This file is indexed.

/usr/lib/python2.7/dist-packages/matplotlib/pyplot.py is in python-matplotlib 2.1.1-2ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
# Note: The first part of this file can be modified in place, but the latter
# part is autogenerated by the boilerplate.py script.

"""
`matplotlib.pyplot` is a state-based interface to matplotlib. It provides
a MATLAB-like way of plotting.

pyplot is mainly intended for interactive plots and simple cases of programmatic
plot generation::

    import numpy as np
    import matplotlib.pyplot as plt

    x = np.arange(0, 5, 0.1)
    y = np.sin(x)
    plt.plot(x, y)

The object-oriented API is recommended for more complex plots.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import six

import sys
import warnings
import time
import types

from cycler import cycler
import matplotlib
import matplotlib.colorbar
from matplotlib import style
from matplotlib import _pylab_helpers, interactive
from matplotlib.cbook import dedent, silent_list, is_numlike
from matplotlib.cbook import _string_to_bool
from matplotlib.cbook import deprecated
from matplotlib import docstring
from matplotlib.backend_bases import FigureCanvasBase
from matplotlib.figure import Figure, figaspect
from matplotlib.gridspec import GridSpec
from matplotlib.image import imread as _imread
from matplotlib.image import imsave as _imsave
from matplotlib import rcParams, rcParamsDefault, get_backend
from matplotlib import rc_context
from matplotlib.rcsetup import interactive_bk as _interactive_bk
from matplotlib.artist import getp, get, Artist
from matplotlib.artist import setp as _setp
from matplotlib.axes import Axes, Subplot
from matplotlib.projections import PolarAxes
from matplotlib import mlab  # for csv2rec, detrend_none, window_hanning
from matplotlib.scale import get_scale_docs, get_scale_names

from matplotlib import cm
from matplotlib.cm import get_cmap, register_cmap

import numpy as np

# We may not need the following imports here:
from matplotlib.colors import Normalize
from matplotlib.lines import Line2D
from matplotlib.text import Text, Annotation
from matplotlib.patches import Polygon, Rectangle, Circle, Arrow
from matplotlib.widgets import SubplotTool, Button, Slider, Widget

from .ticker import TickHelper, Formatter, FixedFormatter, NullFormatter,\
           FuncFormatter, FormatStrFormatter, ScalarFormatter,\
           LogFormatter, LogFormatterExponent, LogFormatterMathtext,\
           Locator, IndexLocator, FixedLocator, NullLocator,\
           LinearLocator, LogLocator, AutoLocator, MultipleLocator,\
           MaxNLocator
from matplotlib.backends import pylab_setup

## Backend detection ##
def _backend_selection():
    """ If rcParams['backend_fallback'] is true, check to see if the
        current backend is compatible with the current running event
        loop, and if not switches to a compatible one.
    """
    backend = rcParams['backend']
    if not rcParams['backend_fallback'] or backend not in _interactive_bk:
        return
    is_agg_backend = rcParams['backend'].endswith('Agg')
    if 'wx' in sys.modules and not backend in ('WX', 'WXAgg'):
        import wx
        if wx.App.IsMainLoopRunning():
            rcParams['backend'] = 'wx' + 'Agg' * is_agg_backend
    elif 'PyQt4.QtCore' in sys.modules and not backend == 'Qt4Agg':
        import PyQt4.QtGui
        if not PyQt4.QtGui.qApp.startingUp():
            # The mainloop is running.
            rcParams['backend'] = 'qt4Agg'
    elif 'PyQt5.QtCore' in sys.modules and not backend == 'Qt5Agg':
        import PyQt5.QtWidgets
        if not PyQt5.QtWidgets.qApp.startingUp():
            # The mainloop is running.
            rcParams['backend'] = 'qt5Agg'
    elif ('gtk' in sys.modules and
          backend not in ('GTK', 'GTKAgg', 'GTKCairo')):
        if 'gi' in sys.modules:
            from gi.repository import GObject
            ml = GObject.MainLoop
        else:
            import gobject
            ml = gobject.MainLoop
        if ml().is_running():
            rcParams['backend'] = 'gtk' + 'Agg' * is_agg_backend
    elif 'Tkinter' in sys.modules and not backend == 'TkAgg':
        # import Tkinter
        pass  # what if anything do we need to do for tkinter?

_backend_selection()

## Global ##

_backend_mod, new_figure_manager, draw_if_interactive, _show = pylab_setup()

_IP_REGISTERED = None
_INSTALL_FIG_OBSERVER = False


def install_repl_displayhook():
    """
    Install a repl display hook so that any stale figure are automatically
    redrawn when control is returned to the repl.

    This works with IPython terminals and kernels,
    as well as vanilla python shells.
    """
    global _IP_REGISTERED
    global _INSTALL_FIG_OBSERVER

    class _NotIPython(Exception):
        pass

    # see if we have IPython hooks around, if use them

    try:
        if 'IPython' in sys.modules:
            from IPython import get_ipython
            ip = get_ipython()
            if ip is None:
                raise _NotIPython()

            if _IP_REGISTERED:
                return

            def post_execute():
                if matplotlib.is_interactive():
                    draw_all()

            # IPython >= 2
            try:
                ip.events.register('post_execute', post_execute)
            except AttributeError:
                # IPython 1.x
                ip.register_post_execute(post_execute)

            _IP_REGISTERED = post_execute
            _INSTALL_FIG_OBSERVER = False

            # trigger IPython's eventloop integration, if available
            from IPython.core.pylabtools import backend2gui

            ipython_gui_name = backend2gui.get(get_backend())
            if ipython_gui_name:
                ip.enable_gui(ipython_gui_name)
        else:
            _INSTALL_FIG_OBSERVER = True

    # import failed or ipython is not running
    except (ImportError, _NotIPython):
        _INSTALL_FIG_OBSERVER = True


def uninstall_repl_displayhook():
    """
    Uninstalls the matplotlib display hook.

    .. warning

       Need IPython >= 2 for this to work.  For IPython < 2 will raise a
       ``NotImplementedError``

    .. warning

       If you are using vanilla python and have installed another
       display hook this will reset ``sys.displayhook`` to what ever
       function was there when matplotlib installed it's displayhook,
       possibly discarding your changes.
    """
    global _IP_REGISTERED
    global _INSTALL_FIG_OBSERVER
    if _IP_REGISTERED:
        from IPython import get_ipython
        ip = get_ipython()
        try:
            ip.events.unregister('post_execute', _IP_REGISTERED)
        except AttributeError:
            raise NotImplementedError("Can not unregister events "
                                      "in IPython < 2.0")
        _IP_REGISTERED = None

    if _INSTALL_FIG_OBSERVER:
        _INSTALL_FIG_OBSERVER = False


draw_all = _pylab_helpers.Gcf.draw_all


@docstring.copy_dedent(Artist.findobj)
def findobj(o=None, match=None, include_self=True):
    if o is None:
        o = gcf()
    return o.findobj(match, include_self=include_self)


def switch_backend(newbackend):
    """
    Switch the default backend.  This feature is **experimental**, and
    is only expected to work switching to an image backend.  e.g., if
    you have a bunch of PostScript scripts that you want to run from
    an interactive ipython session, you may want to switch to the PS
    backend before running them to avoid having a bunch of GUI windows
    popup.  If you try to interactively switch from one GUI backend to
    another, you will explode.

    Calling this command will close all open windows.
    """
    close('all')
    global _backend_mod, new_figure_manager, draw_if_interactive, _show
    matplotlib.use(newbackend, warn=False, force=True)
    from matplotlib.backends import pylab_setup
    _backend_mod, new_figure_manager, draw_if_interactive, _show = pylab_setup()


def show(*args, **kw):
    """
    Display a figure.
    When running in ipython with its pylab mode, display all
    figures and return to the ipython prompt.

    In non-interactive mode, display all figures and block until
    the figures have been closed; in interactive mode it has no
    effect unless figures were created prior to a change from
    non-interactive to interactive mode (not recommended).  In
    that case it displays the figures but does not block.

    A single experimental keyword argument, *block*, may be
    set to True or False to override the blocking behavior
    described above.
    """
    global _show
    return _show(*args, **kw)


def isinteractive():
    """
    Return status of interactive mode.
    """
    return matplotlib.is_interactive()


def ioff():
    """Turn interactive mode off."""
    matplotlib.interactive(False)
    uninstall_repl_displayhook()


def ion():
    """Turn interactive mode on."""
    matplotlib.interactive(True)
    install_repl_displayhook()


def pause(interval):
    """
    Pause for *interval* seconds.

    If there is an active figure, it will be updated and displayed before the
    pause, and the GUI event loop (if any) will run during the pause.

    This can be used for crude animation.  For more complex animation, see
    :mod:`matplotlib.animation`.

    Note
    ----
    This function is experimental; its behavior may be changed or extended in a
    future release.
    """
    manager = _pylab_helpers.Gcf.get_active()
    if manager is not None:
        canvas = manager.canvas
        if canvas.figure.stale:
            canvas.draw_idle()
        show(block=False)
        canvas.start_event_loop(interval)
    else:
        time.sleep(interval)


@docstring.copy_dedent(matplotlib.rc)
def rc(*args, **kwargs):
    matplotlib.rc(*args, **kwargs)


@docstring.copy_dedent(matplotlib.rc_context)
def rc_context(rc=None, fname=None):
    return matplotlib.rc_context(rc, fname)


@docstring.copy_dedent(matplotlib.rcdefaults)
def rcdefaults():
    matplotlib.rcdefaults()
    if matplotlib.is_interactive():
        draw_all()


# The current "image" (ScalarMappable) is retrieved or set
# only via the pyplot interface using the following two
# functions:
def gci():
    """
    Get the current colorable artist.  Specifically, returns the
    current :class:`~matplotlib.cm.ScalarMappable` instance (image or
    patch collection), or *None* if no images or patch collections
    have been defined.  The commands :func:`~matplotlib.pyplot.imshow`
    and :func:`~matplotlib.pyplot.figimage` create
    :class:`~matplotlib.image.Image` instances, and the commands
    :func:`~matplotlib.pyplot.pcolor` and
    :func:`~matplotlib.pyplot.scatter` create
    :class:`~matplotlib.collections.Collection` instances.  The
    current image is an attribute of the current axes, or the nearest
    earlier axes in the current figure that contains an image.
    """
    return gcf()._gci()


def sci(im):
    """
    Set the current image.  This image will be the target of colormap
    commands like :func:`~matplotlib.pyplot.jet`,
    :func:`~matplotlib.pyplot.hot` or
    :func:`~matplotlib.pyplot.clim`).  The current image is an
    attribute of the current axes.
    """
    gca()._sci(im)


## Any Artist ##
# (getp is simply imported)
@docstring.copy(_setp)
def setp(*args, **kwargs):
    return _setp(*args, **kwargs)


def xkcd(scale=1, length=100, randomness=2):
    """
    Turns on `xkcd <https://xkcd.com/>`_ sketch-style drawing mode.
    This will only have effect on things drawn after this function is
    called.

    For best results, the "Humor Sans" font should be installed: it is
    not included with matplotlib.

    Parameters
    ----------
    scale : float, optional
        The amplitude of the wiggle perpendicular to the source line.
    length : float, optional
        The length of the wiggle along the line.
    randomness : float, optional
        The scale factor by which the length is shrunken or expanded.

    Notes
    -----
    This function works by a number of rcParams, so it will probably
    override others you have set before.

    If you want the effects of this function to be temporary, it can
    be used as a context manager, for example::

        with plt.xkcd():
            # This figure will be in XKCD-style
            fig1 = plt.figure()
            # ...

        # This figure will be in regular style
        fig2 = plt.figure()
    """
    if rcParams['text.usetex']:
        raise RuntimeError(
            "xkcd mode is not compatible with text.usetex = True")

    from matplotlib import patheffects
    context = rc_context()
    try:
        rcParams['font.family'] = ['xkcd', 'Humor Sans', 'Comic Sans MS', 'StayPuft']
        rcParams['font.size'] = 14.0
        rcParams['path.sketch'] = (scale, length, randomness)
        rcParams['path.effects'] = [
            patheffects.withStroke(linewidth=4, foreground="w")]
        rcParams['axes.linewidth'] = 1.5
        rcParams['lines.linewidth'] = 2.0
        rcParams['figure.facecolor'] = 'white'
        rcParams['grid.linewidth'] = 0.0
        rcParams['axes.grid'] = False
        rcParams['axes.unicode_minus'] = False
        rcParams['axes.edgecolor'] = 'black'
        rcParams['xtick.major.size'] = 8
        rcParams['xtick.major.width'] = 3
        rcParams['ytick.major.size'] = 8
        rcParams['ytick.major.width'] = 3
    except:
        context.__exit__(*sys.exc_info())
        raise
    return context


## Figures ##

def figure(num=None,  # autoincrement if None, else integer from 1-N
           figsize=None,  # defaults to rc figure.figsize
           dpi=None,  # defaults to rc figure.dpi
           facecolor=None,  # defaults to rc figure.facecolor
           edgecolor=None,  # defaults to rc figure.edgecolor
           frameon=True,
           FigureClass=Figure,
           clear=False,
           **kwargs
           ):
    """
    Creates a new figure.

    Parameters
    ----------

    num : integer or string, optional, default: none
        If not provided, a new figure will be created, and the figure number
        will be incremented. The figure objects holds this number in a `number`
        attribute.
        If num is provided, and a figure with this id already exists, make
        it active, and returns a reference to it. If this figure does not
        exists, create it and returns it.
        If num is a string, the window title will be set to this figure's
        `num`.

    figsize : tuple of integers, optional, default: None
        width, height in inches. If not provided, defaults to rc
        figure.figsize.

    dpi : integer, optional, default: None
        resolution of the figure. If not provided, defaults to rc figure.dpi.

    facecolor :
        the background color. If not provided, defaults to rc figure.facecolor.

    edgecolor :
        the border color. If not provided, defaults to rc figure.edgecolor.

    frameon : bool, optional, default: True
        If False, suppress drawing the figure frame.

    FigureClass : class derived from matplotlib.figure.Figure
        Optionally use a custom Figure instance.

    clear : bool, optional, default: False
        If True and the figure already exists, then it is cleared.

    Returns
    -------
    figure : Figure
        The Figure instance returned will also be passed to new_figure_manager
        in the backends, which allows to hook custom Figure classes into the
        pylab interface. Additional kwargs will be passed to the figure init
        function.

    Notes
    -----
    If you are creating many figures, make sure you explicitly call "close"
    on the figures you are not using, because this will enable pylab
    to properly clean up the memory.

    rcParams defines the default values, which can be modified in the
    matplotlibrc file

    """

    if figsize is None:
        figsize = rcParams['figure.figsize']
    if dpi is None:
        dpi = rcParams['figure.dpi']
    if facecolor is None:
        facecolor = rcParams['figure.facecolor']
    if edgecolor is None:
        edgecolor = rcParams['figure.edgecolor']

    allnums = get_fignums()
    next_num = max(allnums) + 1 if allnums else 1
    figLabel = ''
    if num is None:
        num = next_num
    elif isinstance(num, six.string_types):
        figLabel = num
        allLabels = get_figlabels()
        if figLabel not in allLabels:
            if figLabel == 'all':
                warnings.warn("close('all') closes all existing figures")
            num = next_num
        else:
            inum = allLabels.index(figLabel)
            num = allnums[inum]
    else:
        num = int(num)  # crude validation of num argument

    figManager = _pylab_helpers.Gcf.get_fig_manager(num)
    if figManager is None:
        max_open_warning = rcParams['figure.max_open_warning']

        if (max_open_warning >= 1 and len(allnums) >= max_open_warning):
            warnings.warn(
                "More than %d figures have been opened. Figures "
                "created through the pyplot interface "
                "(`matplotlib.pyplot.figure`) are retained until "
                "explicitly closed and may consume too much memory. "
                "(To control this warning, see the rcParam "
                "`figure.max_open_warning`)." %
                max_open_warning, RuntimeWarning)

        if get_backend().lower() == 'ps':
            dpi = 72

        figManager = new_figure_manager(num, figsize=figsize,
                                        dpi=dpi,
                                        facecolor=facecolor,
                                        edgecolor=edgecolor,
                                        frameon=frameon,
                                        FigureClass=FigureClass,
                                        **kwargs)

        if figLabel:
            figManager.set_window_title(figLabel)
            figManager.canvas.figure.set_label(figLabel)

        # make this figure current on button press event
        def make_active(event):
            _pylab_helpers.Gcf.set_active(figManager)

        cid = figManager.canvas.mpl_connect('button_press_event', make_active)
        figManager._cidgcf = cid

        _pylab_helpers.Gcf.set_active(figManager)
        fig = figManager.canvas.figure
        fig.number = num

        # make sure backends (inline) that we don't ship that expect this
        # to be called in plotting commands to make the figure call show
        # still work.  There is probably a better way to do this in the
        # FigureManager base class.
        if matplotlib.is_interactive():
            draw_if_interactive()

        if _INSTALL_FIG_OBSERVER:
            fig.stale_callback = _auto_draw_if_interactive

    if clear:
        figManager.canvas.figure.clear()

    return figManager.canvas.figure


def _auto_draw_if_interactive(fig, val):
    """
    This is an internal helper function for making sure that auto-redrawing
    works as intended in the plain python repl.

    Parameters
    ----------
    fig : Figure
        A figure object which is assumed to be associated with a canvas
    """
    if val and matplotlib.is_interactive() and not fig.canvas.is_saving():
        fig.canvas.draw_idle()


def gcf():
    """Get a reference to the current figure."""
    figManager = _pylab_helpers.Gcf.get_active()
    if figManager is not None:
        return figManager.canvas.figure
    else:
        return figure()


def fignum_exists(num):
    return _pylab_helpers.Gcf.has_fignum(num) or num in get_figlabels()


def get_fignums():
    """Return a list of existing figure numbers."""
    return sorted(_pylab_helpers.Gcf.figs)


def get_figlabels():
    """Return a list of existing figure labels."""
    figManagers = _pylab_helpers.Gcf.get_all_fig_managers()
    figManagers.sort(key=lambda m: m.num)
    return [m.canvas.figure.get_label() for m in figManagers]


def get_current_fig_manager():
    figManager = _pylab_helpers.Gcf.get_active()
    if figManager is None:
        gcf()  # creates an active figure as a side effect
        figManager = _pylab_helpers.Gcf.get_active()
    return figManager


@docstring.copy_dedent(FigureCanvasBase.mpl_connect)
def connect(s, func):
    return get_current_fig_manager().canvas.mpl_connect(s, func)


@docstring.copy_dedent(FigureCanvasBase.mpl_disconnect)
def disconnect(cid):
    return get_current_fig_manager().canvas.mpl_disconnect(cid)


def close(*args):
    """
    Close a figure window.

    ``close()`` by itself closes the current figure

    ``close(fig)`` closes the `~.Figure` instance *fig*

    ``close(num)`` closes the figure number *num*

    ``close(name)`` where *name* is a string, closes figure with that label

    ``close('all')`` closes all the figure windows
    """

    if len(args) == 0:
        figManager = _pylab_helpers.Gcf.get_active()
        if figManager is None:
            return
        else:
            _pylab_helpers.Gcf.destroy(figManager.num)
    elif len(args) == 1:
        arg = args[0]
        if arg == 'all':
            _pylab_helpers.Gcf.destroy_all()
        elif isinstance(arg, six.integer_types):
            _pylab_helpers.Gcf.destroy(arg)
        elif hasattr(arg, 'int'):
            # if we are dealing with a type UUID, we
            # can use its integer representation
            _pylab_helpers.Gcf.destroy(arg.int)
        elif isinstance(arg, six.string_types):
            allLabels = get_figlabels()
            if arg in allLabels:
                num = get_fignums()[allLabels.index(arg)]
                _pylab_helpers.Gcf.destroy(num)
        elif isinstance(arg, Figure):
            _pylab_helpers.Gcf.destroy_fig(arg)
        else:
            raise TypeError('Unrecognized argument type %s to close' % type(arg))
    else:
        raise TypeError('close takes 0 or 1 arguments')


def clf():
    """
    Clear the current figure.
    """
    gcf().clf()


def draw():
    """Redraw the current figure.

    This is used to update a figure that has been altered, but not
    automatically re-drawn.  If interactive mode is on (:func:`.ion()`), this
    should be only rarely needed, but there may be ways to modify the state of
    a figure without marking it as `stale`.  Please report these cases as
    bugs.

    A more object-oriented alternative, given any
    :class:`~matplotlib.figure.Figure` instance, :attr:`fig`, that
    was created using a :mod:`~matplotlib.pyplot` function, is::

        fig.canvas.draw_idle()
    """
    get_current_fig_manager().canvas.draw_idle()


@docstring.copy_dedent(Figure.savefig)
def savefig(*args, **kwargs):
    fig = gcf()
    res = fig.savefig(*args, **kwargs)
    fig.canvas.draw_idle()   # need this if 'transparent=True' to reset colors
    return res


@docstring.copy_dedent(Figure.ginput)
def ginput(*args, **kwargs):
    """
    Blocking call to interact with the figure.

    This will wait for *n* clicks from the user and return a list of the
    coordinates of each click.

    If *timeout* is negative, does not timeout.
    """
    return gcf().ginput(*args, **kwargs)


@docstring.copy_dedent(Figure.waitforbuttonpress)
def waitforbuttonpress(*args, **kwargs):
    """
    Blocking call to interact with the figure.

    This will wait for *n* key or mouse clicks from the user and
    return a list containing True's for keyboard clicks and False's
    for mouse clicks.

    If *timeout* is negative, does not timeout.
    """
    return gcf().waitforbuttonpress(*args, **kwargs)


# Putting things in figures

@docstring.copy_dedent(Figure.text)
def figtext(*args, **kwargs):
    return gcf().text(*args, **kwargs)


@docstring.copy_dedent(Figure.suptitle)
def suptitle(*args, **kwargs):
    return gcf().suptitle(*args, **kwargs)


@docstring.copy_dedent(Figure.figimage)
def figimage(*args, **kwargs):
    return gcf().figimage(*args, **kwargs)


def figlegend(*args, **kwargs):
    """
    Place a legend in the figure.

    *labels*
      a sequence of strings

    *handles*
      a sequence of :class:`~matplotlib.lines.Line2D` or
      :class:`~matplotlib.patches.Patch` instances

    *loc*
      can be a string or an integer specifying the legend
      location

    A :class:`matplotlib.legend.Legend` instance is returned.

    Examples
    --------

    To make a legend from existing artists on every axes::

      figlegend()

    To make a legend for a list of lines and labels::

      figlegend( (line1, line2, line3),
                 ('label1', 'label2', 'label3'),
                 'upper right' )

    .. seealso::

       :func:`~matplotlib.pyplot.legend`

    """
    return gcf().legend(*args, **kwargs)


## Figure and Axes hybrid ##

_hold_msg = """pyplot.hold is deprecated.
    Future behavior will be consistent with the long-time default:
    plot commands add elements without first clearing the
    Axes and/or Figure."""

@deprecated("2.0", message=_hold_msg)
def hold(b=None):
    """
    Set the hold state.  If *b* is None (default), toggle the
    hold state, else set the hold state to boolean value *b*::

      hold()      # toggle hold
      hold(True)  # hold is on
      hold(False) # hold is off

    When *hold* is *True*, subsequent plot commands will add elements to
    the current axes.  When *hold* is *False*, the current axes and
    figure will be cleared on the next plot command.

    """

    fig = gcf()
    ax = fig.gca()

    if b is not None:
        b = bool(b)
    fig._hold = b
    ax._hold = b

    # b=None toggles the hold state, so let's get get the current hold
    # state; but should pyplot hold toggle the rc setting - me thinks
    # not
    b = ax._hold

    # The comment above looks ancient; and probably the line below,
    # contrary to the comment, is equally ancient.  It will trigger
    # a second warning, but "Oh, well...".
    rc('axes', hold=b)

@deprecated("2.0", message=_hold_msg)
def ishold():
    """
    Return the hold status of the current axes.
    """
    return gca()._hold


@deprecated("2.0", message=_hold_msg)
def over(func, *args, **kwargs):
    """
    Call a function with hold(True).

    Calls::

      func(*args, **kwargs)

    with ``hold(True)`` and then restores the hold state.

    """
    ax = gca()
    h = ax._hold
    ax._hold = True
    func(*args, **kwargs)
    ax._hold = h

## Axes ##


def axes(*args, **kwargs):
    """
    Add an axes to the figure.

    The axes is added at position *rect* specified by:

    - ``axes()`` by itself creates a default full ``subplot(111)`` window axis.

    - ``axes(rect, facecolor='w')`` where *rect* = [left, bottom, width,
      height] in normalized (0, 1) units.  *facecolor* is the background
      color for the axis, default white.

    - ``axes(h)`` where *h* is an axes instance makes *h* the current
      axis and the parent of *h* the current figure.
      An :class:`~matplotlib.axes.Axes` instance is returned.

    =========   ==============   ==============================================
    kwarg       Accepts          Description
    =========   ==============   ==============================================
    facecolor   color            the axes background color
    frameon     [True|False]     display the frame?
    sharex      otherax          current axes shares xaxis attribute
                                 with otherax
    sharey      otherax          current axes shares yaxis attribute
                                 with otherax
    polar       [True|False]     use a polar axes?
    aspect      [str | num]      ['equal', 'auto'] or a number.  If a number
                                 the ratio of y-unit/x-unit in screen-space.
                                 Also see
                                 :meth:`~matplotlib.axes.Axes.set_aspect`.
    =========   ==============   ==============================================

    Examples:

    * :file:`examples/pylab_examples/axes_demo.py` places custom axes.
    * :file:`examples/pylab_examples/shared_axis_demo.py` uses
      *sharex* and *sharey*.

    """

    nargs = len(args)
    if len(args) == 0:
        return subplot(111, **kwargs)
    if nargs > 1:
        raise TypeError('Only one non keyword arg to axes allowed')
    arg = args[0]

    if isinstance(arg, Axes):
        sca(arg)
        a = arg
    else:
        rect = arg
        a = gcf().add_axes(rect, **kwargs)
    return a


def delaxes(*args):
    """
    Remove an axes from the current figure.  If *ax*
    doesn't exist, an error will be raised.

    ``delaxes()``: delete the current axes
    """
    if not len(args):
        ax = gca()
    else:
        ax = args[0]
    ret = gcf().delaxes(ax)
    return ret


def sca(ax):
    """
    Set the current Axes instance to *ax*.

    The current Figure is updated to the parent of *ax*.
    """
    managers = _pylab_helpers.Gcf.get_all_fig_managers()
    for m in managers:
        if ax in m.canvas.figure.axes:
            _pylab_helpers.Gcf.set_active(m)
            m.canvas.figure.sca(ax)
            return
    raise ValueError("Axes instance argument was not found in a figure.")


def gca(**kwargs):
    """
    Get the current :class:`~matplotlib.axes.Axes` instance on the
    current figure matching the given keyword args, or create one.

    Examples
    --------
    To get the current polar axes on the current figure::

        plt.gca(projection='polar')

    If the current axes doesn't exist, or isn't a polar one, the appropriate
    axes will be created and then returned.

    See Also
    --------
    matplotlib.figure.Figure.gca : The figure's gca method.
    """
    return gcf().gca(**kwargs)

# More ways of creating axes:


def subplot(*args, **kwargs):
    """
    Return a subplot axes at the given grid position.

    Call signature::

       subplot(nrows, ncols, index, **kwargs)

    In the current figure, create and return an `~.Axes`, at position *index*
    of a (virtual) grid of *nrows* by *ncols* axes.  Indexes go from 1 to
    ``nrows * ncols``, incrementing in row-major order.

    If *nrows*, *ncols* and *index* are all less than 10, they can also be
    given as a single, concatenated, three-digit number.

    For example, ``subplot(2, 3, 3)`` and ``subplot(233)`` both create an
    `~.Axes` at the top right corner of the current figure, occupying half of
    the figure height and a third of the figure width.

    .. note::

       Creating a subplot will delete any pre-existing subplot that overlaps
       with it beyond sharing a boundary::

          import matplotlib.pyplot as plt
          # plot a line, implicitly creating a subplot(111)
          plt.plot([1,2,3])
          # now create a subplot which represents the top plot of a grid
          # with 2 rows and 1 column. Since this subplot will overlap the
          # first, the plot (and its axes) previously created, will be removed
          plt.subplot(211)
          plt.plot(range(12))
          plt.subplot(212, facecolor='y') # creates 2nd subplot with yellow background

       If you do not want this behavior, use the
       :meth:`~matplotlib.figure.Figure.add_subplot` method or the
       :func:`~matplotlib.pyplot.axes` function instead.

    Keyword arguments:

      *facecolor*:
        The background color of the subplot, which can be any valid
        color specifier.  See :mod:`matplotlib.colors` for more
        information.

      *polar*:
        A boolean flag indicating whether the subplot plot should be
        a polar projection.  Defaults to *False*.

      *projection*:
        A string giving the name of a custom projection to be used
        for the subplot. This projection must have been previously
        registered. See :mod:`matplotlib.projections`.

    .. seealso::

        :func:`~matplotlib.pyplot.axes`
            For additional information on :func:`axes` and
            :func:`subplot` keyword arguments.

        :file:`gallery/pie_and_polar_charts/polar_scatter.py`
            For an example

    **Example:**

    .. plot:: gallery/subplots_axes_and_figures/subplot.py

    """
    # if subplot called without arguments, create subplot(1,1,1)
    if len(args)==0:
        args=(1,1,1)

    # This check was added because it is very easy to type
    # subplot(1, 2, False) when subplots(1, 2, False) was intended
    # (sharex=False, that is). In most cases, no error will
    # ever occur, but mysterious behavior can result because what was
    # intended to be the sharex argument is instead treated as a
    # subplot index for subplot()
    if len(args) >= 3 and isinstance(args[2], bool) :
        warnings.warn("The subplot index argument to subplot() appears"
                      " to be a boolean. Did you intend to use subplots()?")

    fig = gcf()
    a = fig.add_subplot(*args, **kwargs)
    bbox = a.bbox
    byebye = []
    for other in fig.axes:
        if other==a: continue
        if bbox.fully_overlaps(other.bbox):
            byebye.append(other)
    for ax in byebye: delaxes(ax)

    return a


def subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True,
             subplot_kw=None, gridspec_kw=None, **fig_kw):
    """
    Create a figure and a set of subplots

    This utility wrapper makes it convenient to create common layouts of
    subplots, including the enclosing figure object, in a single call.

    Parameters
    ----------
    nrows, ncols : int, optional, default: 1
        Number of rows/columns of the subplot grid.

    sharex, sharey : bool or {'none', 'all', 'row', 'col'}, default: False
        Controls sharing of properties among x (`sharex`) or y (`sharey`)
        axes:

            - True or 'all': x- or y-axis will be shared among all
              subplots.
            - False or 'none': each subplot x- or y-axis will be
              independent.
            - 'row': each subplot row will share an x- or y-axis.
            - 'col': each subplot column will share an x- or y-axis.

        When subplots have a shared x-axis along a column, only the x tick
        labels of the bottom subplot are visible.  Similarly, when subplots
        have a shared y-axis along a row, only the y tick labels of the first
        column subplot are visible.

    squeeze : bool, optional, default: True
        - If True, extra dimensions are squeezed out from the returned Axes
          object:

            - if only one subplot is constructed (nrows=ncols=1), the
              resulting single Axes object is returned as a scalar.
            - for Nx1 or 1xN subplots, the returned object is a 1D numpy
              object array of Axes objects are returned as numpy 1D arrays.
            - for NxM, subplots with N>1 and M>1 are returned as a 2D arrays.

        - If False, no squeezing at all is done: the returned Axes object is
          always a 2D array containing Axes instances, even if it ends up
          being 1x1.

    subplot_kw : dict, optional
        Dict with keywords passed to the
        :meth:`~matplotlib.figure.Figure.add_subplot` call used to create each
        subplot.

    gridspec_kw : dict, optional
        Dict with keywords passed to the
        :class:`~matplotlib.gridspec.GridSpec` constructor used to create the
        grid the subplots are placed on.

    **fig_kw :
        All additional keyword arguments are passed to the :func:`figure` call.

    Returns
    -------
    fig : :class:`matplotlib.figure.Figure` object

    ax : Axes object or array of Axes objects.

        ax can be either a single :class:`matplotlib.axes.Axes` object or an
        array of Axes objects if more than one subplot was created.  The
        dimensions of the resulting array can be controlled with the squeeze
        keyword, see above.

    Examples
    --------
    First create some toy data:

    >>> x = np.linspace(0, 2*np.pi, 400)
    >>> y = np.sin(x**2)

    Creates just a figure and only one subplot

    >>> fig, ax = plt.subplots()
    >>> ax.plot(x, y)
    >>> ax.set_title('Simple plot')

    Creates two subplots and unpacks the output array immediately

    >>> f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
    >>> ax1.plot(x, y)
    >>> ax1.set_title('Sharing Y axis')
    >>> ax2.scatter(x, y)

    Creates four polar axes, and accesses them through the returned array

    >>> fig, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True))
    >>> axes[0, 0].plot(x, y)
    >>> axes[1, 1].scatter(x, y)

    Share a X axis with each column of subplots

    >>> plt.subplots(2, 2, sharex='col')

    Share a Y axis with each row of subplots

    >>> plt.subplots(2, 2, sharey='row')

    Share both X and Y axes with all subplots

    >>> plt.subplots(2, 2, sharex='all', sharey='all')

    Note that this is the same as

    >>> plt.subplots(2, 2, sharex=True, sharey=True)

    See Also
    --------
    figure
    subplot
    """
    fig = figure(**fig_kw)
    axs = fig.subplots(nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey,
                       squeeze=squeeze, subplot_kw=subplot_kw,
                       gridspec_kw=gridspec_kw)
    return fig, axs


def subplot2grid(shape, loc, rowspan=1, colspan=1, fig=None, **kwargs):
    """
    Create an axis at specific location inside a regular grid.

    Parameters
    ----------
    shape : sequence of 2 ints
        Shape of grid in which to place axis.
        First entry is number of rows, second entry is number of columns.

    loc : sequence of 2 ints
        Location to place axis within grid.
        First entry is row number, second entry is column number.

    rowspan : int
        Number of rows for the axis to span to the right.

    colspan : int
        Number of columns for the axis to span downwards.

    fig : `Figure`, optional
        Figure to place axis in. Defaults to current figure.

    **kwargs
        Additional keyword arguments are handed to `add_subplot`.


    Notes
    -----
    The following call ::

        subplot2grid(shape, loc, rowspan=1, colspan=1)

    is identical to ::

        gridspec=GridSpec(shape[0], shape[1])
        subplotspec=gridspec.new_subplotspec(loc, rowspan, colspan)
        subplot(subplotspec)
    """

    if fig is None:
        fig = gcf()

    s1, s2 = shape
    subplotspec = GridSpec(s1, s2).new_subplotspec(loc,
                                                   rowspan=rowspan,
                                                   colspan=colspan)
    a = fig.add_subplot(subplotspec, **kwargs)
    bbox = a.bbox
    byebye = []
    for other in fig.axes:
        if other == a:
            continue
        if bbox.fully_overlaps(other.bbox):
            byebye.append(other)
    for ax in byebye:
        delaxes(ax)

    return a


def twinx(ax=None):
    """
    Make a second axes that shares the *x*-axis.  The new axes will
    overlay *ax* (or the current axes if *ax* is *None*).  The ticks
    for *ax2* will be placed on the right, and the *ax2* instance is
    returned.

    .. seealso::

       :file:`examples/api_examples/two_scales.py`
          For an example
    """
    if ax is None:
        ax=gca()
    ax1 = ax.twinx()
    return ax1


def twiny(ax=None):
    """
    Make a second axes that shares the *y*-axis.  The new axis will
    overlay *ax* (or the current axes if *ax* is *None*).  The ticks
    for *ax2* will be placed on the top, and the *ax2* instance is
    returned.
    """
    if ax is None:
        ax=gca()
    ax1 = ax.twiny()
    return ax1


def subplots_adjust(*args, **kwargs):
    """
    Tune the subplot layout.

    call signature::

      subplots_adjust(left=None, bottom=None, right=None, top=None,
                      wspace=None, hspace=None)

    The parameter meanings (and suggested defaults) are::

      left  = 0.125  # the left side of the subplots of the figure
      right = 0.9    # the right side of the subplots of the figure
      bottom = 0.1   # the bottom of the subplots of the figure
      top = 0.9      # the top of the subplots of the figure
      wspace = 0.2   # the amount of width reserved for blank space between subplots,
                     # expressed as a fraction of the average axis width
      hspace = 0.2   # the amount of height reserved for white space between subplots,
                     # expressed as a fraction of the average axis height

    The actual defaults are controlled by the rc file
    """
    fig = gcf()
    fig.subplots_adjust(*args, **kwargs)


def subplot_tool(targetfig=None):
    """
    Launch a subplot tool window for a figure.

    A :class:`matplotlib.widgets.SubplotTool` instance is returned.
    """
    tbar = rcParams['toolbar'] # turn off the navigation toolbar for the toolfig
    rcParams['toolbar'] = 'None'
    if targetfig is None:
        manager = get_current_fig_manager()
        targetfig = manager.canvas.figure
    else:
        # find the manager for this figure
        for manager in _pylab_helpers.Gcf._activeQue:
            if manager.canvas.figure==targetfig: break
        else: raise RuntimeError('Could not find manager for targetfig')

    toolfig = figure(figsize=(6,3))
    toolfig.subplots_adjust(top=0.9)
    ret =  SubplotTool(targetfig, toolfig)
    rcParams['toolbar'] = tbar
    _pylab_helpers.Gcf.set_active(manager)  # restore the current figure
    return ret


def tight_layout(pad=1.08, h_pad=None, w_pad=None, rect=None):
    """
    Automatically adjust subplot parameters to give specified padding.

    Parameters
    ----------
    pad : float
        padding between the figure edge and the edges of subplots, as a fraction of the font-size.
    h_pad, w_pad : float
        padding (height/width) between edges of adjacent subplots.
        Defaults to `pad_inches`.
    rect : if rect is given, it is interpreted as a rectangle
        (left, bottom, right, top) in the normalized figure
        coordinate that the whole subplots area (including
        labels) will fit into. Default is (0, 0, 1, 1).

    """
    fig = gcf()
    fig.tight_layout(pad=pad, h_pad=h_pad, w_pad=w_pad, rect=rect)


def box(on=None):
    """
    Turn the axes box on or off.  *on* may be a boolean or a string,
    'on' or 'off'.

    If *on* is *None*, toggle state.
    """
    ax = gca()
    on = _string_to_bool(on)
    if on is None:
        on = not ax.get_frame_on()
    ax.set_frame_on(on)


def title(s, *args, **kwargs):
    """
    Set a title of the current axes.

    Set one of the three available axes titles. The available titles are
    positioned above the axes in the center, flush with the left edge,
    and flush with the right edge.

    .. seealso::
        See :func:`~matplotlib.pyplot.text` for adding text
        to the current axes

    Parameters
    ----------
    label : str
        Text to use for the title

    fontdict : dict
        A dictionary controlling the appearance of the title text,
        the default `fontdict` is:

            {'fontsize': rcParams['axes.titlesize'],
            'fontweight' : rcParams['axes.titleweight'],
            'verticalalignment': 'baseline',
            'horizontalalignment': loc}

    loc : {'center', 'left', 'right'}, str, optional
        Which title to set, defaults to 'center'

    Returns
    -------
    text : :class:`~matplotlib.text.Text`
        The matplotlib text instance representing the title

    Other parameters
    ----------------
    kwargs : text properties
        Other keyword arguments are text properties, see
        :class:`~matplotlib.text.Text` for a list of valid text
        properties.

    """
    return gca().set_title(s, *args, **kwargs)

## Axis ##


def axis(*v, **kwargs):
    """
    Convenience method to get or set axis properties.

    Calling with no arguments::

      >>> axis()

    returns the current axes limits ``[xmin, xmax, ymin, ymax]``.::

      >>> axis(v)

    sets the min and max of the x and y axes, with
    ``v = [xmin, xmax, ymin, ymax]``.::

      >>> axis('off')

    turns off the axis lines and labels.::

      >>> axis('equal')

    changes limits of *x* or *y* axis so that equal increments of *x*
    and *y* have the same length; a circle is circular.::

      >>> axis('scaled')

    achieves the same result by changing the dimensions of the plot box instead
    of the axis data limits.::

      >>> axis('tight')

    changes *x* and *y* axis limits such that all data is shown. If
    all data is already shown, it will move it to the center of the
    figure without modifying (*xmax* - *xmin*) or (*ymax* -
    *ymin*). Note this is slightly different than in MATLAB.::

      >>> axis('image')

    is 'scaled' with the axis limits equal to the data limits.::

      >>> axis('auto')

    and::

      >>> axis('normal')

    are deprecated. They restore default behavior; axis limits are automatically
    scaled to make the data fit comfortably within the plot box.

    if ``len(*v)==0``, you can pass in *xmin*, *xmax*, *ymin*, *ymax*
    as kwargs selectively to alter just those limits without changing
    the others.

      >>> axis('square')

    changes the limit ranges (*xmax*-*xmin*) and (*ymax*-*ymin*) of
    the *x* and *y* axes to be the same, and have the same scaling,
    resulting in a square plot.

    The xmin, xmax, ymin, ymax tuple is returned

    .. seealso::

        :func:`xlim`, :func:`ylim`
           For setting the x- and y-limits individually.
    """
    return gca().axis(*v, **kwargs)


def xlabel(s, *args, **kwargs):
    """
    Set the *x* axis label of the current axis.

    Default override is::

      override = {
          'fontsize'            : 'small',
          'verticalalignment'   : 'top',
          'horizontalalignment' : 'center'
          }

    .. seealso::

        :func:`~matplotlib.pyplot.text`
            For information on how override and the optional args work
    """
    return gca().set_xlabel(s, *args, **kwargs)


def ylabel(s, *args, **kwargs):
    """
    Set the *y* axis label of the current axis.

    Defaults override is::

        override = {
           'fontsize'            : 'small',
           'verticalalignment'   : 'center',
           'horizontalalignment' : 'right',
           'rotation'='vertical' : }

    .. seealso::

        :func:`~matplotlib.pyplot.text`
            For information on how override and the optional args
            work.
    """
    return gca().set_ylabel(s, *args, **kwargs)


def xlim(*args, **kwargs):
    """
    Get or set the *x* limits of the current axes.

    ::

      xmin, xmax = xlim()   # return the current xlim
      xlim( (xmin, xmax) )  # set the xlim to xmin, xmax
      xlim( xmin, xmax )    # set the xlim to xmin, xmax

    If you do not specify args, you can pass the xmin and xmax as
    kwargs, e.g.::

      xlim(xmax=3) # adjust the max leaving min unchanged
      xlim(xmin=1) # adjust the min leaving max unchanged

    Setting limits turns autoscaling off for the x-axis.

    The new axis limits are returned as a length 2 tuple.

    """
    ax = gca()
    if not args and not kwargs:
        return ax.get_xlim()
    ret = ax.set_xlim(*args, **kwargs)
    return ret


def ylim(*args, **kwargs):
    """
    Get or set the *y*-limits of the current axes.

    ::

      ymin, ymax = ylim()   # return the current ylim
      ylim( (ymin, ymax) )  # set the ylim to ymin, ymax
      ylim( ymin, ymax )    # set the ylim to ymin, ymax

    If you do not specify args, you can pass the *ymin* and *ymax* as
    kwargs, e.g.::

      ylim(ymax=3) # adjust the max leaving min unchanged
      ylim(ymin=1) # adjust the min leaving max unchanged

    Setting limits turns autoscaling off for the y-axis.

    The new axis limits are returned as a length 2 tuple.
    """
    ax = gca()
    if not args and not kwargs:
        return ax.get_ylim()
    ret = ax.set_ylim(*args, **kwargs)
    return ret


@docstring.dedent_interpd
def xscale(*args, **kwargs):
    """
    Set the scaling of the *x*-axis.

    call signature::

      xscale(scale, **kwargs)

    The available scales are: %(scale)s

    Different keywords may be accepted, depending on the scale:

    %(scale_docs)s
    """
    gca().set_xscale(*args, **kwargs)


@docstring.dedent_interpd
def yscale(*args, **kwargs):
    """
    Set the scaling of the *y*-axis.

    call signature::

      yscale(scale, **kwargs)

    The available scales are: %(scale)s

    Different keywords may be accepted, depending on the scale:

    %(scale_docs)s
    """
    gca().set_yscale(*args, **kwargs)


def xticks(*args, **kwargs):
    """
    Get or set the *x*-limits of the current tick locations and labels.

    ::

      # return locs, labels where locs is an array of tick locations and
      # labels is an array of tick labels.
      locs, labels = xticks()

      # set the locations of the xticks
      xticks( arange(6) )

      # set the locations and labels of the xticks
      xticks( arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue') )

    The keyword args, if any, are :class:`~matplotlib.text.Text`
    properties. For example, to rotate long labels::

      xticks( arange(12), calendar.month_name[1:13], rotation=17 )
    """
    ax = gca()

    if len(args)==0:
        locs = ax.get_xticks()
        labels = ax.get_xticklabels()
    elif len(args)==1:
        locs = ax.set_xticks(args[0])
        labels = ax.get_xticklabels()
    elif len(args)==2:
        locs = ax.set_xticks(args[0])
        labels = ax.set_xticklabels(args[1], **kwargs)
    else: raise TypeError('Illegal number of arguments to xticks')
    if len(kwargs):
        for l in labels:
            l.update(kwargs)

    return locs, silent_list('Text xticklabel', labels)


def yticks(*args, **kwargs):
    """
    Get or set the *y*-limits of the current tick locations and labels.

    ::

      # return locs, labels where locs is an array of tick locations and
      # labels is an array of tick labels.
      locs, labels = yticks()

      # set the locations of the yticks
      yticks( arange(6) )

      # set the locations and labels of the yticks
      yticks( arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue') )

    The keyword args, if any, are :class:`~matplotlib.text.Text`
    properties. For example, to rotate long labels::

      yticks( arange(12), calendar.month_name[1:13], rotation=45 )
    """
    ax = gca()

    if len(args)==0:
        locs = ax.get_yticks()
        labels = ax.get_yticklabels()
    elif len(args)==1:
        locs = ax.set_yticks(args[0])
        labels = ax.get_yticklabels()
    elif len(args)==2:
        locs = ax.set_yticks(args[0])
        labels = ax.set_yticklabels(args[1], **kwargs)
    else: raise TypeError('Illegal number of arguments to yticks')
    if len(kwargs):
        for l in labels:
            l.update(kwargs)


    return ( locs,
             silent_list('Text yticklabel', labels)
             )


def minorticks_on():
    """
    Display minor ticks on the current plot.

    Displaying minor ticks reduces performance; turn them off using
    minorticks_off() if drawing speed is a problem.
    """
    gca().minorticks_on()


def minorticks_off():
    """
    Remove minor ticks from the current plot.
    """
    gca().minorticks_off()


def rgrids(*args, **kwargs):
    """
    Get or set the radial gridlines on a polar plot.

    call signatures::

      lines, labels = rgrids()
      lines, labels = rgrids(radii, labels=None, angle=22.5, **kwargs)

    When called with no arguments, :func:`rgrid` simply returns the
    tuple (*lines*, *labels*), where *lines* is an array of radial
    gridlines (:class:`~matplotlib.lines.Line2D` instances) and
    *labels* is an array of tick labels
    (:class:`~matplotlib.text.Text` instances). When called with
    arguments, the labels will appear at the specified radial
    distances and angles.

    *labels*, if not *None*, is a len(*radii*) list of strings of the
    labels to use at each angle.

    If *labels* is None, the rformatter will be used

    Examples::

      # set the locations of the radial gridlines and labels
      lines, labels = rgrids( (0.25, 0.5, 1.0) )

      # set the locations and labels of the radial gridlines and labels
      lines, labels = rgrids( (0.25, 0.5, 1.0), ('Tom', 'Dick', 'Harry' )

    """
    ax = gca()
    if not isinstance(ax, PolarAxes):
        raise RuntimeError('rgrids only defined for polar axes')
    if len(args)==0:
        lines = ax.yaxis.get_gridlines()
        labels = ax.yaxis.get_ticklabels()
    else:
        lines, labels = ax.set_rgrids(*args, **kwargs)

    return ( silent_list('Line2D rgridline', lines),
             silent_list('Text rgridlabel', labels) )


def thetagrids(*args, **kwargs):
    """
    Get or set the theta locations of the gridlines in a polar plot.

    If no arguments are passed, return a tuple (*lines*, *labels*)
    where *lines* is an array of radial gridlines
    (:class:`~matplotlib.lines.Line2D` instances) and *labels* is an
    array of tick labels (:class:`~matplotlib.text.Text` instances)::

      lines, labels = thetagrids()

    Otherwise the syntax is::

      lines, labels = thetagrids(angles, labels=None, fmt='%d', frac = 1.1)

    set the angles at which to place the theta grids (these gridlines
    are equal along the theta dimension).

    *angles* is in degrees.

    *labels*, if not *None*, is a len(angles) list of strings of the
    labels to use at each angle.

    If *labels* is *None*, the labels will be ``fmt%angle``.

    *frac* is the fraction of the polar axes radius at which to place
    the label (1 is the edge). e.g., 1.05 is outside the axes and 0.95
    is inside the axes.

    Return value is a list of tuples (*lines*, *labels*):

      - *lines* are :class:`~matplotlib.lines.Line2D` instances

      - *labels* are :class:`~matplotlib.text.Text` instances.

    Note that on input, the *labels* argument is a list of strings,
    and on output it is a list of :class:`~matplotlib.text.Text`
    instances.

    Examples::

      # set the locations of the radial gridlines and labels
      lines, labels = thetagrids( range(45,360,90) )

      # set the locations and labels of the radial gridlines and labels
      lines, labels = thetagrids( range(45,360,90), ('NE', 'NW', 'SW','SE') )
    """
    ax = gca()
    if not isinstance(ax, PolarAxes):
        raise RuntimeError('rgrids only defined for polar axes')
    if len(args)==0:
        lines = ax.xaxis.get_ticklines()
        labels = ax.xaxis.get_ticklabels()
    else:
        lines, labels = ax.set_thetagrids(*args, **kwargs)

    return (silent_list('Line2D thetagridline', lines),
            silent_list('Text thetagridlabel', labels)
            )


## Plotting Info ##

def plotting():
    pass


def get_plot_commands():
    """
    Get a sorted list of all of the plotting commands.
    """
    # This works by searching for all functions in this module and
    # removing a few hard-coded exclusions, as well as all of the
    # colormap-setting functions, and anything marked as private with
    # a preceding underscore.

    import inspect

    exclude = {'colormaps', 'colors', 'connect', 'disconnect',
               'get_plot_commands', 'get_current_fig_manager', 'ginput',
               'plotting', 'waitforbuttonpress'}
    exclude |= set(colormaps())
    this_module = inspect.getmodule(get_plot_commands)

    commands = set()
    for name, obj in list(six.iteritems(globals())):
        if name.startswith('_') or name in exclude:
            continue
        if inspect.isfunction(obj) and inspect.getmodule(obj) is this_module:
            commands.add(name)

    return sorted(commands)


@deprecated('2.1')
def colors():
    """
    This is a do-nothing function to provide you with help on how
    matplotlib handles colors.

    Commands which take color arguments can use several formats to
    specify the colors.  For the basic built-in colors, you can use a
    single letter

      =====   =======
      Alias   Color
      =====   =======
      'b'     blue
      'g'     green
      'r'     red
      'c'     cyan
      'm'     magenta
      'y'     yellow
      'k'     black
      'w'     white
      =====   =======

    For a greater range of colors, you have two options.  You can
    specify the color using an html hex string, as in::

      color = '#eeefff'

    or you can pass an R,G,B tuple, where each of R,G,B are in the
    range [0,1].

    You can also use any legal html name for a color, for example::

      color = 'red'
      color = 'burlywood'
      color = 'chartreuse'

    The example below creates a subplot with a dark
    slate gray background::

       subplot(111, facecolor=(0.1843, 0.3098, 0.3098))

    Here is an example that creates a pale turquoise title::

      title('Is this the best color?', color='#afeeee')

    """
    pass


def colormaps():
    """
    Matplotlib provides a number of colormaps, and others can be added using
    :func:`~matplotlib.cm.register_cmap`.  This function documents the built-in
    colormaps, and will also return a list of all registered colormaps if called.

    You can set the colormap for an image, pcolor, scatter, etc,
    using a keyword argument::

      imshow(X, cmap=cm.hot)

    or using the :func:`set_cmap` function::

      imshow(X)
      pyplot.set_cmap('hot')
      pyplot.set_cmap('jet')

    In interactive mode, :func:`set_cmap` will update the colormap post-hoc,
    allowing you to see which one works best for your data.

    All built-in colormaps can be reversed by appending ``_r``: For instance,
    ``gray_r`` is the reverse of ``gray``.

    There are several common color schemes used in visualization:

    Sequential schemes
      for unipolar data that progresses from low to high
    Diverging schemes
      for bipolar data that emphasizes positive or negative deviations from a
      central value
    Cyclic schemes
      meant for plotting values that wrap around at the
      endpoints, such as phase angle, wind direction, or time of day
    Qualitative schemes
      for nominal data that has no inherent ordering, where color is used
      only to distinguish categories

    Matplotlib ships with 4 perceptually uniform color maps which are
    the recommended color maps for sequential data:

      =========   ===================================================
      Colormap    Description
      =========   ===================================================
      inferno     perceptually uniform shades of black-red-yellow
      magma       perceptually uniform shades of black-red-white
      plasma      perceptually uniform shades of blue-red-yellow
      viridis     perceptually uniform shades of blue-green-yellow
      =========   ===================================================

    The following colormaps are based on the `ColorBrewer
    <http://colorbrewer2.org>`_ color specifications and designs developed by
    Cynthia Brewer:

    ColorBrewer Diverging (luminance is highest at the midpoint, and
    decreases towards differently-colored endpoints):

      ========  ===================================
      Colormap  Description
      ========  ===================================
      BrBG      brown, white, blue-green
      PiYG      pink, white, yellow-green
      PRGn      purple, white, green
      PuOr      orange, white, purple
      RdBu      red, white, blue
      RdGy      red, white, gray
      RdYlBu    red, yellow, blue
      RdYlGn    red, yellow, green
      Spectral  red, orange, yellow, green, blue
      ========  ===================================

    ColorBrewer Sequential (luminance decreases monotonically):

      ========  ====================================
      Colormap  Description
      ========  ====================================
      Blues     white to dark blue
      BuGn      white, light blue, dark green
      BuPu      white, light blue, dark purple
      GnBu      white, light green, dark blue
      Greens    white to dark green
      Greys     white to black (not linear)
      Oranges   white, orange, dark brown
      OrRd      white, orange, dark red
      PuBu      white, light purple, dark blue
      PuBuGn    white, light purple, dark green
      PuRd      white, light purple, dark red
      Purples   white to dark purple
      RdPu      white, pink, dark purple
      Reds      white to dark red
      YlGn      light yellow, dark green
      YlGnBu    light yellow, light green, dark blue
      YlOrBr    light yellow, orange, dark brown
      YlOrRd    light yellow, orange, dark red
      ========  ====================================

    ColorBrewer Qualitative:

    (For plotting nominal data, :class:`ListedColormap` is used,
    not :class:`LinearSegmentedColormap`.  Different sets of colors are
    recommended for different numbers of categories.)

    * Accent
    * Dark2
    * Paired
    * Pastel1
    * Pastel2
    * Set1
    * Set2
    * Set3

    A set of colormaps derived from those of the same name provided
    with Matlab are also included:

      =========   =======================================================
      Colormap    Description
      =========   =======================================================
      autumn      sequential linearly-increasing shades of red-orange-yellow
      bone        sequential increasing black-white color map with
                  a tinge of blue, to emulate X-ray film
      cool        linearly-decreasing shades of cyan-magenta
      copper      sequential increasing shades of black-copper
      flag        repetitive red-white-blue-black pattern (not cyclic at
                  endpoints)
      gray        sequential linearly-increasing black-to-white
                  grayscale
      hot         sequential black-red-yellow-white, to emulate blackbody
                  radiation from an object at increasing temperatures
      hsv         cyclic red-yellow-green-cyan-blue-magenta-red, formed
                  by changing the hue component in the HSV color space
      jet         a spectral map with dark endpoints, blue-cyan-yellow-red;
                  based on a fluid-jet simulation by NCSA [#]_
      pink        sequential increasing pastel black-pink-white, meant
                  for sepia tone colorization of photographs
      prism       repetitive red-yellow-green-blue-purple-...-green pattern
                  (not cyclic at endpoints)
      spring      linearly-increasing shades of magenta-yellow
      summer      sequential linearly-increasing shades of green-yellow
      winter      linearly-increasing shades of blue-green
      =========   =======================================================

    A set of palettes from the `Yorick scientific visualisation
    package <https://dhmunro.github.io/yorick-doc/>`_, an evolution of
    the GIST package, both by David H. Munro are included:

      ============  =======================================================
      Colormap      Description
      ============  =======================================================
      gist_earth    mapmaker's colors from dark blue deep ocean to green
                    lowlands to brown highlands to white mountains
      gist_heat     sequential increasing black-red-orange-white, to emulate
                    blackbody radiation from an iron bar as it grows hotter
      gist_ncar     pseudo-spectral black-blue-green-yellow-red-purple-white
                    colormap from National Center for Atmospheric
                    Research [#]_
      gist_rainbow  runs through the colors in spectral order from red to
                    violet at full saturation (like *hsv* but not cyclic)
      gist_stern    "Stern special" color table from Interactive Data
                    Language software
      ============  =======================================================


    Other miscellaneous schemes:

      ============= =======================================================
      Colormap      Description
      ============= =======================================================
      afmhot        sequential black-orange-yellow-white blackbody
                    spectrum, commonly used in atomic force microscopy
      brg           blue-red-green
      bwr           diverging blue-white-red
      coolwarm      diverging blue-gray-red, meant to avoid issues with 3D
                    shading, color blindness, and ordering of colors [#]_
      CMRmap        "Default colormaps on color images often reproduce to
                    confusing grayscale images. The proposed colormap
                    maintains an aesthetically pleasing color image that
                    automatically reproduces to a monotonic grayscale with
                    discrete, quantifiable saturation levels." [#]_
      cubehelix     Unlike most other color schemes cubehelix was designed
                    by D.A. Green to be monotonically increasing in terms
                    of perceived brightness. Also, when printed on a black
                    and white postscript printer, the scheme results in a
                    greyscale with monotonically increasing brightness.
                    This color scheme is named cubehelix because the r,g,b
                    values produced can be visualised as a squashed helix
                    around the diagonal in the r,g,b color cube.
      gnuplot       gnuplot's traditional pm3d scheme
                    (black-blue-red-yellow)
      gnuplot2      sequential color printable as gray
                    (black-blue-violet-yellow-white)
      ocean         green-blue-white
      rainbow       spectral purple-blue-green-yellow-orange-red colormap
                    with diverging luminance
      seismic       diverging blue-white-red
      nipy_spectral black-purple-blue-green-yellow-red-white spectrum,
                    originally from the Neuroimaging in Python project
      terrain       mapmaker's colors, blue-green-yellow-brown-white,
                    originally from IGOR Pro
      ============= =======================================================

    The following colormaps are redundant and may be removed in future
    versions.  It's recommended to use the names in the descriptions
    instead, which produce identical output:

      =========  =======================================================
      Colormap   Description
      =========  =======================================================
      gist_gray  identical to *gray*
      gist_yarg  identical to *gray_r*
      binary     identical to *gray_r*
      spectral   identical to *nipy_spectral* [#]_
      =========  =======================================================

    .. rubric:: Footnotes

    .. [#] Rainbow colormaps, ``jet`` in particular, are considered a poor
      choice for scientific visualization by many researchers: `Rainbow Color
      Map (Still) Considered Harmful
      <http://ieeexplore.ieee.org/document/4118486/?arnumber=4118486>`_

    .. [#] Resembles "BkBlAqGrYeOrReViWh200" from NCAR Command
      Language. See `Color Table Gallery
      <https://www.ncl.ucar.edu/Document/Graphics/color_table_gallery.shtml>`_

    .. [#] See `Diverging Color Maps for Scientific Visualization
      <http://www.kennethmoreland.com/color-maps/>`_ by Kenneth Moreland.

    .. [#] See `A Color Map for Effective Black-and-White Rendering of
      Color-Scale Images
      <https://www.mathworks.com/matlabcentral/fileexchange/2662-cmrmap-m>`_
      by Carey Rappaport

    .. [#] Changed to distinguish from ColorBrewer's *Spectral* map.
      :func:`spectral` still works, but
      ``set_cmap('nipy_spectral')`` is recommended for clarity.


    """
    return sorted(cm.cmap_d)


def _setup_pyplot_info_docstrings():
    """
    Generates the plotting and docstring.

    These must be done after the entire module is imported, so it is
    called from the end of this module, which is generated by
    boilerplate.py.
    """
    # Generate the plotting docstring
    import re

    def pad(s, l):
        """Pad string *s* to length *l*."""
        if l < len(s):
            return s[:l]
        return s + ' ' * (l - len(s))

    commands = get_plot_commands()

    first_sentence = re.compile(r"(?:\s*).+?\.(?:\s+|$)", flags=re.DOTALL)

    # Collect the first sentence of the docstring for all of the
    # plotting commands.
    rows = []
    max_name = 0
    max_summary = 0
    for name in commands:
        doc = globals()[name].__doc__
        summary = ''
        if doc is not None:
            match = first_sentence.match(doc)
            if match is not None:
                summary = match.group(0).strip().replace('\n', ' ')
        name = '`%s`' % name
        rows.append([name, summary])
        max_name = max(max_name, len(name))
        max_summary = max(max_summary, len(summary))

    lines = []
    sep = '=' * max_name + ' ' + '=' * max_summary
    lines.append(sep)
    lines.append(' '.join([pad("Function", max_name),
                           pad("Description", max_summary)]))
    lines.append(sep)
    for name, summary in rows:
        lines.append(' '.join([pad(name, max_name),
                               pad(summary, max_summary)]))
    lines.append(sep)

    plotting.__doc__ = '\n'.join(lines)

## Plotting part 1: manually generated functions and wrappers ##

def colorbar(mappable=None, cax=None, ax=None, **kw):
    if mappable is None:
        mappable = gci()
        if mappable is None:
            raise RuntimeError('No mappable was found to use for colorbar '
                               'creation. First define a mappable such as '
                               'an image (with imshow) or a contour set ('
                               'with contourf).')
    if ax is None:
        ax = gca()

    ret = gcf().colorbar(mappable, cax = cax, ax=ax, **kw)
    return ret
colorbar.__doc__ = matplotlib.colorbar.colorbar_doc


def clim(vmin=None, vmax=None):
    """
    Set the color limits of the current image.

    To apply clim to all axes images do::

      clim(0, 0.5)

    If either *vmin* or *vmax* is None, the image min/max respectively
    will be used for color scaling.

    If you want to set the clim of multiple images,
    use, for example::

      for im in gca().get_images():
          im.set_clim(0, 0.05)

    """
    im = gci()
    if im is None:
        raise RuntimeError('You must first define an image, e.g., with imshow')

    im.set_clim(vmin, vmax)


def set_cmap(cmap):
    """
    Set the default colormap.  Applies to the current image if any.
    See help(colormaps) for more information.

    *cmap* must be a :class:`~matplotlib.colors.Colormap` instance, or
    the name of a registered colormap.

    See :func:`matplotlib.cm.register_cmap` and
    :func:`matplotlib.cm.get_cmap`.
    """
    cmap = cm.get_cmap(cmap)

    rc('image', cmap=cmap.name)
    im = gci()

    if im is not None:
        im.set_cmap(cmap)



@docstring.copy_dedent(_imread)
def imread(*args, **kwargs):
    return _imread(*args, **kwargs)


@docstring.copy_dedent(_imsave)
def imsave(*args, **kwargs):
    return _imsave(*args, **kwargs)


def matshow(A, fignum=None, **kw):
    """
    Display an array as a matrix in a new figure window.

    The origin is set at the upper left hand corner and rows (first
    dimension of the array) are displayed horizontally.  The aspect
    ratio of the figure window is that of the array, unless this would
    make an excessively short or narrow figure.

    Tick labels for the xaxis are placed on top.

    With the exception of *fignum*, keyword arguments are passed to
    :func:`~matplotlib.pyplot.imshow`.  You may set the *origin*
    kwarg to "lower" if you want the first row in the array to be
    at the bottom instead of the top.


    *fignum*: [ None | integer | False ]
      By default, :func:`matshow` creates a new figure window with
      automatic numbering.  If *fignum* is given as an integer, the
      created figure will use this figure number.  Because of how
      :func:`matshow` tries to set the figure aspect ratio to be the
      one of the array, if you provide the number of an already
      existing figure, strange things may happen.

      If *fignum* is *False* or 0, a new figure window will **NOT** be created.
    """
    A = np.asanyarray(A)
    if fignum is False or fignum is 0:
        ax = gca()
    else:
        # Extract actual aspect ratio of array and make appropriately sized figure
        fig = figure(fignum, figsize=figaspect(A))
        ax  = fig.add_axes([0.15, 0.09, 0.775, 0.775])

    im = ax.matshow(A, **kw)
    sci(im)

    return im


def polar(*args, **kwargs):
    """
    Make a polar plot.

    call signature::

      polar(theta, r, **kwargs)

    Multiple *theta*, *r* arguments are supported, with format
    strings, as in :func:`~matplotlib.pyplot.plot`.

    """
    # If an axis already exists, check if it has a polar projection
    if gcf().get_axes():
        if not isinstance(gca(), PolarAxes):
            warnings.warn('Trying to create polar plot on an axis that does '
                          'not have a polar projection.')
    ax = gca(polar=True)
    ret = ax.plot(*args, **kwargs)
    return ret


def plotfile(fname, cols=(0,), plotfuncs=None,
             comments='#', skiprows=0, checkrows=5, delimiter=',',
             names=None, subplots=True, newfig=True, **kwargs):
    """
    Plot the data in a file.

    *cols* is a sequence of column identifiers to plot.  An identifier
    is either an int or a string.  If it is an int, it indicates the
    column number.  If it is a string, it indicates the column header.
    matplotlib will make column headers lower case, replace spaces with
    underscores, and remove all illegal characters; so ``'Adj Close*'``
    will have name ``'adj_close'``.

    - If len(*cols*) == 1, only that column will be plotted on the *y* axis.

    - If len(*cols*) > 1, the first element will be an identifier for
      data for the *x* axis and the remaining elements will be the
      column indexes for multiple subplots if *subplots* is *True*
      (the default), or for lines in a single subplot if *subplots*
      is *False*.

    *plotfuncs*, if not *None*, is a dictionary mapping identifier to
    an :class:`~matplotlib.axes.Axes` plotting function as a string.
    Default is 'plot', other choices are 'semilogy', 'fill', 'bar',
    etc.  You must use the same type of identifier in the *cols*
    vector as you use in the *plotfuncs* dictionary, e.g., integer
    column numbers in both or column names in both. If *subplots*
    is *False*, then including any function such as 'semilogy'
    that changes the axis scaling will set the scaling for all
    columns.

    *comments*, *skiprows*, *checkrows*, *delimiter*, and *names*
    are all passed on to :func:`matplotlib.pylab.csv2rec` to
    load the data into a record array.

    If *newfig* is *True*, the plot always will be made in a new figure;
    if *False*, it will be made in the current figure if one exists,
    else in a new figure.

    kwargs are passed on to plotting functions.

    Example usage::

      # plot the 2nd and 4th column against the 1st in two subplots
      plotfile(fname, (0,1,3))

      # plot using column names; specify an alternate plot type for volume
      plotfile(fname, ('date', 'volume', 'adj_close'),
                                    plotfuncs={'volume': 'semilogy'})

    Note: plotfile is intended as a convenience for quickly plotting
    data from flat files; it is not intended as an alternative
    interface to general plotting with pyplot or matplotlib.
    """

    if newfig:
        fig = figure()
    else:
        fig = gcf()

    if len(cols)<1:
        raise ValueError('must have at least one column of data')

    if plotfuncs is None:
        plotfuncs = dict()
    r = mlab.csv2rec(fname, comments=comments, skiprows=skiprows,
                     checkrows=checkrows, delimiter=delimiter, names=names)

    def getname_val(identifier):
        'return the name and column data for identifier'
        if isinstance(identifier, six.string_types):
            return identifier, r[identifier]
        elif is_numlike(identifier):
            name = r.dtype.names[int(identifier)]
            return name, r[name]
        else:
            raise TypeError('identifier must be a string or integer')

    xname, x = getname_val(cols[0])
    ynamelist = []

    if len(cols)==1:
        ax1 = fig.add_subplot(1,1,1)
        funcname = plotfuncs.get(cols[0], 'plot')
        func = getattr(ax1, funcname)
        func(x, **kwargs)
        ax1.set_ylabel(xname)
    else:
        N = len(cols)
        for i in range(1,N):
            if subplots:
                if i==1:
                    ax = ax1 = fig.add_subplot(N-1,1,i)
                else:
                    ax = fig.add_subplot(N-1,1,i, sharex=ax1)
            elif i==1:
                ax = fig.add_subplot(1,1,1)

            yname, y = getname_val(cols[i])
            ynamelist.append(yname)

            funcname = plotfuncs.get(cols[i], 'plot')
            func = getattr(ax, funcname)

            func(x, y, **kwargs)
            if subplots:
                ax.set_ylabel(yname)
            if ax.is_last_row():
                ax.set_xlabel(xname)
            else:
                ax.set_xlabel('')

    if not subplots:
        ax.legend(ynamelist, loc='best')

    if xname=='date':
        fig.autofmt_xdate()


def _autogen_docstring(base):
    """Autogenerated wrappers will get their docstring from a base function
    with an addendum."""
    #msg = "\n\nAdditional kwargs: hold = [True|False] overrides default hold state"
    msg = ''
    addendum = docstring.Appender(msg, '\n\n')
    return lambda func: addendum(docstring.copy_dedent(base)(func))

# This function cannot be generated by boilerplate.py because it may
# return an image or a line.
@_autogen_docstring(Axes.spy)
def spy(Z, precision=0, marker=None, markersize=None, aspect='equal', **kwargs):
    ax = gca()
    hold = kwargs.pop('hold', None)
    # allow callers to override the hold state by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.spy(Z, precision, marker, markersize, aspect, **kwargs)
    finally:
        ax._hold = washold
    if isinstance(ret, cm.ScalarMappable):
        sci(ret)
    return ret

# just to be safe.  Interactive mode can be turned on without
# calling `plt.ion()` so register it again here.
# This is safe because multiple calls to `install_repl_displayhook`
# are no-ops and the registered function respect `mpl.is_interactive()`
# to determine if they should trigger a draw.
install_repl_displayhook()

################# REMAINING CONTENT GENERATED BY boilerplate.py ##############


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.acorr)
def acorr(x, hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.acorr(x, data=data, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.angle_spectrum)
def angle_spectrum(x, Fs=None, Fc=None, window=None, pad_to=None, sides=None,
                   hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.angle_spectrum(x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to,
                                sides=sides, data=data, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.arrow)
def arrow(x, y, dx, dy, hold=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.arrow(x, y, dx, dy, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.axhline)
def axhline(y=0, xmin=0, xmax=1, hold=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.axhline(y=y, xmin=xmin, xmax=xmax, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.axhspan)
def axhspan(ymin, ymax, xmin=0, xmax=1, hold=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.axhspan(ymin, ymax, xmin=xmin, xmax=xmax, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.axvline)
def axvline(x=0, ymin=0, ymax=1, hold=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.axvline(x=x, ymin=ymin, ymax=ymax, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.axvspan)
def axvspan(xmin, xmax, ymin=0, ymax=1, hold=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.axvspan(xmin, xmax, ymin=ymin, ymax=ymax, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.bar)
def bar(*args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.bar(*args, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.barh)
def barh(*args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.barh(*args, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.broken_barh)
def broken_barh(xranges, yrange, hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.broken_barh(xranges, yrange, data=data, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.boxplot)
def boxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None,
            widths=None, patch_artist=None, bootstrap=None, usermedians=None,
            conf_intervals=None, meanline=None, showmeans=None, showcaps=None,
            showbox=None, showfliers=None, boxprops=None, labels=None,
            flierprops=None, medianprops=None, meanprops=None, capprops=None,
            whiskerprops=None, manage_xticks=True, autorange=False, zorder=None,
            hold=None, data=None):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.boxplot(x, notch=notch, sym=sym, vert=vert, whis=whis,
                         positions=positions, widths=widths,
                         patch_artist=patch_artist, bootstrap=bootstrap,
                         usermedians=usermedians,
                         conf_intervals=conf_intervals, meanline=meanline,
                         showmeans=showmeans, showcaps=showcaps,
                         showbox=showbox, showfliers=showfliers,
                         boxprops=boxprops, labels=labels,
                         flierprops=flierprops, medianprops=medianprops,
                         meanprops=meanprops, capprops=capprops,
                         whiskerprops=whiskerprops,
                         manage_xticks=manage_xticks, autorange=autorange,
                         zorder=zorder, data=data)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.cohere)
def cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
           window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default',
           scale_by_freq=None, hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.cohere(x, y, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend,
                        window=window, noverlap=noverlap, pad_to=pad_to,
                        sides=sides, scale_by_freq=scale_by_freq, data=data,
                        **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.clabel)
def clabel(CS, *args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.clabel(CS, *args, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.contour)
def contour(*args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.contour(*args, **kwargs)
    finally:
        ax._hold = washold
    if ret._A is not None: sci(ret)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.contourf)
def contourf(*args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.contourf(*args, **kwargs)
    finally:
        ax._hold = washold
    if ret._A is not None: sci(ret)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.csd)
def csd(x, y, NFFT=None, Fs=None, Fc=None, detrend=None, window=None,
        noverlap=None, pad_to=None, sides=None, scale_by_freq=None,
        return_line=None, hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.csd(x, y, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend,
                     window=window, noverlap=noverlap, pad_to=pad_to,
                     sides=sides, scale_by_freq=scale_by_freq,
                     return_line=return_line, data=data, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.errorbar)
def errorbar(x, y, yerr=None, xerr=None, fmt='', ecolor=None, elinewidth=None,
             capsize=None, barsabove=False, lolims=False, uplims=False,
             xlolims=False, xuplims=False, errorevery=1, capthick=None,
             hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.errorbar(x, y, yerr=yerr, xerr=xerr, fmt=fmt, ecolor=ecolor,
                          elinewidth=elinewidth, capsize=capsize,
                          barsabove=barsabove, lolims=lolims, uplims=uplims,
                          xlolims=xlolims, xuplims=xuplims,
                          errorevery=errorevery, capthick=capthick, data=data,
                          **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.eventplot)
def eventplot(positions, orientation='horizontal', lineoffsets=1, linelengths=1,
              linewidths=None, colors=None, linestyles='solid', hold=None,
              data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.eventplot(positions, orientation=orientation,
                           lineoffsets=lineoffsets, linelengths=linelengths,
                           linewidths=linewidths, colors=colors,
                           linestyles=linestyles, data=data, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.fill)
def fill(*args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.fill(*args, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.fill_between)
def fill_between(x, y1, y2=0, where=None, interpolate=False, step=None,
                 hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.fill_between(x, y1, y2=y2, where=where,
                              interpolate=interpolate, step=step, data=data,
                              **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.fill_betweenx)
def fill_betweenx(y, x1, x2=0, where=None, step=None, interpolate=False,
                  hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.fill_betweenx(y, x1, x2=x2, where=where, step=step,
                               interpolate=interpolate, data=data, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.hexbin)
def hexbin(x, y, C=None, gridsize=100, bins=None, xscale='linear',
           yscale='linear', extent=None, cmap=None, norm=None, vmin=None,
           vmax=None, alpha=None, linewidths=None, edgecolors='face',
           reduce_C_function=np.mean, mincnt=None, marginals=False, hold=None,
           data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.hexbin(x, y, C=C, gridsize=gridsize, bins=bins, xscale=xscale,
                        yscale=yscale, extent=extent, cmap=cmap, norm=norm,
                        vmin=vmin, vmax=vmax, alpha=alpha,
                        linewidths=linewidths, edgecolors=edgecolors,
                        reduce_C_function=reduce_C_function, mincnt=mincnt,
                        marginals=marginals, data=data, **kwargs)
    finally:
        ax._hold = washold
    sci(ret)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.hist)
def hist(x, bins=None, range=None, density=None, weights=None, cumulative=False,
         bottom=None, histtype='bar', align='mid', orientation='vertical',
         rwidth=None, log=False, color=None, label=None, stacked=False,
         normed=None, hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.hist(x, bins=bins, range=range, density=density,
                      weights=weights, cumulative=cumulative, bottom=bottom,
                      histtype=histtype, align=align, orientation=orientation,
                      rwidth=rwidth, log=log, color=color, label=label,
                      stacked=stacked, normed=normed, data=data, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.hist2d)
def hist2d(x, y, bins=10, range=None, normed=False, weights=None, cmin=None,
           cmax=None, hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.hist2d(x, y, bins=bins, range=range, normed=normed,
                        weights=weights, cmin=cmin, cmax=cmax, data=data,
                        **kwargs)
    finally:
        ax._hold = washold
    sci(ret[-1])
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.hlines)
def hlines(y, xmin, xmax, colors='k', linestyles='solid', label='', hold=None,
           data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.hlines(y, xmin, xmax, colors=colors, linestyles=linestyles,
                        label=label, data=data, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.imshow)
def imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None,
           vmin=None, vmax=None, origin=None, extent=None, shape=None,
           filternorm=1, filterrad=4.0, imlim=None, resample=None, url=None,
           hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.imshow(X, cmap=cmap, norm=norm, aspect=aspect,
                        interpolation=interpolation, alpha=alpha, vmin=vmin,
                        vmax=vmax, origin=origin, extent=extent, shape=shape,
                        filternorm=filternorm, filterrad=filterrad,
                        imlim=imlim, resample=resample, url=url, data=data,
                        **kwargs)
    finally:
        ax._hold = washold
    sci(ret)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.loglog)
def loglog(*args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.loglog(*args, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.magnitude_spectrum)
def magnitude_spectrum(x, Fs=None, Fc=None, window=None, pad_to=None,
                       sides=None, scale=None, hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.magnitude_spectrum(x, Fs=Fs, Fc=Fc, window=window,
                                    pad_to=pad_to, sides=sides, scale=scale,
                                    data=data, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.pcolor)
def pcolor(*args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.pcolor(*args, **kwargs)
    finally:
        ax._hold = washold
    sci(ret)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.pcolormesh)
def pcolormesh(*args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.pcolormesh(*args, **kwargs)
    finally:
        ax._hold = washold
    sci(ret)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.phase_spectrum)
def phase_spectrum(x, Fs=None, Fc=None, window=None, pad_to=None, sides=None,
                   hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.phase_spectrum(x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to,
                                sides=sides, data=data, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.pie)
def pie(x, explode=None, labels=None, colors=None, autopct=None,
        pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None,
        radius=None, counterclock=True, wedgeprops=None, textprops=None,
        center=(0, 0), frame=False, rotatelabels=False, hold=None, data=None):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.pie(x, explode=explode, labels=labels, colors=colors,
                     autopct=autopct, pctdistance=pctdistance, shadow=shadow,
                     labeldistance=labeldistance, startangle=startangle,
                     radius=radius, counterclock=counterclock,
                     wedgeprops=wedgeprops, textprops=textprops, center=center,
                     frame=frame, rotatelabels=rotatelabels, data=data)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.plot)
def plot(*args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.plot(*args, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.plot_date)
def plot_date(x, y, fmt='o', tz=None, xdate=True, ydate=False, hold=None,
              data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.plot_date(x, y, fmt=fmt, tz=tz, xdate=xdate, ydate=ydate,
                           data=data, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.psd)
def psd(x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None,
        noverlap=None, pad_to=None, sides=None, scale_by_freq=None,
        return_line=None, hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.psd(x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend,
                     window=window, noverlap=noverlap, pad_to=pad_to,
                     sides=sides, scale_by_freq=scale_by_freq,
                     return_line=return_line, data=data, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.quiver)
def quiver(*args, **kw):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kw.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.quiver(*args, **kw)
    finally:
        ax._hold = washold
    sci(ret)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.quiverkey)
def quiverkey(*args, **kw):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kw.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.quiverkey(*args, **kw)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.scatter)
def scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None,
            vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None,
            hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.scatter(x, y, s=s, c=c, marker=marker, cmap=cmap, norm=norm,
                         vmin=vmin, vmax=vmax, alpha=alpha,
                         linewidths=linewidths, verts=verts,
                         edgecolors=edgecolors, data=data, **kwargs)
    finally:
        ax._hold = washold
    sci(ret)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.semilogx)
def semilogx(*args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.semilogx(*args, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.semilogy)
def semilogy(*args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.semilogy(*args, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.specgram)
def specgram(x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None,
             noverlap=None, cmap=None, xextent=None, pad_to=None, sides=None,
             scale_by_freq=None, mode=None, scale=None, vmin=None, vmax=None,
             hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.specgram(x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend,
                          window=window, noverlap=noverlap, cmap=cmap,
                          xextent=xextent, pad_to=pad_to, sides=sides,
                          scale_by_freq=scale_by_freq, mode=mode, scale=scale,
                          vmin=vmin, vmax=vmax, data=data, **kwargs)
    finally:
        ax._hold = washold
    sci(ret[-1])
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.stackplot)
def stackplot(x, *args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.stackplot(x, *args, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.stem)
def stem(*args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.stem(*args, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.step)
def step(x, y, *args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.step(x, y, *args, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.streamplot)
def streamplot(x, y, u, v, density=1, linewidth=None, color=None, cmap=None,
               norm=None, arrowsize=1, arrowstyle='-|>', minlength=0.1,
               transform=None, zorder=None, start_points=None, maxlength=4.0,
               integration_direction='both', hold=None, data=None):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.streamplot(x, y, u, v, density=density, linewidth=linewidth,
                            color=color, cmap=cmap, norm=norm,
                            arrowsize=arrowsize, arrowstyle=arrowstyle,
                            minlength=minlength, transform=transform,
                            zorder=zorder, start_points=start_points,
                            maxlength=maxlength,
                            integration_direction=integration_direction,
                            data=data)
    finally:
        ax._hold = washold
    sci(ret.lines)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.tricontour)
def tricontour(*args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.tricontour(*args, **kwargs)
    finally:
        ax._hold = washold
    if ret._A is not None: sci(ret)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.tricontourf)
def tricontourf(*args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.tricontourf(*args, **kwargs)
    finally:
        ax._hold = washold
    if ret._A is not None: sci(ret)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.tripcolor)
def tripcolor(*args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.tripcolor(*args, **kwargs)
    finally:
        ax._hold = washold
    sci(ret)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.triplot)
def triplot(*args, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kwargs.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.triplot(*args, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.violinplot)
def violinplot(dataset, positions=None, vert=True, widths=0.5, showmeans=False,
               showextrema=True, showmedians=False, points=100, bw_method=None,
               hold=None, data=None):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.violinplot(dataset, positions=positions, vert=vert,
                            widths=widths, showmeans=showmeans,
                            showextrema=showextrema, showmedians=showmedians,
                            points=points, bw_method=bw_method, data=data)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.vlines)
def vlines(x, ymin, ymax, colors='k', linestyles='solid', label='', hold=None,
           data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.vlines(x, ymin, ymax, colors=colors, linestyles=linestyles,
                        label=label, data=data, **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.xcorr)
def xcorr(x, y, normed=True, detrend=mlab.detrend_none, usevlines=True,
          maxlags=10, hold=None, data=None, **kwargs):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold

    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.xcorr(x, y, normed=normed, detrend=detrend,
                       usevlines=usevlines, maxlags=maxlags, data=data,
                       **kwargs)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@_autogen_docstring(Axes.barbs)
def barbs(*args, **kw):
    ax = gca()
    # Deprecated: allow callers to override the hold state
    # by passing hold=True|False
    washold = ax._hold
    hold = kw.pop('hold', None)
    if hold is not None:
        ax._hold = hold
        from matplotlib.cbook import mplDeprecation
        warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
                      mplDeprecation)
    try:
        ret = ax.barbs(*args, **kw)
    finally:
        ax._hold = washold

    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.cla)
def cla():
    ret = gca().cla()
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.grid)
def grid(b=None, which='major', axis='both', **kwargs):
    ret = gca().grid(b=b, which=which, axis=axis, **kwargs)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.legend)
def legend(*args, **kwargs):
    ret = gca().legend(*args, **kwargs)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.table)
def table(**kwargs):
    ret = gca().table(**kwargs)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.text)
def text(x, y, s, fontdict=None, withdash=False, **kwargs):
    ret = gca().text(x, y, s, fontdict=fontdict, withdash=withdash, **kwargs)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.annotate)
def annotate(*args, **kwargs):
    ret = gca().annotate(*args, **kwargs)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.ticklabel_format)
def ticklabel_format(**kwargs):
    ret = gca().ticklabel_format(**kwargs)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.locator_params)
def locator_params(axis='both', tight=None, **kwargs):
    ret = gca().locator_params(axis=axis, tight=tight, **kwargs)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.tick_params)
def tick_params(axis='both', **kwargs):
    ret = gca().tick_params(axis=axis, **kwargs)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.margins)
def margins(*args, **kw):
    ret = gca().margins(*args, **kw)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.autoscale)
def autoscale(enable=True, axis='both', tight=None):
    ret = gca().autoscale(enable=enable, axis=axis, tight=tight)
    return ret

# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def autumn():
    '''
    set the default colormap to autumn and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='autumn')
    im = gci()

    if im is not None:
        im.set_cmap(cm.autumn)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def bone():
    '''
    set the default colormap to bone and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='bone')
    im = gci()

    if im is not None:
        im.set_cmap(cm.bone)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def cool():
    '''
    set the default colormap to cool and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='cool')
    im = gci()

    if im is not None:
        im.set_cmap(cm.cool)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def copper():
    '''
    set the default colormap to copper and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='copper')
    im = gci()

    if im is not None:
        im.set_cmap(cm.copper)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def flag():
    '''
    set the default colormap to flag and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='flag')
    im = gci()

    if im is not None:
        im.set_cmap(cm.flag)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def gray():
    '''
    set the default colormap to gray and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='gray')
    im = gci()

    if im is not None:
        im.set_cmap(cm.gray)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def hot():
    '''
    set the default colormap to hot and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='hot')
    im = gci()

    if im is not None:
        im.set_cmap(cm.hot)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def hsv():
    '''
    set the default colormap to hsv and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='hsv')
    im = gci()

    if im is not None:
        im.set_cmap(cm.hsv)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def jet():
    '''
    set the default colormap to jet and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='jet')
    im = gci()

    if im is not None:
        im.set_cmap(cm.jet)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def pink():
    '''
    set the default colormap to pink and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='pink')
    im = gci()

    if im is not None:
        im.set_cmap(cm.pink)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def prism():
    '''
    set the default colormap to prism and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='prism')
    im = gci()

    if im is not None:
        im.set_cmap(cm.prism)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def spring():
    '''
    set the default colormap to spring and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='spring')
    im = gci()

    if im is not None:
        im.set_cmap(cm.spring)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def summer():
    '''
    set the default colormap to summer and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='summer')
    im = gci()

    if im is not None:
        im.set_cmap(cm.summer)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def winter():
    '''
    set the default colormap to winter and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='winter')
    im = gci()

    if im is not None:
        im.set_cmap(cm.winter)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def magma():
    '''
    set the default colormap to magma and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='magma')
    im = gci()

    if im is not None:
        im.set_cmap(cm.magma)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def inferno():
    '''
    set the default colormap to inferno and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='inferno')
    im = gci()

    if im is not None:
        im.set_cmap(cm.inferno)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def plasma():
    '''
    set the default colormap to plasma and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='plasma')
    im = gci()

    if im is not None:
        im.set_cmap(cm.plasma)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def viridis():
    '''
    set the default colormap to viridis and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='viridis')
    im = gci()

    if im is not None:
        im.set_cmap(cm.viridis)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def nipy_spectral():
    '''
    set the default colormap to nipy_spectral and apply to current image if any.
    See help(colormaps) for more information
    '''
    rc('image', cmap='nipy_spectral')
    im = gci()

    if im is not None:
        im.set_cmap(cm.nipy_spectral)


# This function was autogenerated by boilerplate.py.  Do not edit as
# changes will be lost
def spectral():
    '''
    set the default colormap to spectral and apply to current image if any.
    See help(colormaps) for more information
    '''
    from matplotlib.cbook import warn_deprecated
    warn_deprecated(
                    "2.0",
                    name="spectral",
                    obj_type="colormap"
                    )

    rc('image', cmap='spectral')
    im = gci()

    if im is not None:
        im.set_cmap(cm.spectral)

_setup_pyplot_info_docstrings()