/usr/lib/python2.7/dist-packages/matplotlib/spines.py is in python-matplotlib 2.1.1-2ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 | from __future__ import (absolute_import, division, print_function,
unicode_literals)
import six
import matplotlib
import matplotlib.artist as martist
from matplotlib.artist import allow_rasterization
from matplotlib import docstring
import matplotlib.transforms as mtransforms
import matplotlib.lines as mlines
import matplotlib.patches as mpatches
import matplotlib.path as mpath
import matplotlib.cbook as cbook
import numpy as np
import warnings
rcParams = matplotlib.rcParams
class Spine(mpatches.Patch):
"""an axis spine -- the line noting the data area boundaries
Spines are the lines connecting the axis tick marks and noting the
boundaries of the data area. They can be placed at arbitrary
positions. See function:`~matplotlib.spines.Spine.set_position`
for more information.
The default position is ``('outward',0)``.
Spines are subclasses of class:`~matplotlib.patches.Patch`, and
inherit much of their behavior.
Spines draw a line, a circle, or an arc depending if
function:`~matplotlib.spines.Spine.set_patch_line`,
function:`~matplotlib.spines.Spine.set_patch_circle`, or
function:`~matplotlib.spines.Spine.set_patch_arc` has been called.
Line-like is the default.
"""
def __str__(self):
return "Spine"
@docstring.dedent_interpd
def __init__(self, axes, spine_type, path, **kwargs):
"""
- *axes* : the Axes instance containing the spine
- *spine_type* : a string specifying the spine type
- *path* : the path instance used to draw the spine
Valid kwargs are:
%(Patch)s
"""
super(Spine, self).__init__(**kwargs)
self.axes = axes
self.set_figure(self.axes.figure)
self.spine_type = spine_type
self.set_facecolor('none')
self.set_edgecolor(rcParams['axes.edgecolor'])
self.set_linewidth(rcParams['axes.linewidth'])
self.set_capstyle('projecting')
self.axis = None
self.set_zorder(2.5)
self.set_transform(self.axes.transData) # default transform
self._bounds = None # default bounds
self._smart_bounds = False
# Defer initial position determination. (Not much support for
# non-rectangular axes is currently implemented, and this lets
# them pass through the spines machinery without errors.)
self._position = None
if not isinstance(path, matplotlib.path.Path):
msg = "'path' must be an instance of 'matplotlib.path.Path'"
raise ValueError(msg)
self._path = path
# To support drawing both linear and circular spines, this
# class implements Patch behavior three ways. If
# self._patch_type == 'line', behave like a mpatches.PathPatch
# instance. If self._patch_type == 'circle', behave like a
# mpatches.Ellipse instance. If self._patch_type == 'arc', behave like
# a mpatches.Arc instance.
self._patch_type = 'line'
# Behavior copied from mpatches.Ellipse:
# Note: This cannot be calculated until this is added to an Axes
self._patch_transform = mtransforms.IdentityTransform()
def set_smart_bounds(self, value):
"""set the spine and associated axis to have smart bounds"""
self._smart_bounds = value
# also set the axis if possible
if self.spine_type in ('left', 'right'):
self.axes.yaxis.set_smart_bounds(value)
elif self.spine_type in ('top', 'bottom'):
self.axes.xaxis.set_smart_bounds(value)
self.stale = True
def get_smart_bounds(self):
"""get whether the spine has smart bounds"""
return self._smart_bounds
def set_patch_arc(self, center, radius, theta1, theta2):
"""set the spine to be arc-like"""
self._patch_type = 'arc'
self._center = center
self._width = radius * 2
self._height = radius * 2
self._theta1 = theta1
self._theta2 = theta2
self._path = mpath.Path.arc(theta1, theta2)
# arc drawn on axes transform
self.set_transform(self.axes.transAxes)
self.stale = True
def set_patch_circle(self, center, radius):
"""set the spine to be circular"""
self._patch_type = 'circle'
self._center = center
self._width = radius * 2
self._height = radius * 2
# circle drawn on axes transform
self.set_transform(self.axes.transAxes)
self.stale = True
def set_patch_line(self):
"""set the spine to be linear"""
self._patch_type = 'line'
self.stale = True
# Behavior copied from mpatches.Ellipse:
def _recompute_transform(self):
"""NOTE: This cannot be called until after this has been added
to an Axes, otherwise unit conversion will fail. This
makes it very important to call the accessor method and
not directly access the transformation member variable.
"""
assert self._patch_type in ('arc', 'circle')
center = (self.convert_xunits(self._center[0]),
self.convert_yunits(self._center[1]))
width = self.convert_xunits(self._width)
height = self.convert_yunits(self._height)
self._patch_transform = mtransforms.Affine2D() \
.scale(width * 0.5, height * 0.5) \
.translate(*center)
def get_patch_transform(self):
if self._patch_type in ('arc', 'circle'):
self._recompute_transform()
return self._patch_transform
else:
return super(Spine, self).get_patch_transform()
def get_path(self):
return self._path
def _ensure_position_is_set(self):
if self._position is None:
# default position
self._position = ('outward', 0.0) # in points
self.set_position(self._position)
def register_axis(self, axis):
"""register an axis
An axis should be registered with its corresponding spine from
the Axes instance. This allows the spine to clear any axis
properties when needed.
"""
self.axis = axis
if self.axis is not None:
self.axis.cla()
self.stale = True
def cla(self):
"""Clear the current spine"""
self._position = None # clear position
if self.axis is not None:
self.axis.cla()
def is_frame_like(self):
"""return True if directly on axes frame
This is useful for determining if a spine is the edge of an
old style MPL plot. If so, this function will return True.
"""
self._ensure_position_is_set()
position = self._position
if isinstance(position, six.string_types):
if position == 'center':
position = ('axes', 0.5)
elif position == 'zero':
position = ('data', 0)
if len(position) != 2:
raise ValueError("position should be 2-tuple")
position_type, amount = position
if position_type == 'outward' and amount == 0:
return True
else:
return False
def _adjust_location(self):
"""automatically set spine bounds to the view interval"""
if self.spine_type == 'circle':
return
if self._bounds is None:
if self.spine_type in ('left', 'right'):
low, high = self.axes.viewLim.intervaly
elif self.spine_type in ('top', 'bottom'):
low, high = self.axes.viewLim.intervalx
else:
raise ValueError('unknown spine spine_type: %s' %
self.spine_type)
if self._smart_bounds:
# attempt to set bounds in sophisticated way
# handle inverted limits
viewlim_low, viewlim_high = sorted([low, high])
if self.spine_type in ('left', 'right'):
datalim_low, datalim_high = self.axes.dataLim.intervaly
ticks = self.axes.get_yticks()
elif self.spine_type in ('top', 'bottom'):
datalim_low, datalim_high = self.axes.dataLim.intervalx
ticks = self.axes.get_xticks()
# handle inverted limits
ticks = np.sort(ticks)
datalim_low, datalim_high = sorted([datalim_low, datalim_high])
if datalim_low < viewlim_low:
# Data extends past view. Clip line to view.
low = viewlim_low
else:
# Data ends before view ends.
cond = (ticks <= datalim_low) & (ticks >= viewlim_low)
tickvals = ticks[cond]
if len(tickvals):
# A tick is less than or equal to lowest data point.
low = tickvals[-1]
else:
# No tick is available
low = datalim_low
low = max(low, viewlim_low)
if datalim_high > viewlim_high:
# Data extends past view. Clip line to view.
high = viewlim_high
else:
# Data ends before view ends.
cond = (ticks >= datalim_high) & (ticks <= viewlim_high)
tickvals = ticks[cond]
if len(tickvals):
# A tick is greater than or equal to highest data
# point.
high = tickvals[0]
else:
# No tick is available
high = datalim_high
high = min(high, viewlim_high)
else:
low, high = self._bounds
if self._patch_type == 'arc':
if self.spine_type in ('bottom', 'top'):
try:
direction = self.axes.get_theta_direction()
except AttributeError:
direction = 1
try:
offset = self.axes.get_theta_offset()
except AttributeError:
offset = 0
low = low * direction + offset
high = high * direction + offset
if low > high:
low, high = high, low
self._path = mpath.Path.arc(np.rad2deg(low), np.rad2deg(high))
if self.spine_type == 'bottom':
rmin, rmax = self.axes.viewLim.intervaly
try:
rorigin = self.axes.get_rorigin()
except AttributeError:
rorigin = rmin
scaled_diameter = (rmin - rorigin) / (rmax - rorigin)
self._height = scaled_diameter
self._width = scaled_diameter
else:
raise ValueError('unable to set bounds for spine "%s"' %
self.spine_type)
else:
v1 = self._path.vertices
assert v1.shape == (2, 2), 'unexpected vertices shape'
if self.spine_type in ['left', 'right']:
v1[0, 1] = low
v1[1, 1] = high
elif self.spine_type in ['bottom', 'top']:
v1[0, 0] = low
v1[1, 0] = high
else:
raise ValueError('unable to set bounds for spine "%s"' %
self.spine_type)
@allow_rasterization
def draw(self, renderer):
self._adjust_location()
ret = super(Spine, self).draw(renderer)
self.stale = False
return ret
def _calc_offset_transform(self):
"""calculate the offset transform performed by the spine"""
self._ensure_position_is_set()
position = self._position
if isinstance(position, six.string_types):
if position == 'center':
position = ('axes', 0.5)
elif position == 'zero':
position = ('data', 0)
assert len(position) == 2, "position should be 2-tuple"
position_type, amount = position
assert position_type in ('axes', 'outward', 'data')
if position_type == 'outward':
if amount == 0:
# short circuit commonest case
self._spine_transform = ('identity',
mtransforms.IdentityTransform())
elif self.spine_type in ['left', 'right', 'top', 'bottom']:
offset_vec = {'left': (-1, 0),
'right': (1, 0),
'bottom': (0, -1),
'top': (0, 1),
}[self.spine_type]
# calculate x and y offset in dots
offset_x = amount * offset_vec[0] / 72.0
offset_y = amount * offset_vec[1] / 72.0
self._spine_transform = ('post',
mtransforms.ScaledTranslation(
offset_x,
offset_y,
self.figure.dpi_scale_trans))
else:
warnings.warn('unknown spine type "%s": no spine '
'offset performed' % self.spine_type)
self._spine_transform = ('identity',
mtransforms.IdentityTransform())
elif position_type == 'axes':
if self.spine_type in ('left', 'right'):
self._spine_transform = ('pre',
mtransforms.Affine2D.from_values(
# keep y unchanged, fix x at
# amount
0, 0, 0, 1, amount, 0))
elif self.spine_type in ('bottom', 'top'):
self._spine_transform = ('pre',
mtransforms.Affine2D.from_values(
# keep x unchanged, fix y at
# amount
1, 0, 0, 0, 0, amount))
else:
warnings.warn('unknown spine type "%s": no spine '
'offset performed' % self.spine_type)
self._spine_transform = ('identity',
mtransforms.IdentityTransform())
elif position_type == 'data':
if self.spine_type in ('right', 'top'):
# The right and top spines have a default position of 1 in
# axes coordinates. When specifying the position in data
# coordinates, we need to calculate the position relative to 0.
amount -= 1
if self.spine_type in ('left', 'right'):
self._spine_transform = ('data',
mtransforms.Affine2D().translate(
amount, 0))
elif self.spine_type in ('bottom', 'top'):
self._spine_transform = ('data',
mtransforms.Affine2D().translate(
0, amount))
else:
warnings.warn('unknown spine type "%s": no spine '
'offset performed' % self.spine_type)
self._spine_transform = ('identity',
mtransforms.IdentityTransform())
def set_position(self, position):
"""set the position of the spine
Spine position is specified by a 2 tuple of (position type,
amount). The position types are:
* 'outward' : place the spine out from the data area by the
specified number of points. (Negative values specify placing the
spine inward.)
* 'axes' : place the spine at the specified Axes coordinate (from
0.0-1.0).
* 'data' : place the spine at the specified data coordinate.
Additionally, shorthand notations define a special positions:
* 'center' -> ('axes',0.5)
* 'zero' -> ('data', 0.0)
"""
if position in ('center', 'zero'):
# special positions
pass
else:
if len(position) != 2:
raise ValueError("position should be 'center' or 2-tuple")
if position[0] not in ['outward', 'axes', 'data']:
msg = ("position[0] should be in [ 'outward' | 'axes' |"
" 'data' ]")
raise ValueError(msg)
self._position = position
self._calc_offset_transform()
self.set_transform(self.get_spine_transform())
if self.axis is not None:
self.axis.reset_ticks()
self.stale = True
def get_position(self):
"""get the spine position"""
self._ensure_position_is_set()
return self._position
def get_spine_transform(self):
"""get the spine transform"""
self._ensure_position_is_set()
what, how = self._spine_transform
if what == 'data':
# special case data based spine locations
data_xform = self.axes.transScale + \
(how + self.axes.transLimits + self.axes.transAxes)
if self.spine_type in ['left', 'right']:
result = mtransforms.blended_transform_factory(
data_xform, self.axes.transData)
elif self.spine_type in ['top', 'bottom']:
result = mtransforms.blended_transform_factory(
self.axes.transData, data_xform)
else:
raise ValueError('unknown spine spine_type: %s' %
self.spine_type)
return result
if self.spine_type in ['left', 'right']:
base_transform = self.axes.get_yaxis_transform(which='grid')
elif self.spine_type in ['top', 'bottom']:
base_transform = self.axes.get_xaxis_transform(which='grid')
else:
raise ValueError('unknown spine spine_type: %s' %
self.spine_type)
if what == 'identity':
return base_transform
elif what == 'post':
return base_transform + how
elif what == 'pre':
return how + base_transform
else:
raise ValueError("unknown spine_transform type: %s" % what)
def set_bounds(self, low, high):
"""Set the bounds of the spine."""
if self.spine_type == 'circle':
raise ValueError(
'set_bounds() method incompatible with circular spines')
self._bounds = (low, high)
self.stale = True
def get_bounds(self):
"""Get the bounds of the spine."""
return self._bounds
@classmethod
def linear_spine(cls, axes, spine_type, **kwargs):
"""
(staticmethod) Returns a linear :class:`Spine`.
"""
# all values of 13 get replaced upon call to set_bounds()
if spine_type == 'left':
path = mpath.Path([(0.0, 13), (0.0, 13)])
elif spine_type == 'right':
path = mpath.Path([(1.0, 13), (1.0, 13)])
elif spine_type == 'bottom':
path = mpath.Path([(13, 0.0), (13, 0.0)])
elif spine_type == 'top':
path = mpath.Path([(13, 1.0), (13, 1.0)])
else:
raise ValueError('unable to make path for spine "%s"' % spine_type)
result = cls(axes, spine_type, path, **kwargs)
result.set_visible(rcParams['axes.spines.{0}'.format(spine_type)])
return result
@classmethod
def arc_spine(cls, axes, spine_type, center, radius, theta1, theta2,
**kwargs):
"""
(classmethod) Returns an arc :class:`Spine`.
"""
path = mpath.Path.arc(theta1, theta2)
result = cls(axes, spine_type, path, **kwargs)
result.set_patch_arc(center, radius, theta1, theta2)
return result
@classmethod
def circular_spine(cls, axes, center, radius, **kwargs):
"""
(staticmethod) Returns a circular :class:`Spine`.
"""
path = mpath.Path.unit_circle()
spine_type = 'circle'
result = cls(axes, spine_type, path, **kwargs)
result.set_patch_circle(center, radius)
return result
def set_color(self, c):
"""
Set the edgecolor.
ACCEPTS: matplotlib color arg or sequence of rgba tuples
.. seealso::
:meth:`set_facecolor`, :meth:`set_edgecolor`
For setting the edge or face color individually.
"""
# The facecolor of a spine is always 'none' by default -- let
# the user change it manually if desired.
self.set_edgecolor(c)
self.stale = True
|