(ind) == 0:
        return np.arange(len(x))
    if len(ind) == len(x):
        return np.array([])

    y = np.zeros((len(x)+2,), x.dtype)
    y[1:-1] = x
    dif = np.diff(y)
    up = (dif == 1).nonzero()[0]
    dn = (dif == -1).nonzero()[0]
    i = (dn-up == max(dn - up)).nonzero()[0][0]
    ind = np.arange(up[i], dn[i])

    return ind


def longest_ones(x):
    '''alias for longest_contiguous_ones'''
    return longest_contiguous_ones(x)


class PCA(object):
    def __init__(self, a, standardize=True):
        """
        compute the SVD of a and store data for PCA.  Use project to
        project the data onto a reduced set of dimensions

        Parameters
        ----------
        a : np.ndarray
            A numobservations x numdims array
        standardize : bool
            True if input data are to be standardized. If False, only centering
            will be carried out.

        Attributes
        ----------
        a
            A centered unit sigma version of input ``a``.

        numrows, numcols
            The dimensions of ``a``.

        mu
            A numdims array of means of ``a``. This is the vector that points
            to the origin of PCA space.

        sigma
            A numdims array of standard deviation of ``a``.

        fracs
            The proportion of variance of each of the principal components.

        s
            The actual eigenvalues of the decomposition.

        Wt
            The weight vector for projecting a numdims point or array into
            PCA space.

        Y
            A projected into PCA space.

        Notes
        -----
        The factor loadings are in the ``Wt`` factor, i.e., the factor loadings
        for the first principal component are given by ``Wt[0]``. This row is
        also the first eigenvector.

        """
        n, m = a.shape
        if n < m:
            raise RuntimeError('we assume data in a is organized with '
                               'numrows>numcols')

        self.numrows, self.numcols = n, m
        self.mu = a.mean(axis=0)
        self.sigma = a.std(axis=0)
        self.standardize = standardize

        a = self.center(a)

        self.a = a

        U, s, Vh = np.linalg.svd(a, full_matrices=False)

        # Note: .H indicates the conjugate transposed / Hermitian.

        # The SVD is commonly written as a = U s V.H.
        # If U is a unitary matrix, it means that it satisfies U.H = inv(U).

        # The rows of Vh are the eigenvectors of a.H a.
        # The columns of U are the eigenvectors of a a.H.
        # For row i in Vh and column i in U, the corresponding eigenvalue is
        # s[i]**2.

        self.Wt = Vh

        # save the transposed coordinates
        Y = np.dot(Vh, a.T).T
        self.Y = Y

        # save the eigenvalues
        self.s = s**2

        # and now the contribution of the individual components
        vars = self.s/float(len(s))
        self.fracs = vars/vars.sum()

    def project(self, x, minfrac=0.):
        '''
        project x onto the principle axes, dropping any axes where fraction
        of variance<minfrac
        '''
        x = np.asarray(x)
        if x.shape[-1] != self.numcols:
            raise ValueError('Expected an array with dims[-1]==%d' %
                             self.numcols)
        Y = np.dot(self.Wt, self.center(x).T).T
        mask = self.fracs >= minfrac
        if x.ndim == 2:
            Yreduced = Y[:, mask]
        else:
            Yreduced = Y[mask]
        return Yreduced

    def center(self, x):
        '''
        center and optionally standardize the data using the mean and sigma
        from training set a
        '''
        if self.standardize:
            return (x - self.mu)/self.sigma
        else:
            return (x - self.mu)

    @staticmethod
    def _get_colinear():
        c0 = np.array([
            0.19294738,  0.6202667,   0.45962655,  0.07608613,  0.135818,
            0.83580842,  0.07218851,  0.48318321,  0.84472463,  0.18348462,
            0.81585306,  0.96923926,  0.12835919,  0.35075355,  0.15807861,
            0.837437,    0.10824303,  0.1723387,   0.43926494,  0.83705486])

        c1 = np.array([
            -1.17705601, -0.513883,   -0.26614584,  0.88067144,  1.00474954,
            -1.1616545,   0.0266109,   0.38227157,  1.80489433,  0.21472396,
            -1.41920399, -2.08158544, -0.10559009,  1.68999268,  0.34847107,
            -0.4685737,   1.23980423, -0.14638744, -0.35907697,  0.22442616])

        c2 = c0 + 2*c1
        c3 = -3*c0 + 4*c1
        a = np.array([c3, c0, c1, c2]).T
        return a


def prctile(x, p=(0.0, 25.0, 50.0, 75.0, 100.0)):
    """
    Return the percentiles of *x*.  *p* can either be a sequence of
    percentile values or a scalar.  If *p* is a sequence, the ith
    element of the return sequence is the *p*(i)-th percentile of *x*.
    If *p* is a scalar, the largest value of *x* less than or equal to
    the *p* percentage point in the sequence is returned.
    """

    # This implementation derived from scipy.stats.scoreatpercentile
    def _interpolate(a, b, fraction):
        """Returns the point at the given fraction between a and b, where
        'fraction' must be between 0 and 1.
        """
        return a + (b - a) * fraction

    per = np.array(p)
    values = np.sort(x, axis=None)

    idxs = per / 100 * (values.shape[0] - 1)
    ai = idxs.astype(int)
    bi = ai + 1
    frac = idxs % 1

    # handle cases where attempting to interpolate past last index
    cond = bi >= len(values)
    if per.ndim:
        ai[cond] -= 1
        bi[cond] -= 1
        frac[cond] += 1
    else:
        if cond:
            ai -= 1
            bi -= 1
            frac += 1

    return _interpolate(values[ai], values[bi], frac)


def prctile_rank(x, p):
    """
    Return the rank for each element in *x*, return the rank
    0..len(*p*).  e.g., if *p* = (25, 50, 75), the return value will be a
    len(*x*) array with values in [0,1,2,3] where 0 indicates the
    value is less than the 25th percentile, 1 indicates the value is
    >= the 25th and < 50th percentile, ... and 3 indicates the value
    is above the 75th percentile cutoff.

    *p* is either an array of percentiles in [0..100] or a scalar which
    indicates how many quantiles of data you want ranked.
    """

    if not cbook.iterable(p):
        p = np.arange(100.0/p, 100.0, 100.0/p)
    else:
        p = np.asarray(p)

    if p.max() <= 1 or p.min() < 0 or p.max() > 100:
        raise ValueError('percentiles should be in range 0..100, not 0..1')

    ptiles = prctile(x, p)
    return np.searchsorted(ptiles, x)


def center_matrix(M, dim=0):
    """
    Return the matrix *M* with each row having zero mean and unit std.

    If *dim* = 1 operate on columns instead of rows.  (*dim* is
    opposite to the numpy axis kwarg.)
    """
    M = np.asarray(M, float)
    if dim:
        M = (M - M.mean(axis=0)) / M.std(axis=0)
    else:
        M = (M - M.mean(axis=1)[:, np.newaxis])
        M = M / M.std(axis=1)[:, np.newaxis]
    return M


def rk4(derivs, y0, t):
    """
    Integrate 1D or ND system of ODEs using 4-th order Runge-Kutta.
    This is a toy implementation which may be useful if you find
    yourself stranded on a system w/o scipy.  Otherwise use
    :func:`scipy.integrate`.

    Parameters
    ----------
    y0
        initial state vector

    t
        sample times

    derivs
        returns the derivative of the system and has the
        signature ``dy = derivs(yi, ti)``

    Examples
    --------

    A 2D system::

        def derivs6(x,t):
            d1 =  x[0] + 2*x[1]
            d2 =  -3*x[0] + 4*x[1]
            return (d1, d2)
        dt = 0.0005
        t = arange(0.0, 2.0, dt)
        y0 = (1,2)
        yout = rk4(derivs6, y0, t)

    A 1D system::

        alpha = 2
        def derivs(x,t):
            return -alpha*x + exp(-t)

        y0 = 1
        yout = rk4(derivs, y0, t)

    If you have access to scipy, you should probably be using the
    scipy.integrate tools rather than this function.
    """

    try:
        Ny = len(y0)
    except TypeError:
        yout = np.zeros((len(t),), float)
    else:
        yout = np.zeros((len(t), Ny), float)

    yout[0] = y0
    i = 0

    for i in np.arange(len(t)-1):

        thist = t[i]
        dt = t[i+1] - thist
        dt2 = dt/2.0
        y0 = yout[i]

        k1 = np.asarray(derivs(y0, thist))
        k2 = np.asarray(derivs(y0 + dt2*k1, thist+dt2))
        k3 = np.asarray(derivs(y0 + dt2*k2, thist+dt2))
        k4 = np.asarray(derivs(y0 + dt*k3, thist+dt))
        yout[i+1] = y0 + dt/6.0*(k1 + 2*k2 + 2*k3 + k4)
    return yout


def bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0,
                     mux=0.0, muy=0.0, sigmaxy=0.0):
    """
    Bivariate Gaussian distribution for equal shape *X*, *Y*.

    See `bivariate normal
    <http://mathworld.wolfram.com/BivariateNormalDistribution.html>`_
    at mathworld.
    """
    Xmu = X-mux
    Ymu = Y-muy

    rho = sigmaxy/(sigmax*sigmay)
    z = Xmu**2/sigmax**2 + Ymu**2/sigmay**2 - 2*rho*Xmu*Ymu/(sigmax*sigmay)
    denom = 2*np.pi*sigmax*sigmay*np.sqrt(1-rho**2)
    return np.exp(-z/(2*(1-rho**2))) / denom


def get_xyz_where(Z, Cond):
    """
    *Z* and *Cond* are *M* x *N* matrices.  *Z* are data and *Cond* is
    a boolean matrix where some condition is satisfied.  Return value
    is (*x*, *y*, *z*) where *x* and *y* are the indices into *Z* and
    *z* are the values of *Z* at those indices.  *x*, *y*, and *z* are
    1D arrays.
    """
    X, Y = np.indices(Z.shape)
    return X[Cond], Y[Cond], Z[Cond]


def get_sparse_matrix(M, N, frac=0.1):
    """
    Return a *M* x *N* sparse matrix with *frac* elements randomly
    filled.
    """
    data = np.zeros((M, N))*0.
    for i in range(int(M*N*frac)):
        x = np.random.randint(0, M-1)
        y = np.random.randint(0, N-1)
        data[x, y] = np.random.rand()
    return data


def dist(x, y):
    """
    Return the distance between two points.
    """
    d = x-y
    return np.sqrt(np.dot(d, d))


def dist_point_to_segment(p, s0, s1):
    """
    Get the distance of a point to a segment.

      *p*, *s0*, *s1* are *xy* sequences

    This algorithm from
    http://geomalgorithms.com/a02-_lines.html
    """
    p = np.asarray(p, float)
    s0 = np.asarray(s0, float)
    s1 = np.asarray(s1, float)
    v = s1 - s0
    w = p - s0

    c1 = np.dot(w, v)
    if c1 <= 0:
        return dist(p, s0)

    c2 = np.dot(v, v)
    if c2 <= c1:
        return dist(p, s1)

    b = c1 / c2
    pb = s0 + b * v
    return dist(p, pb)


def segments_intersect(s1, s2):
    """
    Return *True* if *s1* and *s2* intersect.
    *s1* and *s2* are defined as::

      s1: (x1, y1), (x2, y2)
      s2: (x3, y3), (x4, y4)
    """
    (x1, y1), (x2, y2) = s1
    (x3, y3), (x4, y4) = s2

    den = ((y4-y3) * (x2-x1)) - ((x4-x3)*(y2-y1))

    n1 = ((x4-x3) * (y1-y3)) - ((y4-y3)*(x1-x3))
    n2 = ((x2-x1) * (y1-y3)) - ((y2-y1)*(x1-x3))

    if den == 0:
        # lines parallel
        return False

    u1 = n1/den
    u2 = n2/den

    return 0.0 <= u1 <= 1.0 and 0.0 <= u2 <= 1.0


def fftsurr(x, detrend=detrend_none, window=window_none):
    """
    Compute an FFT phase randomized surrogate of *x*.
    """
    if cbook.iterable(window):
        x = window*detrend(x)
    else:
        x = window(detrend(x))
    z = np.fft.fft(x)
    a = 2.*np.pi*1j
    phase = a * np.random.rand(len(x))
    z = z*np.exp(phase)
    return np.fft.ifft(z).real


def movavg(x, n):
    """
    Compute the len(*n*) moving average of *x*.
    """
    w = np.empty((n,), dtype=float)
    w[:] = 1.0/n
    return np.convolve(x, w, mode='valid')


# the following code was written and submitted by Fernando Perez
# from the ipython numutils package under a BSD license
# begin fperez functions

"""
A set of convenient utilities for numerical work.

Most of this module requires numpy or is meant to be used with it.

Copyright (c) 2001-2004, Fernando Perez. <Fernando.Perez@colorado.edu>
All rights reserved.

This license was generated from the BSD license template as found in:
http://www.opensource.org/licenses/bsd-license.php

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice,
      this list of conditions and the following disclaimer.

    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.

    * Neither the name of the IPython project nor the names of its
      contributors may be used to endorse or promote products derived from
      this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

"""


# *****************************************************************************
# Globals
# ****************************************************************************
# function definitions
exp_safe_MIN = math.log(2.2250738585072014e-308)
exp_safe_MAX = 1.7976931348623157e+308


def exp_safe(x):
    """
    Compute exponentials which safely underflow to zero.

    Slow, but convenient to use. Note that numpy provides proper
    floating point exception handling with access to the underlying
    hardware.
    """

    if type(x) is np.ndarray:
        return np.exp(np.clip(x, exp_safe_MIN, exp_safe_MAX))
    else:
        return math.exp(x)


def amap(fn, *args):
    """
    amap(function, sequence[, sequence, ...]) -> array.

    Works like :func:`map`, but it returns an array.  This is just a
    convenient shorthand for ``numpy.array(map(...))``.
    """
    return np.array(list(map(fn, *args)))


def rms_flat(a):
    """
    Return the root mean square of all the elements of *a*, flattened out.
    """
    return np.sqrt(np.mean(np.abs(a) ** 2))


def l1norm(a):
    """
    Return the *l1* norm of *a*, flattened out.

    Implemented as a separate function (not a call to :func:`norm` for speed).
    """
    return np.sum(np.abs(a))


def l2norm(a):
    """
    Return the *l2* norm of *a*, flattened out.

    Implemented as a separate function (not a call to :func:`norm` for speed).
    """
    return np.sqrt(np.sum(np.abs(a) ** 2))


def norm_flat(a, p=2):
    """
    norm(a,p=2) -> l-p norm of a.flat

    Return the l-p norm of *a*, considered as a flat array.  This is NOT a true
    matrix norm, since arrays of arbitrary rank are always flattened.

    *p* can be a number or the string 'Infinity' to get the L-infinity norm.
    """
    # This function was being masked by a more general norm later in
    # the file.  We may want to simply delete it.
    if p == 'Infinity':
        return np.max(np.abs(a))
    else:
        return np.sum(np.abs(a) ** p) ** (1 / p)


def frange(xini, xfin=None, delta=None, **kw):
    """
    frange([start,] stop[, step, keywords]) -> array of floats

    Return a numpy ndarray containing a progression of floats. Similar to
    :func:`numpy.arange`, but defaults to a closed interval.

    ``frange(x0, x1)`` returns ``[x0, x0+1, x0+2, ..., x1]``; *start*
    defaults to 0, and the endpoint *is included*. This behavior is
    different from that of :func:`range` and
    :func:`numpy.arange`. This is deliberate, since :func:`frange`
    will probably be more useful for generating lists of points for
    function evaluation, and endpoints are often desired in this
    use. The usual behavior of :func:`range` can be obtained by
    setting the keyword *closed* = 0, in this case, :func:`frange`
    basically becomes :func:numpy.arange`.

    When *step* is given, it specifies the increment (or
    decrement). All arguments can be floating point numbers.

    ``frange(x0,x1,d)`` returns ``[x0,x0+d,x0+2d,...,xfin]`` where
    *xfin* <= *x1*.

    :func:`frange` can also be called with the keyword *npts*. This
    sets the number of points the list should contain (and overrides
    the value *step* might have been given). :func:`numpy.arange`
    doesn't offer this option.

    Examples::

      >>> frange(3)
      array([ 0.,  1.,  2.,  3.])
      >>> frange(3,closed=0)
      array([ 0.,  1.,  2.])
      >>> frange(1,6,2)
      array([1, 3, 5])   or 1,3,5,7, depending on floating point vagueries
      >>> frange(1,6.5,npts=5)
      array([ 1.   ,  2.375,  3.75 ,  5.125,  6.5  ])
    """

    # defaults
    kw.setdefault('closed', 1)
    endpoint = kw['closed'] != 0

    # funny logic to allow the *first* argument to be optional (like range())
    # This was modified with a simpler version from a similar frange() found
    # at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/66472
    if xfin is None:
        xfin = xini + 0.0
        xini = 0.0

    if delta is None:
        delta = 1.0

    # compute # of points, spacing and return final list
    try:
        npts = kw['npts']
        delta = (xfin-xini)/float(npts-endpoint)
    except KeyError:
        npts = int(np.round((xfin-xini)/delta)) + endpoint
        # round finds the nearest, so the endpoint can be up to
        # delta/2 larger than xfin.

    return np.arange(npts)*delta+xini
# end frange()


def identity(n, rank=2, dtype='l', typecode=None):
    """
    Returns the identity matrix of shape (*n*, *n*, ..., *n*) (rank *r*).

    For ranks higher than 2, this object is simply a multi-index Kronecker
    delta::

                            /  1  if i0=i1=...=iR,
        id[i0,i1,...,iR] = -|
                            \\  0  otherwise.

    Optionally a *dtype* (or typecode) may be given (it defaults to 'l').

    Since rank defaults to 2, this function behaves in the default case (when
    only *n* is given) like ``numpy.identity(n)`` -- but surprisingly, it is
    much faster.
    """
    if typecode is not None:
        dtype = typecode
    iden = np.zeros((n,)*rank, dtype)
    for i in range(n):
        idx = (i,)*rank
        iden[idx] = 1
    return iden


def base_repr(number, base=2, padding=0):
    """
    Return the representation of a *number* in any given *base*.
    """
    chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
    if number < base:
        return (padding - 1) * chars[0] + chars[int(number)]
    max_exponent = int(math.log(number)/math.log(base))
    max_power = long(base) ** max_exponent
    lead_digit = int(number/max_power)
    return (chars[lead_digit] +
            base_repr(number - max_power * lead_digit, base,
                      max(padding - 1, max_exponent)))


def binary_repr(number, max_length=1025):
    """
    Return the binary representation of the input *number* as a
    string.

    This is more efficient than using :func:`base_repr` with base 2.

    Increase the value of max_length for very large numbers. Note that
    on 32-bit machines, 2**1023 is the largest integer power of 2
    which can be converted to a Python float.
    """

#   assert number < 2L << max_length
    shifts = map(operator.rshift, max_length * [number],
                 range(max_length - 1, -1, -1))
    digits = list(map(operator.mod, shifts, max_length * [2]))
    if not digits.count(1):
        return 0
    digits = digits[digits.index(1):]
    return ''.join(map(repr, digits)).replace('L', '')


def log2(x, ln2=math.log(2.0)):
    """
    Return the log(*x*) in base 2.

    This is a _slow_ function but which is guaranteed to return the correct
    integer value if the input is an integer exact power of 2.
    """
    try:
        bin_n = binary_repr(x)[1:]
    except (AssertionError, TypeError):
        return math.log(x)/ln2
    else:
        if '1' in bin_n:
            return math.log(x)/ln2
        else:
            return len(bin_n)


def ispower2(n):
    """
    Returns the log base 2 of *n* if *n* is a power of 2, zero otherwise.

    Note the potential ambiguity if *n* == 1: 2**0 == 1, interpret accordingly.
    """

    bin_n = binary_repr(n)[1:]
    if '1' in bin_n:
        return 0
    else:
        return len(bin_n)


def isvector(X):
    """
    Like the MATLAB function with the same name, returns *True*
    if the supplied numpy array or matrix *X* looks like a vector,
    meaning it has a one non-singleton axis (i.e., it can have
    multiple axes, but all must have length 1, except for one of
    them).

    If you just want to see if the array has 1 axis, use X.ndim == 1.
    """
    return np.prod(X.shape) == np.max(X.shape)

# end fperez numutils code


# helpers for loading, saving, manipulating and viewing numpy record arrays

def safe_isnan(x):
    ':func:`numpy.isnan` for arbitrary types'
    if isinstance(x, six.string_types):
        return False
    try:
        b = np.isnan(x)
    except NotImplementedError:
        return False
    except TypeError:
        return False
    else:
        return b


def safe_isinf(x):
    ':func:`numpy.isinf` for arbitrary types'
    if isinstance(x, six.string_types):
        return False
    try:
        b = np.isinf(x)
    except NotImplementedError:
        return False
    except TypeError:
        return False
    else:
        return b


def rec_append_fields(rec, names, arrs, dtypes=None):
    """
    Return a new record array with field names populated with data
    from arrays in *arrs*.  If appending a single field, then *names*,
    *arrs* and *dtypes* do not have to be lists. They can just be the
    values themselves.
    """
    if (not isinstance(names, six.string_types) and cbook.iterable(names)
            and len(names) and isinstance(names[0], six.string_types)):
        if len(names) != len(arrs):
            raise ValueError("number of arrays do not match number of names")
    else:  # we have only 1 name and 1 array
        names = [names]
        arrs = [arrs]
    arrs = list(map(np.asarray, arrs))
    if dtypes is None:
        dtypes = [a.dtype for a in arrs]
    elif not cbook.iterable(dtypes):
        dtypes = [dtypes]
    if len(arrs) != len(dtypes):
        if len(dtypes) == 1:
            dtypes = dtypes * len(arrs)
        else:
            raise ValueError("dtypes must be None, a single dtype or a list")
    old_dtypes = rec.dtype.descr
    if six.PY2:
        old_dtypes = [(name.encode('utf-8'), dt) for name, dt in old_dtypes]
    newdtype = np.dtype(old_dtypes + list(zip(names, dtypes)))
    newrec = np.recarray(rec.shape, dtype=newdtype)
    for field in rec.dtype.fields:
        newrec[field] = rec[field]
    for name, arr in zip(names, arrs):
        newrec[name] = arr
    return newrec


def rec_drop_fields(rec, names):
    """
    Return a new numpy record array with fields in *names* dropped.
    """

    names = set(names)

    newdtype = np.dtype([(name, rec.dtype[name]) for name in rec.dtype.names
                         if name not in names])

    newrec = np.recarray(rec.shape, dtype=newdtype)
    for field in newdtype.names:
        newrec[field] = rec[field]

    return newrec


def rec_keep_fields(rec, names):
    """
    Return a new numpy record array with only fields listed in names
    """

    if isinstance(names, six.string_types):
        names = names.split(',')

    arrays = []
    for name in names:
        arrays.append(rec[name])

    return np.rec.fromarrays(arrays, names=names)


def rec_groupby(r, groupby, stats):
    """
    *r* is a numpy record array

    *groupby* is a sequence of record array attribute names that
    together form the grouping key.  e.g., ('date', 'productcode')

    *stats* is a sequence of (*attr*, *func*, *outname*) tuples which
    will call ``x = func(attr)`` and assign *x* to the record array
    output with attribute *outname*.  For example::

      stats = ( ('sales', len, 'numsales'), ('sales', np.mean, 'avgsale') )

    Return record array has *dtype* names for each attribute name in
    the *groupby* argument, with the associated group values, and
    for each outname name in the *stats* argument, with the associated
    stat summary output.
    """
    # build a dictionary from groupby keys-> list of indices into r with
    # those keys
    rowd = {}
    for i, row in enumerate(r):
        key = tuple([row[attr] for attr in groupby])
        rowd.setdefault(key, []).append(i)

    rows = []
    # sort the output by groupby keys
    for key in sorted(rowd):
        row = list(key)
        # get the indices for this groupby key
        ind = rowd[key]
        thisr = r[ind]
        # call each stat function for this groupby slice
        row.extend([func(thisr[attr]) for attr, func, outname in stats])
        rows.append(row)

    # build the output record array with groupby and outname attributes
    attrs, funcs, outnames = list(zip(*stats))
    names = list(groupby)
    names.extend(outnames)
    return np.rec.fromrecords(rows, names=names)


def rec_summarize(r, summaryfuncs):
    """
    *r* is a numpy record array

    *summaryfuncs* is a list of (*attr*, *func*, *outname*) tuples
    which will apply *func* to the array *r*[attr] and assign the
    output to a new attribute name *outname*.  The returned record
    array is identical to *r*, with extra arrays for each element in
    *summaryfuncs*.

    """

    names = list(r.dtype.names)
    arrays = [r[name] for name in names]

    for attr, func, outname in summaryfuncs:
        names.append(outname)
        arrays.append(np.asarray(func(r[attr])))

    return np.rec.fromarrays(arrays, names=names)


def rec_join(key, r1, r2, jointype='inner', defaults=None, r1postfix='1',
             r2postfix='2'):
    """
    Join record arrays *r1* and *r2* on *key*; *key* is a tuple of
    field names -- if *key* is a string it is assumed to be a single
    attribute name. If *r1* and *r2* have equal values on all the keys
    in the *key* tuple, then their fields will be merged into a new
    record array containing the intersection of the fields of *r1* and
    *r2*.

    *r1* (also *r2*) must not have any duplicate keys.

    The *jointype* keyword can be 'inner', 'outer', 'leftouter'.  To
    do a rightouter join just reverse *r1* and *r2*.

    The *defaults* keyword is a dictionary filled with
    ``{column_name:default_value}`` pairs.

    The keywords *r1postfix* and *r2postfix* are postfixed to column names
    (other than keys) that are both in *r1* and *r2*.
    """

    if isinstance(key, six.string_types):
        key = (key, )

    for name in key:
        if name not in r1.dtype.names:
            raise ValueError('r1 does not have key field %s' % name)
        if name not in r2.dtype.names:
            raise ValueError('r2 does not have key field %s' % name)

    def makekey(row):
        return tuple([row[name] for name in key])

    r1d = {makekey(row): i for i, row in enumerate(r1)}
    r2d = {makekey(row): i for i, row in enumerate(r2)}

    r1keys = set(r1d)
    r2keys = set(r2d)

    common_keys = r1keys & r2keys

    r1ind = np.array([r1d[k] for k in common_keys])
    r2ind = np.array([r2d[k] for k in common_keys])

    common_len = len(common_keys)
    left_len = right_len = 0
    if jointype == "outer" or jointype == "leftouter":
        left_keys = r1keys.difference(r2keys)
        left_ind = np.array([r1d[k] for k in left_keys])
        left_len = len(left_ind)
    if jointype == "outer":
        right_keys = r2keys.difference(r1keys)
        right_ind = np.array([r2d[k] for k in right_keys])
        right_len = len(right_ind)

    def key_desc(name):
        '''
        if name is a string key, use the larger size of r1 or r2 before
        merging
        '''
        dt1 = r1.dtype[name]
        if dt1.type != np.string_:
            return (name, dt1.descr[0][1])

        dt2 = r2.dtype[name]
        if dt1 != dt2:
            msg = "The '{0}' fields in arrays 'r1' and 'r2' must have the same"
            msg += " dtype."
            raise ValueError(msg.format(name))
        if dt1.num > dt2.num:
            return (name, dt1.descr[0][1])
        else:
            return (name, dt2.descr[0][1])

    keydesc = [key_desc(name) for name in key]

    def mapped_r1field(name):
        """
        The column name in *newrec* that corresponds to the column in *r1*.
        """
        if name in key or name not in r2.dtype.names:
            return name
        else:
            return name + r1postfix

    def mapped_r2field(name):
        """
        The column name in *newrec* that corresponds to the column in *r2*.
        """
        if name in key or name not in r1.dtype.names:
            return name
        else:
            return name + r2postfix

    r1desc = [(mapped_r1field(desc[0]), desc[1]) for desc in r1.dtype.descr
              if desc[0] not in key]
    r2desc = [(mapped_r2field(desc[0]), desc[1]) for desc in r2.dtype.descr
              if desc[0] not in key]
    all_dtypes = keydesc + r1desc + r2desc
    if six.PY2:
        all_dtypes = [(name.encode('utf-8'), dt) for name, dt in all_dtypes]
    newdtype = np.dtype(all_dtypes)
    newrec = np.recarray((common_len + left_len + right_len,), dtype=newdtype)

    if defaults is not None:
        for thiskey in defaults:
            if thiskey not in newdtype.names:
                warnings.warn('rec_join defaults key="%s" not in new dtype '
                              'names "%s"' % (thiskey, newdtype.names))

    for name in newdtype.names:
        dt = newdtype[name]
        if dt.kind in ('f', 'i'):
            newrec[name] = 0

    if jointype != 'inner' and defaults is not None:
        # fill in the defaults enmasse
        newrec_fields = list(newrec.dtype.fields)
        for k, v in six.iteritems(defaults):
            if k in newrec_fields:
                newrec[k] = v

    for field in r1.dtype.names:
        newfield = mapped_r1field(field)
        if common_len:
            newrec[newfield][:common_len] = r1[field][r1ind]
        if (jointype == "outer" or jointype == "leftouter") and left_len:
            newrec[newfield][common_len:(common_len+left_len)] = (
                r1[field][left_ind]
            )

    for field in r2.dtype.names:
        newfield = mapped_r2field(field)
        if field not in key and common_len:
            newrec[newfield][:common_len] = r2[field][r2ind]
        if jointype == "outer" and right_len:
            newrec[newfield][-right_len:] = r2[field][right_ind]

    newrec.sort(order=key)

    return newrec


def recs_join(key, name, recs, jointype='outer', missing=0., postfixes=None):
    """
    Join a sequence of record arrays on single column key.

    This function only joins a single column of the multiple record arrays

    *key*
      is the column name that acts as a key

    *name*
      is the name of the column that we want to join

    *recs*
      is a list of record arrays to join

    *jointype*
      is a string 'inner' or 'outer'

    *missing*
      is what any missing field is replaced by

    *postfixes*
      if not None, a len recs sequence of postfixes

    returns a record array with columns [rowkey, name0, name1, ... namen-1].
    or if postfixes [PF0, PF1, ..., PFN-1] are supplied,
    [rowkey, namePF0, namePF1, ... namePFN-1].

    Example::

      r = recs_join("date", "close", recs=[r0, r1], missing=0.)

    """
    results = []
    aligned_iters = cbook.align_iterators(operator.attrgetter(key),
                                          *[iter(r) for r in recs])

    def extract(r):
        if r is None:
            return missing
        else:
            return r[name]

    if jointype == "outer":
        for rowkey, row in aligned_iters:
            results.append([rowkey] + list(map(extract, row)))
    elif jointype == "inner":
        for rowkey, row in aligned_iters:
            if None not in row:  # throw out any Nones
                results.append([rowkey] + list(map(extract, row)))

    if postfixes is None:
        postfixes = ['%d' % i for i in range(len(recs))]
    names = ",".join([key] + ["%s%s" % (name, postfix)
                              for postfix in postfixes])
    return np.rec.fromrecords(results, names=names)


def csv2rec(fname, comments='#', skiprows=0, checkrows=0, delimiter=',',
            converterd=None, names=None, missing='', missingd=None,
            use_mrecords=False, dayfirst=False, yearfirst=False):
    """
    Load data from comma/space/tab delimited file in *fname* into a
    numpy record array and return the record array.

    If *names* is *None*, a header row is required to automatically
    assign the recarray names.  The headers will be lower cased,
    spaces will be converted to underscores, and illegal attribute
    name characters removed.  If *names* is not *None*, it is a
    sequence of names to use for the column names.  In this case, it
    is assumed there is no header row.


    - *fname*: can be a filename or a file handle.  Support for gzipped
      files is automatic, if the filename ends in '.gz'

    - *comments*: the character used to indicate the start of a comment
      in the file, or *None* to switch off the removal of comments

    - *skiprows*: is the number of rows from the top to skip

    - *checkrows*: is the number of rows to check to validate the column
      data type.  When set to zero all rows are validated.

    - *converterd*: if not *None*, is a dictionary mapping column number or
      munged column name to a converter function.

    - *names*: if not None, is a list of header names.  In this case, no
      header will be read from the file

    - *missingd* is a dictionary mapping munged column names to field values
      which signify that the field does not contain actual data and should
      be masked, e.g., '0000-00-00' or 'unused'

    - *missing*: a string whose value signals a missing field regardless of
      the column it appears in

    - *use_mrecords*: if True, return an mrecords.fromrecords record array if
      any of the data are missing

    - *dayfirst*: default is False so that MM-DD-YY has precedence over
      DD-MM-YY.  See
      http://labix.org/python-dateutil#head-b95ce2094d189a89f80f5ae52a05b4ab7b41af47
      for further information.

    - *yearfirst*: default is False so that MM-DD-YY has precedence over
      YY-MM-DD. See
      http://labix.org/python-dateutil#head-b95ce2094d189a89f80f5ae52a05b4ab7b41af47
      for further information.

      If no rows are found, *None* is returned
    """

    if converterd is None:
        converterd = dict()

    if missingd is None:
        missingd = {}

    import dateutil.parser
    import datetime

    fh = cbook.to_filehandle(fname)

    delimiter = str(delimiter)

    class FH:
        """
        For space-delimited files, we want different behavior than
        comma or tab.  Generally, we want multiple spaces to be
        treated as a single separator, whereas with comma and tab we
        want multiple commas to return multiple (empty) fields.  The
        join/strip trick below effects this.
        """
        def __init__(self, fh):
            self.fh = fh

        def close(self):
            self.fh.close()

        def seek(self, arg):
            self.fh.seek(arg)

        def fix(self, s):
            return ' '.join(s.split())

        def __next__(self):
            return self.fix(next(self.fh))

        def __iter__(self):
            for line in self.fh:
                yield self.fix(line)

    if delimiter == ' ':
        fh = FH(fh)

    reader = csv.reader(fh, delimiter=delimiter)

    def process_skiprows(reader):
        if skiprows:
            for i, row in enumerate(reader):
                if i >= (skiprows-1):
                    break

        return fh, reader

    process_skiprows(reader)

    def ismissing(name, val):
        "Should the value val in column name be masked?"
        return val == missing or val == missingd.get(name) or val == ''

    def with_default_value(func, default):
        def newfunc(name, val):
            if ismissing(name, val):
                return default
            else:
                return func(val)
        return newfunc

    def mybool(x):
        if x == 'True':
            return True
        elif x == 'False':
            return False
        else:
            raise ValueError('invalid bool')

    dateparser = dateutil.parser.parse

    def mydateparser(x):
        # try and return a datetime object
        d = dateparser(x, dayfirst=dayfirst, yearfirst=yearfirst)
        return d

    mydateparser = with_default_value(mydateparser, datetime.datetime(1, 1, 1))

    myfloat = with_default_value(float, np.nan)
    myint = with_default_value(int, -1)
    mystr = with_default_value(str, '')
    mybool = with_default_value(mybool, None)

    def mydate(x):
        # try and return a date object
        d = dateparser(x, dayfirst=dayfirst, yearfirst=yearfirst)

        if d.hour > 0 or d.minute > 0 or d.second > 0:
            raise ValueError('not a date')
        return d.date()
    mydate = with_default_value(mydate, datetime.date(1, 1, 1))

    def get_func(name, item, func):
        # promote functions in this order
        funcs = [mybool, myint, myfloat, mydate, mydateparser, mystr]
        for func in funcs[funcs.index(func):]:
            try:
                func(name, item)
            except Exception:
                continue
            return func
        raise ValueError('Could not find a working conversion function')

    # map column names that clash with builtins -- TODO - extend this list
    itemd = {
        'return': 'return_',
        'file':   'file_',
        'print':  'print_',
        }

    def get_converters(reader, comments):

        converters = None
        i = 0
        for row in reader:
            if (len(row) and comments is not None and
                    row[0].startswith(comments)):
                continue
            if i == 0:
                converters = [mybool]*len(row)
            if checkrows and i > checkrows:
                break
            i += 1

            for j, (name, item) in enumerate(zip(names, row)):
                func = converterd.get(j)
                if func is None:
                    func = converterd.get(name)
                if func is None:
                    func = converters[j]
                    if len(item.strip()):
                        func = get_func(name, item, func)
                else:
                    # how should we handle custom converters and defaults?
                    func = with_default_value(func, None)
                converters[j] = func
        return converters

    # Get header and remove invalid characters
    needheader = names is None

    if needheader:
        for row in reader:
            if (len(row) and comments is not None and
                    row[0].startswith(comments)):
                continue
            headers = row
            break

        # remove these chars
        delete = set(r"""~!@#$%^&*()-=+~\|]}[{';: /?.>,<""")
        delete.add('"')

        names = []
        seen = dict()
        for i, item in enumerate(headers):
            item = item.strip().lower().replace(' ', '_')
            item = ''.join([c for c in item if c not in delete])
            if not len(item):
                item = 'column%d' % i

            item = itemd.get(item, item)
            cnt = seen.get(item, 0)
            if cnt > 0:
                names.append(item + '_%d' % cnt)
            else:
                names.append(item)
            seen[item] = cnt+1

    else:
        if isinstance(names, six.string_types):
            names = [n.strip() for n in names.split(',')]

    # get the converter functions by inspecting checkrows
    converters = get_converters(reader, comments)
    if converters is None:
        raise ValueError('Could not find any valid data in CSV file')

    # reset the reader and start over
    fh.seek(0)
    reader = csv.reader(fh, delimiter=delimiter)
    process_skiprows(reader)

    if needheader:
        while True:
            # skip past any comments and consume one line of column header
            row = next(reader)
            if (len(row) and comments is not None and
                    row[0].startswith(comments)):
                continue
            break

    # iterate over the remaining rows and convert the data to date
    # objects, ints, or floats as approriate
    rows = []
    rowmasks = []
    for i, row in enumerate(reader):
        if not len(row):
            continue
        if comments is not None and row[0].startswith(comments):
            continue
        # Ensure that the row returned always has the same nr of elements
        row.extend([''] * (len(converters) - len(row)))
        rows.append([func(name, val)
                     for func, name, val in zip(converters, names, row)])
        rowmasks.append([ismissing(name, val)
                         for name, val in zip(names, row)])
    fh.close()

    if not len(rows):
        return None

    if use_mrecords and np.any(rowmasks):
        r = np.ma.mrecords.fromrecords(rows, names=names, mask=rowmasks)
    else:
        r = np.rec.fromrecords(rows, names=names)
    return r


# a series of classes for describing the format intentions of various rec views
class FormatObj(object):
    def tostr(self, x):
        return self.toval(x)

    def toval(self, x):
        return str(x)

    def fromstr(self, s):
        return s

    def __hash__(self):
        """
        override the hash function of any of the formatters, so that we don't
        create duplicate excel format styles
        """
        return hash(self.__class__)


class FormatString(FormatObj):
    def tostr(self, x):
        val = repr(x)
        return val[1:-1]


class FormatFormatStr(FormatObj):
    def __init__(self, fmt):
        self.fmt = fmt

    def tostr(self, x):
        if x is None:
            return 'None'
        return self.fmt % self.toval(x)


class FormatFloat(FormatFormatStr):
    def __init__(self, precision=4, scale=1.):
        FormatFormatStr.__init__(self, '%%1.%df' % precision)
        self.precision = precision
        self.scale = scale

    def __hash__(self):
        return hash((self.__class__, self.precision, self.scale))

    def toval(self, x):
        if x is not None:
            x = x * self.scale
        return x

    def fromstr(self, s):
        return float(s)/self.scale


class FormatInt(FormatObj):

    def tostr(self, x):
        return '%d' % int(x)

    def toval(self, x):
        return int(x)

    def fromstr(self, s):
        return int(s)


class FormatBool(FormatObj):
    def toval(self, x):
        return str(x)

    def fromstr(self, s):
        return bool(s)


class FormatPercent(FormatFloat):
    def __init__(self, precision=4):
        FormatFloat.__init__(self, precision, scale=100.)


class FormatThousands(FormatFloat):
    def __init__(self, precision=4):
        FormatFloat.__init__(self, precision, scale=1e-3)


class FormatMillions(FormatFloat):
    def __init__(self, precision=4):
        FormatFloat.__init__(self, precision, scale=1e-6)


class FormatDate(FormatObj):
    def __init__(self, fmt):
        self.fmt = fmt

    def __hash__(self):
        return hash((self.__class__, self.fmt))

    def toval(self, x):
        if x is None:
            return 'None'
        return x.strftime(self.fmt)

    def fromstr(self, x):
        import dateutil.parser
        return dateutil.parser.parse(x).date()


class FormatDatetime(FormatDate):
    def __init__(self, fmt='%Y-%m-%d %H:%M:%S'):
        FormatDate.__init__(self, fmt)

    def fromstr(self, x):
        import dateutil.parser
        return dateutil.parser.parse(x)


defaultformatd = {
    np.bool_:   FormatBool(),
    np.int16:   FormatInt(),
    np.int32:   FormatInt(),
    np.int64:   FormatInt(),
    np.float32: FormatFloat(),
    np.float64: FormatFloat(),
    np.object_: FormatObj(),
    np.string_: FormatString(),
    }


def get_formatd(r, formatd=None):
    'build a formatd guaranteed to have a key for every dtype name'
    if formatd is None:
        formatd = dict()

    for i, name in enumerate(r.dtype.names):
        dt = r.dtype[name]
        format = formatd.get(name)
        if format is None:
            format = defaultformatd.get(dt.type, FormatObj())
        formatd[name] = format
    return formatd


def csvformat_factory(format):
    format = copy.deepcopy(format)
    if isinstance(format, FormatFloat):
        format.scale = 1.  # override scaling for storage
        format.fmt = '%r'
    return format


def rec2txt(r, header=None, padding=3, precision=3, fields=None):
    """
    Returns a textual representation of a record array.

    Parameters
    ----------
    r: numpy recarray

    header: list
        column headers

    padding:
        space between each column

    precision: number of decimal places to use for floats.
        Set to an integer to apply to all floats.  Set to a
        list of integers to apply precision individually.
        Precision for non-floats is simply ignored.

    fields : list
        If not None, a list of field names to print.  fields
        can be a list of strings like ['field1', 'field2'] or a single
        comma separated string like 'field1,field2'

    Examples
    --------

    For ``precision=[0,2,3]``, the output is ::

      ID    Price   Return
      ABC   12.54    0.234
      XYZ    6.32   -0.076
    """

    if fields is not None:
        r = rec_keep_fields(r, fields)

    if cbook.is_numlike(precision):
        precision = [precision]*len(r.dtype)

    def get_type(item, atype=int):
        tdict = {None: int, int: float, float: str}
        try:
            atype(str(item))
        except:
            return get_type(item, tdict[atype])
        return atype

    def get_justify(colname, column, precision):
        ntype = column.dtype

        if np.issubdtype(ntype, np.character):
            fixed_width = int(ntype.str[2:])
            length = max(len(colname), fixed_width)
            return 0, length+padding, "%s"  # left justify

        if np.issubdtype(ntype, np.integer):
            length = max(len(colname),
                         np.max(list(map(len, list(map(str, column))))))
            return 1, length+padding, "%d"  # right justify

        if np.issubdtype(ntype, np.floating):
            fmt = "%." + str(precision) + "f"
            length = max(
                len(colname),
                np.max(list(map(len, list(map(lambda x: fmt % x, column)))))
            )
            return 1, length+padding, fmt   # right justify

        return (0,
                max(len(colname),
                    np.max(list(map(len, list(map(str, column))))))+padding,
                "%s")

    if header is None:
        header = r.dtype.names

    justify_pad_prec = [get_justify(header[i], r.__getitem__(colname),
                                    precision[i])
                        for i, colname in enumerate(r.dtype.names)]

    justify_pad_prec_spacer = []
    for i in range(len(justify_pad_prec)):
        just, pad, prec = justify_pad_prec[i]
        if i == 0:
            justify_pad_prec_spacer.append((just, pad, prec, 0))
        else:
            pjust, ppad, pprec = justify_pad_prec[i-1]
            if pjust == 0 and just == 1:
                justify_pad_prec_spacer.append((just, pad-padding, prec, 0))
            elif pjust == 1 and just == 0:
                justify_pad_prec_spacer.append((just, pad, prec, padding))
            else:
                justify_pad_prec_spacer.append((just, pad, prec, 0))

    def format(item, just_pad_prec_spacer):
        just, pad, prec, spacer = just_pad_prec_spacer
        if just == 0:
            return spacer*' ' + str(item).ljust(pad)
        else:
            if get_type(item) == float:
                item = (prec % float(item))
            elif get_type(item) == int:
                item = (prec % int(item))

            return item.rjust(pad)

    textl = []
    textl.append(''.join([format(colitem, justify_pad_prec_spacer[j])
                          for j, colitem in enumerate(header)]))
    for i, row in enumerate(r):
        textl.append(''.join([format(colitem, justify_pad_prec_spacer[j])
                              for j, colitem in enumerate(row)]))
        if i == 0:
            textl[0] = textl[0].rstrip()

    text = os.linesep.join(textl)
    return text


def rec2csv(r, fname, delimiter=',', formatd=None, missing='',
            missingd=None, withheader=True):
    """
    Save the data from numpy recarray *r* into a
    comma-/space-/tab-delimited file.  The record array dtype names
    will be used for column headers.

    *fname*: can be a filename or a file handle.  Support for gzipped
      files is automatic, if the filename ends in '.gz'

    *withheader*: if withheader is False, do not write the attribute
      names in the first row

    for formatd type FormatFloat, we override the precision to store
    full precision floats in the CSV file

    See Also
    --------
    :func:`csv2rec`
        For information about *missing* and *missingd*, which can be used to
        fill in masked values into your CSV file.
    """

    delimiter = str(delimiter)

    if missingd is None:
        missingd = dict()

    def with_mask(func):
        def newfunc(val, mask, mval):
            if mask:
                return mval
            else:
                return func(val)
        return newfunc

    if r.ndim != 1:
        raise ValueError('rec2csv only operates on 1 dimensional recarrays')

    formatd = get_formatd(r, formatd)
    funcs = []
    for i, name in enumerate(r.dtype.names):
        funcs.append(with_mask(csvformat_factory(formatd[name]).tostr))

    fh, opened = cbook.to_filehandle(fname, 'wb', return_opened=True)
    writer = csv.writer(fh, delimiter=delimiter)
    header = r.dtype.names
    if withheader:
        writer.writerow(header)

    # Our list of specials for missing values
    mvals = []
    for name in header:
        mvals.append(missingd.get(name, missing))

    ismasked = False
    if len(r):
        row = r[0]
        ismasked = hasattr(row, '_fieldmask')

    for row in r:
        if ismasked:
            row, rowmask = row.item(), row._fieldmask.item()
        else:
            rowmask = [False] * len(row)
        writer.writerow([func(val, mask, mval) for func, val, mask, mval
                         in zip(funcs, row, rowmask, mvals)])
    if opened:
        fh.close()


def griddata(x, y, z, xi, yi, interp='nn'):
    """Interpolates from a nonuniformly spaced grid to some other
    grid.

    Fits a surface of the form z = f(`x`, `y`) to the data in the
    (usually) nonuniformly spaced vectors (`x`, `y`, `z`), then
    interpolates this surface at the points specified by
    (`xi`, `yi`) to produce `zi`.

    Parameters
    ----------
    x, y, z : 1d array_like
        Coordinates of grid points to interpolate from.
    xi, yi : 1d or 2d array_like
        Coordinates of grid points to interpolate to.
    interp : string key from {'nn', 'linear'}
        Interpolation algorithm, either 'nn' for natural neighbor, or
        'linear' for linear interpolation.

    Returns
    -------
    2d float array
        Array of values interpolated at (`xi`, `yi`) points.  Array
        will be masked is any of (`xi`, `yi`) are outside the convex
        hull of (`x`, `y`).

    Notes
    -----
    If `interp` is 'nn' (the default), uses natural neighbor
    interpolation based on Delaunay triangulation.  This option is
    only available if the mpl_toolkits.natgrid module is installed.
    This can be downloaded from https://github.com/matplotlib/natgrid.
    The (`xi`, `yi`) grid must be regular and monotonically increasing
    in this case.

    If `interp` is 'linear', linear interpolation is used via
    matplotlib.tri.LinearTriInterpolator.

    Instead of using `griddata`, more flexible functionality and other
    interpolation options are available using a
    matplotlib.tri.Triangulation and a matplotlib.tri.TriInterpolator.
    """
    # Check input arguments.
    x = np.asanyarray(x, dtype=np.float64)
    y = np.asanyarray(y, dtype=np.float64)
    z = np.asanyarray(z, dtype=np.float64)
    if x.shape != y.shape or x.shape != z.shape or x.ndim != 1:
        raise ValueError("x, y and z must be equal-length 1-D arrays")

    xi = np.asanyarray(xi, dtype=np.float64)
    yi = np.asanyarray(yi, dtype=np.float64)
    if xi.ndim != yi.ndim:
        raise ValueError("xi and yi must be arrays with the same number of "
                         "dimensions (1 or 2)")
    if xi.ndim == 2 and xi.shape != yi.shape:
        raise ValueError("if xi and yi are 2D arrays, they must have the same "
                         "shape")
    if xi.ndim == 1:
        xi, yi = np.meshgrid(xi, yi)

    if interp == 'nn':
        use_nn_interpolation = True
    elif interp == 'linear':
        use_nn_interpolation = False
    else:
        raise ValueError("interp keyword must be one of 'linear' (for linear "
                         "interpolation) or 'nn' (for natural neighbor "
                         "interpolation).  Default is 'nn'.")

    # Remove masked points.
    mask = np.ma.getmask(z)
    if mask is not np.ma.nomask:
        x = x.compress(~mask)
        y = y.compress(~mask)
        z = z.compressed()

    if use_nn_interpolation:
        try:
            from mpl_toolkits.natgrid import _natgrid
        except ImportError:
            raise RuntimeError(
                "To use interp='nn' (Natural Neighbor interpolation) in "
                "griddata, natgrid must be installed. Either install it "
                "from http://github.com/matplotlib/natgrid or use "
                "interp='linear' instead.")

        if xi.ndim == 2:
            # natgrid expects 1D xi and yi arrays.
            xi = xi[0, :]
            yi = yi[:, 0]

        # Override default natgrid internal parameters.
        _natgrid.seti(b'ext', 0)
        _natgrid.setr(b'nul', np.nan)

        if np.min(np.diff(xi)) < 0 or np.min(np.diff(yi)) < 0:
            raise ValueError("Output grid defined by xi,yi must be monotone "
                             "increasing")

        # Allocate array for output (buffer will be overwritten by natgridd)
        zi = np.empty((yi.shape[0], xi.shape[0]), np.float64)

        # Natgrid requires each array to be contiguous rather than e.g. a view
        # that is a non-contiguous slice of another array.  Use numpy.require
        # to deal with this, which will copy if necessary.
        x = np.require(x, requirements=['C'])
        y = np.require(y, requirements=['C'])
        z = np.require(z, requirements=['C'])
        xi = np.require(xi, requirements=['C'])
        yi = np.require(yi, requirements=['C'])
        _natgrid.natgridd(x, y, z, xi, yi, zi)

        # Mask points on grid outside convex hull of input data.
        if np.any(np.isnan(zi)):
            zi = np.ma.masked_where(np.isnan(zi), zi)
        return zi
    else:
        # Linear interpolation performed using a matplotlib.tri.Triangulation
        # and a matplotlib.tri.LinearTriInterpolator.
        from .tri import Triangulation, LinearTriInterpolator
        triang = Triangulation(x, y)
        interpolator = LinearTriInterpolator(triang, z)
        return interpolator(xi, yi)


##################################################
# Linear interpolation algorithms
##################################################
def less_simple_linear_interpolation(x, y, xi, extrap=False):
    """
    This function provides simple (but somewhat less so than
    :func:`cbook.simple_linear_interpolation`) linear interpolation.
    :func:`simple_linear_interpolation` will give a list of point
    between a start and an end, while this does true linear
    interpolation at an arbitrary set of points.

    This is very inefficient linear interpolation meant to be used
    only for a small number of points in relatively non-intensive use
    cases.  For real linear interpolation, use scipy.
    """
    x = np.asarray(x)
    y = np.asarray(y)
    xi = np.atleast_1d(xi)

    s = list(y.shape)
    s[0] = len(xi)
    yi = np.tile(np.nan, s)

    for ii, xx in enumerate(xi):
        bb = x == xx
        if np.any(bb):
            jj, = np.nonzero(bb)
            yi[ii] = y[jj[0]]
        elif xx < x[0]:
            if extrap:
                yi[ii] = y[0]
        elif xx > x[-1]:
            if extrap:
                yi[ii] = y[-1]
        else:
            jj, = np.nonzero(x < xx)
            jj = max(jj)

            yi[ii] = y[jj] + (xx-x[jj])/(x[jj+1]-x[jj]) * (y[jj+1]-y[jj])

    return yi


def slopes(x, y):
    """
    :func:`slopes` calculates the slope *y*'(*x*)

    The slope is estimated using the slope obtained from that of a
    parabola through any three consecutive points.

    This method should be superior to that described in the appendix
    of A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russel
    W. Stineman (Creative Computing July 1980) in at least one aspect:

      Circles for interpolation demand a known aspect ratio between
      *x*- and *y*-values.  For many functions, however, the abscissa
      are given in different dimensions, so an aspect ratio is
      completely arbitrary.

    The parabola method gives very similar results to the circle
    method for most regular cases but behaves much better in special
    cases.

    Norbert Nemec, Institute of Theoretical Physics, University or
    Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de

    (inspired by a original implementation by Halldor Bjornsson,
    Icelandic Meteorological Office, March 2006 halldor at vedur.is)
    """
    # Cast key variables as float.
    x = np.asarray(x, float)
    y = np.asarray(y, float)

    yp = np.zeros(y.shape, float)

    dx = x[1:] - x[:-1]
    dy = y[1:] - y[:-1]
    dydx = dy/dx
    yp[1:-1] = (dydx[:-1] * dx[1:] + dydx[1:] * dx[:-1])/(dx[1:] + dx[:-1])
    yp[0] = 2.0 * dy[0]/dx[0] - yp[1]
    yp[-1] = 2.0 * dy[-1]/dx[-1] - yp[-2]
    return yp


def stineman_interp(xi, x, y, yp=None):
    """
    Given data vectors *x* and *y*, the slope vector *yp* and a new
    abscissa vector *xi*, the function :func:`stineman_interp` uses
    Stineman interpolation to calculate a vector *yi* corresponding to
    *xi*.

    Here's an example that generates a coarse sine curve, then
    interpolates over a finer abscissa::

      x = linspace(0,2*pi,20);  y = sin(x); yp = cos(x)
      xi = linspace(0,2*pi,40);
      yi = stineman_interp(xi,x,y,yp);
      plot(x,y,'o',xi,yi)

    The interpolation method is described in the article A
    CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russell
    W. Stineman. The article appeared in the July 1980 issue of
    Creative Computing with a note from the editor stating that while
    they were:

      not an academic journal but once in a while something serious
      and original comes in adding that this was
      "apparently a real solution" to a well known problem.

    For *yp* = *None*, the routine automatically determines the slopes
    using the :func:`slopes` routine.

    *x* is assumed to be sorted in increasing order.

    For values ``xi[j] < x[0]`` or ``xi[j] > x[-1]``, the routine
    tries an extrapolation.  The relevance of the data obtained from
    this, of course, is questionable...

    Original implementation by Halldor Bjornsson, Icelandic
    Meteorolocial Office, March 2006 halldor at vedur.is

    Completely reworked and optimized for Python by Norbert Nemec,
    Institute of Theoretical Physics, University or Regensburg, April
    2006 Norbert.Nemec at physik.uni-regensburg.de
    """

    # Cast key variables as float.
    x = np.asarray(x, float)
    y = np.asarray(y, float)
    if x.shape != y.shape:
        raise ValueError("'x' and 'y' must be of same shape")

    if yp is None:
        yp = slopes(x, y)
    else:
        yp = np.asarray(yp, float)

    xi = np.asarray(xi, float)
    yi = np.zeros(xi.shape, float)

    # calculate linear slopes
    dx = x[1:] - x[:-1]
    dy = y[1:] - y[:-1]
    s = dy/dx  # note length of s is N-1 so last element is #N-2

    # find the segment each xi is in
    # this line actually is the key to the efficiency of this implementation
    idx = np.searchsorted(x[1:-1], xi)

    # now we have generally: x[idx[j]] <= xi[j] <= x[idx[j]+1]
    # except at the boundaries, where it may be that xi[j] < x[0] or
    # xi[j] > x[-1]

    # the y-values that would come out from a linear interpolation:
    sidx = s.take(idx)
    xidx = x.take(idx)
    yidx = y.take(idx)
    xidxp1 = x.take(idx+1)
    yo = yidx + sidx * (xi - xidx)

    # the difference that comes when using the slopes given in yp
    # using the yp slope of the left point
    dy1 = (yp.take(idx) - sidx) * (xi - xidx)
    # using the yp slope of the right point
    dy2 = (yp.take(idx+1)-sidx) * (xi - xidxp1)

    dy1dy2 = dy1*dy2
    # The following is optimized for Python. The solution actually
    # does more calculations than necessary but exploiting the power
    # of numpy, this is far more efficient than coding a loop by hand
    # in Python
    yi = yo + dy1dy2 * np.choose(np.array(np.sign(dy1dy2), np.int32)+1,
                                 ((2*xi-xidx-xidxp1)/((dy1-dy2)*(xidxp1-xidx)),
                                  0.0,
                                  1/(dy1+dy2),))
    return yi


class GaussianKDE(object):
    """
    Representation of a kernel-density estimate using Gaussian kernels.

    Parameters
    ----------
    dataset : array_like
        Datapoints to estimate from. In case of univariate data this is a 1-D
        array, otherwise a 2-D array with shape (# of dims, # of data).

    bw_method : str, scalar or callable, optional
        The method used to calculate the estimator bandwidth.  This can be
        'scott', 'silverman', a scalar constant or a callable.  If a
        scalar, this will be used directly as `kde.factor`.  If a
        callable, it should take a `GaussianKDE` instance as only
        parameter and return a scalar. If None (default), 'scott' is used.

    Attributes
    ----------
    dataset : ndarray
        The dataset with which `gaussian_kde` was initialized.

    dim : int
        Number of dimensions.

    num_dp : int
        Number of datapoints.

    factor : float
        The bandwidth factor, obtained from `kde.covariance_factor`, with which
        the covariance matrix is multiplied.

    covariance : ndarray
        The covariance matrix of `dataset`, scaled by the calculated bandwidth
        (`kde.factor`).

    inv_cov : ndarray
        The inverse of `covariance`.

    Methods
    -------
    kde.evaluate(points) : ndarray
        Evaluate the estimated pdf on a provided set of points.

    kde(points) : ndarray
        Same as kde.evaluate(points)

    """

    # This implementation with minor modification was too good to pass up.
    # from scipy: https://github.com/scipy/scipy/blob/master/scipy/stats/kde.py

    def __init__(self, dataset, bw_method=None):
        self.dataset = np.atleast_2d(dataset)
        if not np.array(self.dataset).size > 1:
            raise ValueError("`dataset` input should have multiple elements.")

        self.dim, self.num_dp = np.array(self.dataset).shape
        isString = isinstance(bw_method, six.string_types)

        if bw_method is None:
            pass
        elif (isString and bw_method == 'scott'):
            self.covariance_factor = self.scotts_factor
        elif (isString and bw_method == 'silverman'):
            self.covariance_factor = self.silverman_factor
        elif (np.isscalar(bw_method) and not isString):
                self._bw_method = 'use constant'
                self.covariance_factor = lambda: bw_method
        elif callable(bw_method):
            self._bw_method = bw_method
            self.covariance_factor = lambda: self._bw_method(self)
        else:
            msg = "`bw_method` should be 'scott', 'silverman', a scalar " \
                  "or a callable."
            raise ValueError(msg)

        # Computes the covariance matrix for each Gaussian kernel using
        # covariance_factor().

        self.factor = self.covariance_factor()
        # Cache covariance and inverse covariance of the data
        if not hasattr(self, '_data_inv_cov'):
            self.data_covariance = np.atleast_2d(
                np.cov(
                    self.dataset,
                    rowvar=1,
                    bias=False))
            self.data_inv_cov = np.linalg.inv(self.data_covariance)

        self.covariance = self.data_covariance * self.factor ** 2
        self.inv_cov = self.data_inv_cov / self.factor ** 2
        self.norm_factor = np.sqrt(
            np.linalg.det(
                2 * np.pi * self.covariance)) * self.num_dp

    def scotts_factor(self):
        return np.power(self.num_dp, -1. / (self.dim + 4))

    def silverman_factor(self):
        return np.power(
            self.num_dp * (self.dim + 2.0) / 4.0, -1. / (self.dim + 4))

    #  Default method to calculate bandwidth, can be overwritten by subclass
    covariance_factor = scotts_factor

    def evaluate(self, points):
        """Evaluate the estimated pdf on a set of points.

        Parameters
        ----------
        points : (# of dimensions, # of points)-array
            Alternatively, a (# of dimensions,) vector can be passed in and
            treated as a single point.

        Returns
        -------
        values : (# of points,)-array
            The values at each point.

        Raises
        ------
        ValueError : if the dimensionality of the input points is different
                     than the dimensionality of the KDE.

        """
        points = np.atleast_2d(points)

        dim, num_m = np.array(points).shape
        if dim != self.dim:
            msg = "points have dimension %s, dataset has dimension %s" % (
                dim, self.dim)
            raise ValueError(msg)

        result = np.zeros((num_m,), dtype=float)

        if num_m >= self.num_dp:
            # there are more points than data, so loop over data
            for i in range(self.num_dp):
                diff = self.dataset[:, i, np.newaxis] - points
                tdiff = np.dot(self.inv_cov, diff)
                energy = np.sum(diff * tdiff, axis=0) / 2.0
                result = result + np.exp(-energy)
        else:
            # loop over points
            for i in range(num_m):
                diff = self.dataset - points[:, i, np.newaxis]
                tdiff = np.dot(self.inv_cov, diff)
                energy = np.sum(diff * tdiff, axis=0) / 2.0
                result[i] = np.sum(np.exp(-energy), axis=0)

        result = result / self.norm_factor

        return result

    __call__ = evaluate


##################################################
# Code related to things in and around polygons
##################################################
def inside_poly(points, verts):
    """
    *points* is a sequence of *x*, *y* points.
    *verts* is a sequence of *x*, *y* vertices of a polygon.

    Return value is a sequence of indices into points for the points
    that are inside the polygon.
    """
    # Make a closed polygon path
    poly = Path(verts)

    # Check to see which points are contained within the Path
    return [idx for idx, p in enumerate(points) if poly.contains_point(p)]


def poly_below(xmin, xs, ys):
    """
    Given a sequence of *xs* and *ys*, return the vertices of a
    polygon that has a horizontal base at *xmin* and an upper bound at
    the *ys*.  *xmin* is a scalar.

    Intended for use with :meth:`matplotlib.axes.Axes.fill`, e.g.,::

      xv, yv = poly_below(0, x, y)
      ax.fill(xv, yv)
    """
    if any(isinstance(var, np.ma.MaskedArray) for var in [xs, ys]):
        numpy = np.ma
    else:
        numpy = np

    xs = numpy.asarray(xs)
    ys = numpy.asarray(ys)
    Nx = len(xs)
    Ny = len(ys)
    if Nx != Ny:
        raise ValueError("'xs' and 'ys' must have the same length")
    x = xmin*numpy.ones(2*Nx)
    y = numpy.ones(2*Nx)
    x[:Nx] = xs
    y[:Nx] = ys
    y[Nx:] = ys[::-1]
    return x, y


def poly_between(x, ylower, yupper):
    """
    Given a sequence of *x*, *ylower* and *yupper*, return the polygon
    that fills the regions between them.  *ylower* or *yupper* can be
    scalar or iterable.  If they are iterable, they must be equal in
    length to *x*.

    Return value is *x*, *y* arrays for use with
    :meth:`matplotlib.axes.Axes.fill`.
    """
    if any(isinstance(var, np.ma.MaskedArray) for var in [ylower, yupper, x]):
        numpy = np.ma
    else:
        numpy = np

    Nx = len(x)
    if not cbook.iterable(ylower):
        ylower = ylower*numpy.ones(Nx)

    if not cbook.iterable(yupper):
        yupper = yupper*numpy.ones(Nx)

    x = numpy.concatenate((x, x[::-1]))
    y = numpy.concatenate((yupper, ylower[::-1]))
    return x, y


def is_closed_polygon(X):
    """
    Tests whether first and last object in a sequence are the same.  These are
    presumably coordinates on a polygonal curve, in which case this function
    tests if that curve is closed.
    """
    return np.all(X[0] == X[-1])


def contiguous_regions(mask):
    """
    return a list of (ind0, ind1) such that mask[ind0:ind1].all() is
    True and we cover all such regions
    """
    mask = np.asarray(mask, dtype=bool)

    if not mask.size:
        return []

    # Find the indices of region changes, and correct offset
    idx, = np.nonzero(mask[:-1] != mask[1:])
    idx += 1

    # List operations are faster for moderately sized arrays
    idx = idx.tolist()

    # Add first and/or last index if needed
    if mask[0]:
        idx = [0] + idx
    if mask[-1]:
        idx.append(len(mask))

    return list(zip(idx[::2], idx[1::2]))


def cross_from_below(x, threshold):
    """
    return the indices into *x* where *x* crosses some threshold from
    below, e.g., the i's where::

      x[i-1]<threshold and x[i]>=threshold

    Example code::

        import matplotlib.pyplot as plt

        t = np.arange(0.0, 2.0, 0.1)
        s = np.sin(2*np.pi*t)

        fig = plt.figure()
        ax = fig.add_subplot(111)
        ax.plot(t, s, '-o')
        ax.axhline(0.5)
        ax.axhline(-0.5)

        ind = cross_from_below(s, 0.5)
        ax.vlines(t[ind], -1, 1)

        ind = cross_from_above(s, -0.5)
        ax.vlines(t[ind], -1, 1)

        plt.show()

    See Also
    --------
    :func:`cross_from_above` and :func:`contiguous_regions`

    """
    x = np.asarray(x)
    ind = np.nonzero((x[:-1] < threshold) & (x[1:] >= threshold))[0]
    if len(ind):
        return ind+1
    else:
        return ind


def cross_from_above(x, threshold):
    """
    return the indices into *x* where *x* crosses some threshold from
    below, e.g., the i's where::

      x[i-1]>threshold and x[i]<=threshold

    See Also
    --------
    :func:`cross_from_below` and :func:`contiguous_regions`

    """
    x = np.asarray(x)
    ind = np.nonzero((x[:-1] >= threshold) & (x[1:] < threshold))[0]
    if len(ind):
        return ind+1
    else:
        return ind


##################################################
# Vector and path length geometry calculations
##################################################
def vector_lengths(X, P=2., axis=None):
    """
    Finds the length of a set of vectors in *n* dimensions.  This is
    like the :func:`numpy.norm` function for vectors, but has the ability to
    work over a particular axis of the supplied array or matrix.

    Computes ``(sum((x_i)^P))^(1/P)`` for each ``{x_i}`` being the
    elements of *X* along the given axis.  If *axis* is *None*,
    compute over all elements of *X*.
    """
    X = np.asarray(X)
    return (np.sum(X**(P), axis=axis))**(1./P)


def distances_along_curve(X):
    """
    Computes the distance between a set of successive points in *N* dimensions.

    Where *X* is an *M* x *N* array or matrix.  The distances between
    successive rows is computed.  Distance is the standard Euclidean
    distance.
    """
    X = np.diff(X, axis=0)
    return vector_lengths(X, axis=1)


def path_length(X):
    """
    Computes the distance travelled along a polygonal curve in *N* dimensions.

    Where *X* is an *M* x *N* array or matrix.  Returns an array of
    length *M* consisting of the distance along the curve at each point
    (i.e., the rows of *X*).
    """
    X = distances_along_curve(X)
    return np.concatenate((np.zeros(1), np.cumsum(X)))


def quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y):
    """
    Converts a quadratic Bezier curve to a cubic approximation.

    The inputs are the *x* and *y* coordinates of the three control
    points of a quadratic curve, and the output is a tuple of *x* and
    *y* coordinates of the four control points of the cubic curve.
    """
    # TODO: Candidate for deprecation -- no longer used internally

    # c0x, c0y = q0x, q0y
    c1x, c1y = q0x + 2./3. * (q1x - q0x), q0y + 2./3. * (q1y - q0y)
    c2x, c2y = c1x + 1./3. * (q2x - q0x), c1y + 1./3. * (q2y - q0y)
    # c3x, c3y = q2x, q2y
    return q0x, q0y, c1x, c1y, c2x, c2y, q2x, q2y


def offset_line(y, yerr):
    """
    Offsets an array *y* by +/- an error and returns a tuple
    (y - err, y + err).

    The error term can be:

    * A scalar. In this case, the returned tuple is obvious.
    * A vector of the same length as *y*. The quantities y +/- err are computed
      component-wise.
    * A tuple of length 2. In this case, yerr[0] is the error below *y* and
      yerr[1] is error above *y*. For example::

        from pylab import *
        x = linspace(0, 2*pi, num=100, endpoint=True)
        y = sin(x)
        y_minus, y_plus = mlab.offset_line(y, 0.1)
        plot(x, y)
        fill_between(x, ym, y2=yp)
        show()

    """
    if cbook.is_numlike(yerr) or (cbook.iterable(yerr) and
                                  len(yerr) == len(y)):
        ymin = y - yerr
        ymax = y + yerr
    elif len(yerr) == 2:
        ymin, ymax = y - yerr[0], y + yerr[1]
    else:
        raise ValueError("yerr must be scalar, 1xN or 2xN")
    return ymin, ymax