This file is indexed.

/usr/lib/python2.7/dist-packages/matplotlib/ticker.py is in python-matplotlib 2.1.1-2ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
"""
Tick locating and formatting
============================

This module contains classes to support completely configurable tick
locating and formatting. Although the locators know nothing about major
or minor ticks, they are used by the Axis class to support major and
minor tick locating and formatting. Generic tick locators and
formatters are provided, as well as domain specific custom ones.

Default Formatter
-----------------

The default formatter identifies when the x-data being plotted is a
small range on top of a large off set. To reduce the chances that the
ticklabels overlap the ticks are labeled as deltas from a fixed offset.
For example::

   ax.plot(np.arange(2000, 2010), range(10))

will have tick of 0-9 with an offset of +2e3. If this is not desired
turn off the use of the offset on the default formatter::

   ax.get_xaxis().get_major_formatter().set_useOffset(False)

set the rcParam ``axes.formatter.useoffset=False`` to turn it off
globally, or set a different formatter.

Tick locating
-------------

The Locator class is the base class for all tick locators. The locators
handle autoscaling of the view limits based on the data limits, and the
choosing of tick locations. A useful semi-automatic tick locator is
`MultipleLocator`. It is initialized with a base, e.g., 10, and it picks
axis limits and ticks that are multiples of that base.

The Locator subclasses defined here are

:class:`AutoLocator`
    `MaxNLocator` with simple defaults.  This is the default tick locator for
    most plotting.

:class:`MaxNLocator`
    Finds up to a max number of intervals with ticks at nice locations.

:class:`LinearLocator`
    Space ticks evenly from min to max.

:class:`LogLocator`
    Space ticks logarithmically from min to max.

:class:`MultipleLocator`
    Ticks and range are a multiple of base; either integer or float.

:class:`FixedLocator`
    Tick locations are fixed.

:class:`IndexLocator`
    Locator for index plots (e.g., where ``x = range(len(y))``).

:class:`NullLocator`
    No ticks.

:class:`SymmetricalLogLocator`
    Locator for use with with the symlog norm; works like `LogLocator` for the
    part outside of the threshold and adds 0 if inside the limits.

:class:`LogitLocator`
    Locator for logit scaling.

:class:`OldAutoLocator`
    Choose a `MultipleLocator` and dynamically reassign it for intelligent
    ticking during navigation.

:class:`AutoMinorLocator`
    Locator for minor ticks when the axis is linear and the
    major ticks are uniformly spaced.  Subdivides the major
    tick interval into a specified number of minor intervals,
    defaulting to 4 or 5 depending on the major interval.


There are a number of locators specialized for date locations - see
the `dates` module.

You can define your own locator by deriving from Locator. You must
override the ``__call__`` method, which returns a sequence of locations,
and you will probably want to override the autoscale method to set the
view limits from the data limits.

If you want to override the default locator, use one of the above or a custom
locator and pass it to the x or y axis instance. The relevant methods are::

  ax.xaxis.set_major_locator(xmajor_locator)
  ax.xaxis.set_minor_locator(xminor_locator)
  ax.yaxis.set_major_locator(ymajor_locator)
  ax.yaxis.set_minor_locator(yminor_locator)

The default minor locator is `NullLocator`, i.e., no minor ticks on by default.

Tick formatting
---------------

Tick formatting is controlled by classes derived from Formatter. The formatter
operates on a single tick value and returns a string to the axis.

:class:`NullFormatter`
    No labels on the ticks.

:class:`IndexFormatter`
    Set the strings from a list of labels.

:class:`FixedFormatter`
    Set the strings manually for the labels.

:class:`FuncFormatter`
    User defined function sets the labels.

:class:`StrMethodFormatter`
    Use string `format` method.

:class:`FormatStrFormatter`
    Use an old-style sprintf format string.

:class:`ScalarFormatter`
    Default formatter for scalars: autopick the format string.

:class:`LogFormatter`
    Formatter for log axes.

:class:`LogFormatterExponent`
    Format values for log axis using ``exponent = log_base(value)``.

:class:`LogFormatterMathtext`
    Format values for log axis using ``exponent = log_base(value)``
    using Math text.

:class:`LogFormatterSciNotation`
    Format values for log axis using scientific notation.

:class:`LogitFormatter`
    Probability formatter.

:class:`EngFormatter`
    Format labels in engineering notation

:class:`PercentFormatter`
    Format labels as a percentage

You can derive your own formatter from the Formatter base class by
simply overriding the ``__call__`` method. The formatter class has
access to the axis view and data limits.

To control the major and minor tick label formats, use one of the
following methods::

  ax.xaxis.set_major_formatter(xmajor_formatter)
  ax.xaxis.set_minor_formatter(xminor_formatter)
  ax.yaxis.set_major_formatter(ymajor_formatter)
  ax.yaxis.set_minor_formatter(yminor_formatter)

See :ref:`sphx_glr_gallery_ticks_and_spines_major_minor_demo.py` for an
example of setting major and minor ticks. See the :mod:`matplotlib.dates`
module for more information and examples of using date locators and formatters.
"""

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import six

import itertools
import locale
import math
import numpy as np
from matplotlib import rcParams
from matplotlib import cbook
from matplotlib import transforms as mtransforms
from matplotlib.cbook import mplDeprecation

import warnings


__all__ = ('TickHelper', 'Formatter', 'FixedFormatter',
           'NullFormatter', 'FuncFormatter', 'FormatStrFormatter',
           'StrMethodFormatter', 'ScalarFormatter', 'LogFormatter',
           'LogFormatterExponent', 'LogFormatterMathtext',
           'IndexFormatter', 'LogFormatterSciNotation',
           'LogitFormatter', 'EngFormatter', 'PercentFormatter',
           'Locator', 'IndexLocator', 'FixedLocator', 'NullLocator',
           'LinearLocator', 'LogLocator', 'AutoLocator',
           'MultipleLocator', 'MaxNLocator', 'AutoMinorLocator',
           'SymmetricalLogLocator', 'LogitLocator')


if six.PY3:
    long = int


# Work around numpy/numpy#6127.
def _divmod(x, y):
    if isinstance(x, np.generic):
        x = x.item()
    if isinstance(y, np.generic):
        y = y.item()
    return six.moves.builtins.divmod(x, y)


def _mathdefault(s):
    return '\\mathdefault{%s}' % s


class _DummyAxis(object):
    def __init__(self, minpos=0):
        self.dataLim = mtransforms.Bbox.unit()
        self.viewLim = mtransforms.Bbox.unit()
        self._minpos = minpos

    def get_view_interval(self):
        return self.viewLim.intervalx

    def set_view_interval(self, vmin, vmax):
        self.viewLim.intervalx = vmin, vmax

    def get_minpos(self):
        return self._minpos

    def get_data_interval(self):
        return self.dataLim.intervalx

    def set_data_interval(self, vmin, vmax):
        self.dataLim.intervalx = vmin, vmax

    def get_tick_space(self):
        # Just use the long-standing default of nbins==9
        return 9


class TickHelper(object):
    axis = None

    def set_axis(self, axis):
        self.axis = axis

    def create_dummy_axis(self, **kwargs):
        if self.axis is None:
            self.axis = _DummyAxis(**kwargs)

    def set_view_interval(self, vmin, vmax):
        self.axis.set_view_interval(vmin, vmax)

    def set_data_interval(self, vmin, vmax):
        self.axis.set_data_interval(vmin, vmax)

    def set_bounds(self, vmin, vmax):
        self.set_view_interval(vmin, vmax)
        self.set_data_interval(vmin, vmax)


class Formatter(TickHelper):
    """
    Create a string based on a tick value and location.
    """
    # some classes want to see all the locs to help format
    # individual ones
    locs = []

    def __call__(self, x, pos=None):
        """
        Return the format for tick value `x` at position pos.
        ``pos=None`` indicates an unspecified location.
        """
        raise NotImplementedError('Derived must override')

    def format_data(self, value):
        """
        Returns the full string representation of the value with the
        position unspecified.
        """
        return self.__call__(value)

    def format_data_short(self, value):
        """
        Return a short string version of the tick value.

        Defaults to the position-independent long value.
        """
        return self.format_data(value)

    def get_offset(self):
        return ''

    def set_locs(self, locs):
        self.locs = locs

    def fix_minus(self, s):
        """
        Some classes may want to replace a hyphen for minus with the
        proper unicode symbol (U+2212) for typographical correctness.
        The default is to not replace it.

        Note, if you use this method, e.g., in :meth:`format_data` or
        call, you probably don't want to use it for
        :meth:`format_data_short` since the toolbar uses this for
        interactive coord reporting and I doubt we can expect GUIs
        across platforms will handle the unicode correctly.  So for
        now the classes that override :meth:`fix_minus` should have an
        explicit :meth:`format_data_short` method
        """
        return s


class IndexFormatter(Formatter):
    """
    Format the position x to the nearest i-th label where i=int(x+0.5)
    """
    def __init__(self, labels):
        self.labels = labels
        self.n = len(labels)

    def __call__(self, x, pos=None):
        """
        Return the format for tick value `x` at position pos.

        The position is ignored and the value is rounded to the nearest
        integer, which is used to look up the label.
        """
        i = int(x + 0.5)
        if i < 0 or i >= self.n:
            return ''
        else:
            return self.labels[i]


class NullFormatter(Formatter):
    """
    Always return the empty string.
    """
    def __call__(self, x, pos=None):
        """
        Returns an empty string for all inputs.
        """
        return ''


class FixedFormatter(Formatter):
    """
    Return fixed strings for tick labels based only on position, not
    value.
    """
    def __init__(self, seq):
        """
        Set the sequence of strings that will be used for labels.
        """
        self.seq = seq
        self.offset_string = ''

    def __call__(self, x, pos=None):
        """
        Returns the label that matches the position regardless of the
        value.

        For positions ``pos < len(seq)``, return `seq[i]` regardless of
        `x`. Otherwise return empty string. `seq` is the sequence of
        strings that this object was initialized with.
        """
        if pos is None or pos >= len(self.seq):
            return ''
        else:
            return self.seq[pos]

    def get_offset(self):
        return self.offset_string

    def set_offset_string(self, ofs):
        self.offset_string = ofs


class FuncFormatter(Formatter):
    """
    Use a user-defined function for formatting.

    The function should take in two inputs (a tick value ``x`` and a
    position ``pos``), and return a string containing the corresponding
    tick label.
    """
    def __init__(self, func):
        self.func = func

    def __call__(self, x, pos=None):
        """
        Return the value of the user defined function.

        `x` and `pos` are passed through as-is.
        """
        return self.func(x, pos)


class FormatStrFormatter(Formatter):
    """
    Use an old-style ('%' operator) format string to format the tick.

    The format string should have a single variable format (%) in it.
    It will be applied to the value (not the position) of the tick.
    """
    def __init__(self, fmt):
        self.fmt = fmt

    def __call__(self, x, pos=None):
        """
        Return the formatted label string.

        Only the value `x` is formatted. The position is ignored.
        """
        return self.fmt % x


class StrMethodFormatter(Formatter):
    """
    Use a new-style format string (as used by `str.format()`)
    to format the tick.

    The field used for the value must be labeled `x` and the field used
    for the position must be labeled `pos`.
    """
    def __init__(self, fmt):
        self.fmt = fmt

    def __call__(self, x, pos=None):
        """
        Return the formatted label string.

        `x` and `pos` are passed to `str.format` as keyword arguments
        with those exact names.
        """
        return self.fmt.format(x=x, pos=pos)


class OldScalarFormatter(Formatter):
    """
    Tick location is a plain old number.
    """

    def __call__(self, x, pos=None):
        """
        Return the format for tick val `x` based on the width of the
        axis.

        The position `pos` is ignored.
        """
        xmin, xmax = self.axis.get_view_interval()
        d = abs(xmax - xmin)

        return self.pprint_val(x, d)

    def pprint_val(self, x, d):
        """
        Formats the value `x` based on the size of the axis range `d`.
        """
        #if the number is not too big and it's an int, format it as an
        #int
        if abs(x) < 1e4 and x == int(x):
            return '%d' % x

        if d < 1e-2:
            fmt = '%1.3e'
        elif d < 1e-1:
            fmt = '%1.3f'
        elif d > 1e5:
            fmt = '%1.1e'
        elif d > 10:
            fmt = '%1.1f'
        elif d > 1:
            fmt = '%1.2f'
        else:
            fmt = '%1.3f'
        s = fmt % x
        #print d, x, fmt, s
        tup = s.split('e')
        if len(tup) == 2:
            mantissa = tup[0].rstrip('0').rstrip('.')
            sign = tup[1][0].replace('+', '')
            exponent = tup[1][1:].lstrip('0')
            s = '%se%s%s' % (mantissa, sign, exponent)
        else:
            s = s.rstrip('0').rstrip('.')
        return s


class ScalarFormatter(Formatter):
    """
    Format tick values as a number.

    Tick value is interpreted as a plain old number. If
    ``useOffset==True`` and the data range is much smaller than the data
    average, then an offset will be determined such that the tick labels
    are meaningful. Scientific notation is used for ``data < 10^-n`` or
    ``data >= 10^m``, where ``n`` and ``m`` are the power limits set
    using ``set_powerlimits((n,m))``. The defaults for these are
    controlled by the ``axes.formatter.limits`` rc parameter.
    """
    def __init__(self, useOffset=None, useMathText=None, useLocale=None):
        # useOffset allows plotting small data ranges with large offsets: for
        # example: [1+1e-9,1+2e-9,1+3e-9] useMathText will render the offset
        # and scientific notation in mathtext

        if useOffset is None:
            useOffset = rcParams['axes.formatter.useoffset']
        self._offset_threshold = rcParams['axes.formatter.offset_threshold']
        self.set_useOffset(useOffset)
        self._usetex = rcParams['text.usetex']
        if useMathText is None:
            useMathText = rcParams['axes.formatter.use_mathtext']
        self.set_useMathText(useMathText)
        self.orderOfMagnitude = 0
        self.format = ''
        self._scientific = True
        self._powerlimits = rcParams['axes.formatter.limits']
        if useLocale is None:
            useLocale = rcParams['axes.formatter.use_locale']
        self._useLocale = useLocale

    def get_useOffset(self):
        return self._useOffset

    def set_useOffset(self, val):
        if val in [True, False]:
            self.offset = 0
            self._useOffset = val
        else:
            self._useOffset = False
            self.offset = val

    useOffset = property(fget=get_useOffset, fset=set_useOffset)

    def get_useLocale(self):
        return self._useLocale

    def set_useLocale(self, val):
        if val is None:
            self._useLocale = rcParams['axes.formatter.use_locale']
        else:
            self._useLocale = val

    useLocale = property(fget=get_useLocale, fset=set_useLocale)

    def get_useMathText(self):
        return self._useMathText

    def set_useMathText(self, val):
        if val is None:
            self._useMathText = rcParams['axes.formatter.use_mathtext']
        else:
            self._useMathText = val

    useMathText = property(fget=get_useMathText, fset=set_useMathText)

    def fix_minus(self, s):
        """
        Replace hyphens with a unicode minus.
        """
        if rcParams['text.usetex'] or not rcParams['axes.unicode_minus']:
            return s
        else:
            return s.replace('-', '\N{MINUS SIGN}')

    def __call__(self, x, pos=None):
        """
        Return the format for tick value `x` at position `pos`.
        """
        if len(self.locs) == 0:
            return ''
        else:
            s = self.pprint_val(x)
            return self.fix_minus(s)

    def set_scientific(self, b):
        """
        Turn scientific notation on or off.

        .. seealso:: Method :meth:`set_powerlimits`
        """
        self._scientific = bool(b)

    def set_powerlimits(self, lims):
        """
        Sets size thresholds for scientific notation.

        ``lims`` is a two-element sequence containing the powers of 10
        that determine the switchover threshold. Numbers below
        ``10**lims[0]`` and above ``10**lims[1]`` will be displayed in
        scientific notation.

        For example, ``formatter.set_powerlimits((-3, 4))`` sets the
        pre-2007 default in which scientific notation is used for
        numbers less than 1e-3 or greater than 1e4.

        .. seealso:: Method :meth:`set_scientific`
        """
        if len(lims) != 2:
            raise ValueError("'lims' must be a sequence of length 2")
        self._powerlimits = lims

    def format_data_short(self, value):
        """
        Return a short formatted string representation of a number.
        """
        if self._useLocale:
            return locale.format_string('%-12g', (value,))
        else:
            return '%-12g' % value

    def format_data(self, value):
        """
        Return a formatted string representation of a number.
        """
        if self._useLocale:
            s = locale.format_string('%1.10e', (value,))
        else:
            s = '%1.10e' % value
        s = self._formatSciNotation(s)
        return self.fix_minus(s)

    def get_offset(self):
        """
        Return scientific notation, plus offset.
        """
        if len(self.locs) == 0:
            return ''
        s = ''
        if self.orderOfMagnitude or self.offset:
            offsetStr = ''
            sciNotStr = ''
            if self.offset:
                offsetStr = self.format_data(self.offset)
                if self.offset > 0:
                    offsetStr = '+' + offsetStr
            if self.orderOfMagnitude:
                if self._usetex or self._useMathText:
                    sciNotStr = self.format_data(10 ** self.orderOfMagnitude)
                else:
                    sciNotStr = '1e%d' % self.orderOfMagnitude
            if self._useMathText:
                if sciNotStr != '':
                    sciNotStr = r'\times%s' % _mathdefault(sciNotStr)
                s = ''.join(('$', sciNotStr, _mathdefault(offsetStr), '$'))
            elif self._usetex:
                if sciNotStr != '':
                    sciNotStr = r'\times%s' % sciNotStr
                s = ''.join(('$', sciNotStr, offsetStr, '$'))
            else:
                s = ''.join((sciNotStr, offsetStr))

        return self.fix_minus(s)

    def set_locs(self, locs):
        """
        Set the locations of the ticks.
        """
        self.locs = locs
        if len(self.locs) > 0:
            vmin, vmax = self.axis.get_view_interval()
            d = abs(vmax - vmin)
            if self._useOffset:
                self._compute_offset()
            self._set_orderOfMagnitude(d)
            self._set_format(vmin, vmax)

    def _compute_offset(self):
        locs = self.locs
        if locs is None or not len(locs):
            self.offset = 0
            return
        # Restrict to visible ticks.
        vmin, vmax = sorted(self.axis.get_view_interval())
        locs = np.asarray(locs)
        locs = locs[(vmin <= locs) & (locs <= vmax)]
        if not len(locs):
            self.offset = 0
            return
        lmin, lmax = locs.min(), locs.max()
        # Only use offset if there are at least two ticks and every tick has
        # the same sign.
        if lmin == lmax or lmin <= 0 <= lmax:
            self.offset = 0
            return
        # min, max comparing absolute values (we want division to round towards
        # zero so we work on absolute values).
        abs_min, abs_max = sorted([abs(float(lmin)), abs(float(lmax))])
        sign = math.copysign(1, lmin)
        # What is the smallest power of ten such that abs_min and abs_max are
        # equal up to that precision?
        # Note: Internally using oom instead of 10 ** oom avoids some numerical
        # accuracy issues.
        oom_max = np.ceil(math.log10(abs_max))
        oom = 1 + next(oom for oom in itertools.count(oom_max, -1)
                       if abs_min // 10 ** oom != abs_max // 10 ** oom)
        if (abs_max - abs_min) / 10 ** oom <= 1e-2:
            # Handle the case of straddling a multiple of a large power of ten
            # (relative to the span).
            # What is the smallest power of ten such that abs_min and abs_max
            # are no more than 1 apart at that precision?
            oom = 1 + next(oom for oom in itertools.count(oom_max, -1)
                           if abs_max // 10 ** oom - abs_min // 10 ** oom > 1)
        # Only use offset if it saves at least _offset_threshold digits.
        n = self._offset_threshold - 1
        self.offset = (sign * (abs_max // 10 ** oom) * 10 ** oom
                       if abs_max // 10 ** oom >= 10**n
                       else 0)

    def _set_orderOfMagnitude(self, range):
        # if scientific notation is to be used, find the appropriate exponent
        # if using an numerical offset, find the exponent after applying the
        # offset
        if not self._scientific:
            self.orderOfMagnitude = 0
            return
        locs = np.abs(self.locs)
        if self.offset:
            oom = math.floor(math.log10(range))
        else:
            if locs[0] > locs[-1]:
                val = locs[0]
            else:
                val = locs[-1]
            if val == 0:
                oom = 0
            else:
                oom = math.floor(math.log10(val))
        if oom <= self._powerlimits[0]:
            self.orderOfMagnitude = oom
        elif oom >= self._powerlimits[1]:
            self.orderOfMagnitude = oom
        else:
            self.orderOfMagnitude = 0

    def _set_format(self, vmin, vmax):
        # set the format string to format all the ticklabels
        if len(self.locs) < 2:
            # Temporarily augment the locations with the axis end points.
            _locs = list(self.locs) + [vmin, vmax]
        else:
            _locs = self.locs
        locs = (np.asarray(_locs) - self.offset) / 10. ** self.orderOfMagnitude
        loc_range = np.ptp(locs)
        # Curvilinear coordinates can yield two identical points.
        if loc_range == 0:
            loc_range = np.max(np.abs(locs))
        # Both points might be zero.
        if loc_range == 0:
            loc_range = 1
        if len(self.locs) < 2:
            # We needed the end points only for the loc_range calculation.
            locs = locs[:-2]
        loc_range_oom = int(math.floor(math.log10(loc_range)))
        # first estimate:
        sigfigs = max(0, 3 - loc_range_oom)
        # refined estimate:
        thresh = 1e-3 * 10 ** loc_range_oom
        while sigfigs >= 0:
            if np.abs(locs - np.round(locs, decimals=sigfigs)).max() < thresh:
                sigfigs -= 1
            else:
                break
        sigfigs += 1
        self.format = '%1.' + str(sigfigs) + 'f'
        if self._usetex:
            self.format = '$%s$' % self.format
        elif self._useMathText:
            self.format = '$%s$' % _mathdefault(self.format)

    def pprint_val(self, x):
        xp = (x - self.offset) / (10. ** self.orderOfMagnitude)
        if np.abs(xp) < 1e-8:
            xp = 0
        if self._useLocale:
            return locale.format_string(self.format, (xp,))
        else:
            return self.format % xp

    def _formatSciNotation(self, s):
        # transform 1e+004 into 1e4, for example
        if self._useLocale:
            decimal_point = locale.localeconv()['decimal_point']
            positive_sign = locale.localeconv()['positive_sign']
        else:
            decimal_point = '.'
            positive_sign = '+'
        tup = s.split('e')
        try:
            significand = tup[0].rstrip('0').rstrip(decimal_point)
            sign = tup[1][0].replace(positive_sign, '')
            exponent = tup[1][1:].lstrip('0')
            if self._useMathText or self._usetex:
                if significand == '1' and exponent != '':
                    # reformat 1x10^y as 10^y
                    significand = ''
                if exponent:
                    exponent = '10^{%s%s}' % (sign, exponent)
                if significand and exponent:
                    return r'%s{\times}%s' % (significand, exponent)
                else:
                    return r'%s%s' % (significand, exponent)
            else:
                s = ('%se%s%s' % (significand, sign, exponent)).rstrip('e')
                return s
        except IndexError:
            return s


class LogFormatter(Formatter):
    """
    Base class for formatting ticks on a log or symlog scale.

    It may be instantiated directly, or subclassed.

    Parameters
    ----------
    base : float, optional, default: 10.
        Base of the logarithm used in all calculations.

    labelOnlyBase : bool, optional, default: False
        If True, label ticks only at integer powers of base.
        This is normally True for major ticks and False for
        minor ticks.

    minor_thresholds : (subset, all), optional, default: (1, 0.4)
        If labelOnlyBase is False, these two numbers control
        the labeling of ticks that are not at integer powers of
        base; normally these are the minor ticks. The controlling
        parameter is the log of the axis data range.  In the typical
        case where base is 10 it is the number of decades spanned
        by the axis, so we can call it 'numdec'. If ``numdec <= all``,
        all minor ticks will be labeled.  If ``all < numdec <= subset``,
        then only a subset of minor ticks will be labeled, so as to
        avoid crowding. If ``numdec > subset`` then no minor ticks will
        be labeled.

    linthresh : None or float, optional, default: None
        If a symmetric log scale is in use, its ``linthresh``
        parameter must be supplied here.

    Notes
    -----
    The `set_locs` method must be called to enable the subsetting
    logic controlled by the ``minor_thresholds`` parameter.

    In some cases such as the colorbar, there is no distinction between
    major and minor ticks; the tick locations might be set manually,
    or by a locator that puts ticks at integer powers of base and
    at intermediate locations.  For this situation, disable the
    minor_thresholds logic by using ``minor_thresholds=(np.inf, np.inf)``,
    so that all ticks will be labeled.

    To disable labeling of minor ticks when 'labelOnlyBase' is False,
    use ``minor_thresholds=(0, 0)``.  This is the default for the
    "classic" style.

    Examples
    --------
    To label a subset of minor ticks when the view limits span up
    to 2 decades, and all of the ticks when zoomed in to 0.5 decades
    or less, use ``minor_thresholds=(2, 0.5)``.

    To label all minor ticks when the view limits span up to 1.5
    decades, use ``minor_thresholds=(1.5, 1.5)``.

    """
    def __init__(self, base=10.0, labelOnlyBase=False,
                 minor_thresholds=None,
                 linthresh=None):

        self._base = float(base)
        self.labelOnlyBase = labelOnlyBase
        if minor_thresholds is None:
            if rcParams['_internal.classic_mode']:
                minor_thresholds = (0, 0)
            else:
                minor_thresholds = (1, 0.4)
        self.minor_thresholds = minor_thresholds
        self._sublabels = None
        self._linthresh = linthresh

    def base(self, base):
        """
        change the `base` for labeling.

        .. warning::
           Should always match the base used for :class:`LogLocator`

        """
        self._base = base

    def label_minor(self, labelOnlyBase):
        """
        Switch minor tick labeling on or off.

        Parameters
        ----------
        labelOnlyBase : bool
            If True, label ticks only at integer powers of base.

        """
        self.labelOnlyBase = labelOnlyBase

    def set_locs(self, locs=None):
        """
        Use axis view limits to control which ticks are labeled.

        The ``locs`` parameter is ignored in the present algorithm.

        """
        if np.isinf(self.minor_thresholds[0]):
            self._sublabels = None
            return

        # Handle symlog case:
        linthresh = self._linthresh
        if linthresh is None:
            try:
                linthresh = self.axis.get_transform().linthresh
            except AttributeError:
                pass

        vmin, vmax = self.axis.get_view_interval()
        if vmin > vmax:
            vmin, vmax = vmax, vmin

        if linthresh is None and vmin <= 0:
            # It's probably a colorbar with
            # a format kwarg setting a LogFormatter in the manner
            # that worked with 1.5.x, but that doesn't work now.
            self._sublabels = set((1,))  # label powers of base
            return

        b = self._base
        if linthresh is not None:  # symlog
            # Only compute the number of decades in the logarithmic part of the
            # axis
            numdec = 0
            if vmin < -linthresh:
                rhs = min(vmax, -linthresh)
                numdec += math.log(vmin / rhs) / math.log(b)
            if vmax > linthresh:
                lhs = max(vmin, linthresh)
                numdec += math.log(vmax / lhs) / math.log(b)
        else:
            vmin = math.log(vmin) / math.log(b)
            vmax = math.log(vmax) / math.log(b)
            numdec = abs(vmax - vmin)

        if numdec > self.minor_thresholds[0]:
            # Label only bases
            self._sublabels = {1}
        elif numdec > self.minor_thresholds[1]:
            # Add labels between bases at log-spaced coefficients;
            # include base powers in case the locations include
            # "major" and "minor" points, as in colorbar.
            c = np.logspace(0, 1, int(b)//2 + 1, base=b)
            self._sublabels = set(np.round(c))
            # For base 10, this yields (1, 2, 3, 4, 6, 10).
        else:
            # Label all integer multiples of base**n.
            self._sublabels = set(np.arange(1, b + 1))

    def _num_to_string(self, x, vmin, vmax):
        if x > 10000:
            s = '%1.0e' % x
        elif x < 1:
            s = '%1.0e' % x
        else:
            s = self.pprint_val(x, vmax - vmin)
        return s

    def __call__(self, x, pos=None):
        """
        Return the format for tick val `x`.
        """
        if x == 0.0:  # Symlog
            return '0'

        sign = np.sign(x)
        x = abs(x)
        b = self._base
        # only label the decades
        fx = math.log(x) / math.log(b)
        is_x_decade = is_close_to_int(fx)
        exponent = np.round(fx) if is_x_decade else np.floor(fx)
        coeff = np.round(x / b ** exponent)

        if self.labelOnlyBase and not is_x_decade:
            return ''
        if self._sublabels is not None and coeff not in self._sublabels:
            return ''

        vmin, vmax = self.axis.get_view_interval()
        vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05)
        s = self._num_to_string(x, vmin, vmax)
        return self.fix_minus(s)

    def format_data(self, value):
        b = self.labelOnlyBase
        self.labelOnlyBase = False
        value = cbook.strip_math(self.__call__(value))
        self.labelOnlyBase = b
        return value

    def format_data_short(self, value):
        """
        Return a short formatted string representation of a number.
        """
        return '%-12g' % value

    def pprint_val(self, x, d):
        #if the number is not too big and it's an int, format it as an
        #int
        if abs(x) < 1e4 and x == int(x):
            return '%d' % x

        if d < 1e-2:
            fmt = '%1.3e'
        elif d < 1e-1:
            fmt = '%1.3f'
        elif d > 1e5:
            fmt = '%1.1e'
        elif d > 10:
            fmt = '%1.1f'
        elif d > 1:
            fmt = '%1.2f'
        else:
            fmt = '%1.3f'
        s = fmt % x

        tup = s.split('e')
        if len(tup) == 2:
            mantissa = tup[0].rstrip('0').rstrip('.')
            exponent = int(tup[1])
            if exponent:
                s = '%se%d' % (mantissa, exponent)
            else:
                s = mantissa
        else:
            s = s.rstrip('0').rstrip('.')
        return s


class LogFormatterExponent(LogFormatter):
    """
    Format values for log axis using ``exponent = log_base(value)``.
    """
    def _num_to_string(self, x, vmin, vmax):
        fx = math.log(x) / math.log(self._base)
        if abs(fx) > 10000:
            s = '%1.0g' % fx
        elif abs(fx) < 1:
            s = '%1.0g' % fx
        else:
            fd = math.log(vmax - vmin) / math.log(self._base)
            s = self.pprint_val(fx, fd)
        return s


class LogFormatterMathtext(LogFormatter):
    """
    Format values for log axis using ``exponent = log_base(value)``.
    """

    def _non_decade_format(self, sign_string, base, fx, usetex):
        'Return string for non-decade locations'
        if usetex:
            return (r'$%s%s^{%.2f}$') % (sign_string, base, fx)
        else:
            return ('$%s$' % _mathdefault('%s%s^{%.2f}' %
                                          (sign_string, base, fx)))

    def __call__(self, x, pos=None):
        """
        Return the format for tick value `x`.

        The position `pos` is ignored.
        """
        usetex = rcParams['text.usetex']
        min_exp = rcParams['axes.formatter.min_exponent']

        if x == 0:  # Symlog
            if usetex:
                return '$0$'
            else:
                return '$%s$' % _mathdefault('0')

        sign_string = '-' if x < 0 else ''
        x = abs(x)
        b = self._base

        # only label the decades
        fx = math.log(x) / math.log(b)
        is_x_decade = is_close_to_int(fx)
        exponent = np.round(fx) if is_x_decade else np.floor(fx)
        coeff = np.round(x / b ** exponent)
        if is_x_decade:
            fx = nearest_long(fx)

        if self.labelOnlyBase and not is_x_decade:
            return ''
        if self._sublabels is not None and coeff not in self._sublabels:
            return ''

        # use string formatting of the base if it is not an integer
        if b % 1 == 0.0:
            base = '%d' % b
        else:
            base = '%s' % b

        if np.abs(fx) < min_exp:
            if usetex:
                return r'${0}{1:g}$'.format(sign_string, x)
            else:
                return '${0}$'.format(_mathdefault(
                    '{0}{1:g}'.format(sign_string, x)))
        elif not is_x_decade:
            return self._non_decade_format(sign_string, base, fx, usetex)
        else:
            if usetex:
                return (r'$%s%s^{%d}$') % (sign_string,
                                           base,
                                           nearest_long(fx))
            else:
                return ('$%s$' % _mathdefault(
                    '%s%s^{%d}' %
                    (sign_string, base, nearest_long(fx))))


class LogFormatterSciNotation(LogFormatterMathtext):
    """
    Format values following scientific notation in a logarithmic axis
    """

    def _non_decade_format(self, sign_string, base, fx, usetex):
        'Return string for non-decade locations'
        b = float(base)
        exponent = math.floor(fx)
        coeff = b ** fx / b ** exponent
        if is_close_to_int(coeff):
            coeff = nearest_long(coeff)
        if usetex:
            return (r'$%s%g\times%s^{%d}$') % \
                                        (sign_string, coeff, base, exponent)
        else:
            return ('$%s$' % _mathdefault(r'%s%g\times%s^{%d}' %
                                        (sign_string, coeff, base, exponent)))


class LogitFormatter(Formatter):
    """
    Probability formatter (using Math text).
    """
    def __call__(self, x, pos=None):
        s = ''
        if 0.01 <= x <= 0.99:
            s = '{:.2f}'.format(x)
        elif x < 0.01:
            if is_decade(x):
                s = '$10^{{{:.0f}}}$'.format(np.log10(x))
            else:
                s = '${:.5f}$'.format(x)
        else:  # x > 0.99
            if is_decade(1-x):
                s = '$1-10^{{{:.0f}}}$'.format(np.log10(1-x))
            else:
                s = '$1-{:.5f}$'.format(1-x)
        return s

    def format_data_short(self, value):
        'return a short formatted string representation of a number'
        return '%-12g' % value


class EngFormatter(Formatter):
    """
    Formats axis values using engineering prefixes to represent powers
    of 1000, plus a specified unit, e.g., 10 MHz instead of 1e7.
    """

    # The SI engineering prefixes
    ENG_PREFIXES = {
        -24: "y",
        -21: "z",
        -18: "a",
        -15: "f",
        -12: "p",
         -9: "n",
         -6: "\N{GREEK SMALL LETTER MU}",
         -3: "m",
          0: "",
          3: "k",
          6: "M",
          9: "G",
         12: "T",
         15: "P",
         18: "E",
         21: "Z",
         24: "Y"
    }

    def __init__(self, unit="", places=None, sep=" "):
        """
        Parameters
        ----------
        unit : str (default: "")
            Unit symbol to use, suitable for use with single-letter
            representations of powers of 1000. For example, 'Hz' or 'm'.

        places : int (default: None)
            Precision with which to display the number, specified in
            digits after the decimal point (there will be between one
            and three digits before the decimal point). If it is None,
            the formatting falls back to the floating point format '%g',
            which displays up to 6 *significant* digits, i.e. the equivalent
            value for *places* varies between 0 and 5 (inclusive).

        sep : str (default: " ")
            Separator used between the value and the prefix/unit. For
            example, one get '3.14 mV' if ``sep`` is " " (default) and
            '3.14mV' if ``sep`` is "". Besides the default behavior, some
            other useful options may be:

            * ``sep=""`` to append directly the prefix/unit to the value;
            * ``sep="\\N{THIN SPACE}"`` (``U+2009``);
            * ``sep="\\N{NARROW NO-BREAK SPACE}"`` (``U+202F``);
            * ``sep="\\N{NO-BREAK SPACE}"`` (``U+00A0``).
        """
        self.unit = unit
        self.places = places
        self.sep = sep

    def __call__(self, x, pos=None):
        s = "%s%s" % (self.format_eng(x), self.unit)
        # Remove the trailing separator when there is neither prefix nor unit
        if len(self.sep) > 0 and s.endswith(self.sep):
            s = s[:-len(self.sep)]
        return self.fix_minus(s)

    def format_eng(self, num):
        """
        Formats a number in engineering notation, appending a letter
        representing the power of 1000 of the original number.
        Some examples:

        >>> format_eng(0)       # for self.places = 0
        '0'

        >>> format_eng(1000000) # for self.places = 1
        '1.0 M'

        >>> format_eng("-1e-6") # for self.places = 2
        u'-1.00 \N{GREEK SMALL LETTER MU}'

        `num` may be a numeric value or a string that can be converted
        to a numeric value with ``float(num)``.
        """
        if isinstance(num, six.string_types):
            warnings.warn(
                "Passing a string as *num* argument is deprecated since"
                "Matplotlib 2.1, and is expected to be removed in 2.3.",
                mplDeprecation)

        dnum = float(num)
        sign = 1
        fmt = "g" if self.places is None else ".{:d}f".format(self.places)

        if dnum < 0:
            sign = -1
            dnum = -dnum

        if dnum != 0:
            pow10 = int(math.floor(math.log10(dnum) / 3) * 3)
        else:
            pow10 = 0
            # Force dnum to zero, to avoid inconsistencies like
            # format_eng(-0) = "0" and format_eng(0.0) = "0"
            # but format_eng(-0.0) = "-0.0"
            dnum = 0.0

        pow10 = np.clip(pow10, min(self.ENG_PREFIXES), max(self.ENG_PREFIXES))

        mant = sign * dnum / (10.0 ** pow10)
        # Taking care of the cases like 999.9..., which
        # may be rounded to 1000 instead of 1 k.  Beware
        # of the corner case of values that are beyond
        # the range of SI prefixes (i.e. > 'Y').
        _fmant = float("{mant:{fmt}}".format(mant=mant, fmt=fmt))
        if _fmant >= 1000 and pow10 != max(self.ENG_PREFIXES):
            mant /= 1000
            pow10 += 3

        prefix = self.ENG_PREFIXES[int(pow10)]

        formatted = "{mant:{fmt}}{sep}{prefix}".format(
            mant=mant, sep=self.sep, prefix=prefix, fmt=fmt)

        return formatted


class PercentFormatter(Formatter):
    """
    Format numbers as a percentage.

    How the number is converted into a percentage is determined by the
    `xmax` parameter. `xmax` is the data value that corresponds to 100%.
    Percentages are computed as ``x / xmax * 100``. So if the data is
    already scaled to be percentages, `xmax` will be 100. Another common
    situation is where `xmax` is 1.0.

    `symbol` is a string which will be appended to the label. It may be
    `None` or empty to indicate that no symbol should be used. LaTeX
    special characters are escaped in `symbol` whenever latex mode is
    enabled, unless `is_latex` is `True`.

    `decimals` is the number of decimal places to place after the point.
    If it is set to `None` (the default), the number will be computed
    automatically.
    """
    def __init__(self, xmax=100, decimals=None, symbol='%', is_latex=False):
        self.xmax = xmax + 0.0
        self.decimals = decimals
        self._symbol = symbol
        self._is_latex = is_latex

    def __call__(self, x, pos=None):
        """
        Formats the tick as a percentage with the appropriate scaling.
        """
        ax_min, ax_max = self.axis.get_view_interval()
        display_range = abs(ax_max - ax_min)

        return self.fix_minus(self.format_pct(x, display_range))

    def format_pct(self, x, display_range):
        """
        Formats the number as a percentage number with the correct
        number of decimals and adds the percent symbol, if any.

        If `self.decimals` is `None`, the number of digits after the
        decimal point is set based on the `display_range` of the axis
        as follows:

        +---------------+----------+------------------------+
        | display_range | decimals |          sample        |
        +---------------+----------+------------------------+
        | >50           |     0    | ``x = 34.5`` => 35%    |
        +---------------+----------+------------------------+
        | >5            |     1    | ``x = 34.5`` => 34.5%  |
        +---------------+----------+------------------------+
        | >0.5          |     2    | ``x = 34.5`` => 34.50% |
        +---------------+----------+------------------------+
        |      ...      |    ...   |          ...           |
        +---------------+----------+------------------------+

        This method will not be very good for tiny axis ranges or
        extremely large ones. It assumes that the values on the chart
        are percentages displayed on a reasonable scale.
        """
        x = self.convert_to_pct(x)
        if self.decimals is None:
            # conversion works because display_range is a difference
            scaled_range = self.convert_to_pct(display_range)
            if scaled_range <= 0:
                decimals = 0
            else:
                # Luckily Python's built-in ceil rounds to +inf, not away from
                # zero. This is very important since the equation for decimals
                # starts out as `scaled_range > 0.5 * 10**(2 - decimals)`
                # and ends up with `decimals > 2 - log10(2 * scaled_range)`.
                decimals = math.ceil(2.0 - math.log10(2.0 * scaled_range))
                if decimals > 5:
                    decimals = 5
                elif decimals < 0:
                    decimals = 0
        else:
            decimals = self.decimals
        s = '{x:0.{decimals}f}'.format(x=x, decimals=int(decimals))

        return s + self.symbol

    def convert_to_pct(self, x):
        return 100.0 * (x / self.xmax)

    @property
    def symbol(self):
        """
        The configured percent symbol as a string.

        If LaTeX is enabled via ``rcParams['text.usetex']``, the special
        characters `{'#', '$', '%', '&', '~', '_', '^', '\\', '{', '}'}`
        are automatically escaped in the string.
        """
        symbol = self._symbol
        if not symbol:
            symbol = ''
        elif rcParams['text.usetex'] and not self._is_latex:
            # Source: http://www.personal.ceu.hu/tex/specchar.htm
            # Backslash must be first for this to work correctly since
            # it keeps getting added in
            for spec in r'\#$%&~_^{}':
                symbol = symbol.replace(spec, '\\' + spec)
        return symbol

    @symbol.setter
    def symbol(self):
        self._symbol = symbol


class Locator(TickHelper):
    """
    Determine the tick locations;

    Note, you should not use the same locator between different
    :class:`~matplotlib.axis.Axis` because the locator stores references to
    the Axis data and view limits
    """

    # Some automatic tick locators can generate so many ticks they
    # kill the machine when you try and render them.
    # This parameter is set to cause locators to raise an error if too
    # many ticks are generated.
    MAXTICKS = 1000

    def tick_values(self, vmin, vmax):
        """
        Return the values of the located ticks given **vmin** and **vmax**.

        .. note::
            To get tick locations with the vmin and vmax values defined
            automatically for the associated :attr:`axis` simply call
            the Locator instance::

                >>> print((type(loc)))
                <type 'Locator'>
                >>> print((loc()))
                [1, 2, 3, 4]

        """
        raise NotImplementedError('Derived must override')

    def set_params(self, **kwargs):
        """
        Do nothing, and rase a warning. Any locator class not supporting the
        set_params() function will call this.
        """
        warnings.warn("'set_params()' not defined for locator of type " +
                      str(type(self)))

    def __call__(self):
        """Return the locations of the ticks"""
        # note: some locators return data limits, other return view limits,
        # hence there is no *one* interface to call self.tick_values.
        raise NotImplementedError('Derived must override')

    def raise_if_exceeds(self, locs):
        """raise a RuntimeError if Locator attempts to create more than
           MAXTICKS locs"""
        if len(locs) >= self.MAXTICKS:
            msg = ('Locator attempting to generate %d ticks from %s to %s: ' +
                   'exceeds Locator.MAXTICKS') % (len(locs), locs[0], locs[-1])
            raise RuntimeError(msg)

        return locs

    def view_limits(self, vmin, vmax):
        """
        select a scale for the range from vmin to vmax

        Normally this method is overridden by subclasses to
        change locator behaviour.
        """
        return mtransforms.nonsingular(vmin, vmax)

    def autoscale(self):
        """autoscale the view limits"""
        return self.view_limits(*self.axis.get_view_interval())

    def pan(self, numsteps):
        """Pan numticks (can be positive or negative)"""
        ticks = self()
        numticks = len(ticks)

        vmin, vmax = self.axis.get_view_interval()
        vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05)
        if numticks > 2:
            step = numsteps * abs(ticks[0] - ticks[1])
        else:
            d = abs(vmax - vmin)
            step = numsteps * d / 6.

        vmin += step
        vmax += step
        self.axis.set_view_interval(vmin, vmax, ignore=True)

    def zoom(self, direction):
        "Zoom in/out on axis; if direction is >0 zoom in, else zoom out"

        vmin, vmax = self.axis.get_view_interval()
        vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05)
        interval = abs(vmax - vmin)
        step = 0.1 * interval * direction
        self.axis.set_view_interval(vmin + step, vmax - step, ignore=True)

    def refresh(self):
        """refresh internal information based on current lim"""
        pass


class IndexLocator(Locator):
    """
    Place a tick on every multiple of some base number of points
    plotted, e.g., on every 5th point.  It is assumed that you are doing
    index plotting; i.e., the axis is 0, len(data).  This is mainly
    useful for x ticks.
    """
    def __init__(self, base, offset):
        'place ticks on the i-th data points where (i-offset)%base==0'
        self._base = base
        self.offset = offset

    def set_params(self, base=None, offset=None):
        """Set parameters within this locator"""
        if base is not None:
            self._base = base
        if offset is not None:
            self.offset = offset

    def __call__(self):
        """Return the locations of the ticks"""
        dmin, dmax = self.axis.get_data_interval()
        return self.tick_values(dmin, dmax)

    def tick_values(self, vmin, vmax):
        return self.raise_if_exceeds(
            np.arange(vmin + self.offset, vmax + 1, self._base))


class FixedLocator(Locator):
    """
    Tick locations are fixed.  If nbins is not None,
    the array of possible positions will be subsampled to
    keep the number of ticks <= nbins +1.
    The subsampling will be done so as to include the smallest
    absolute value; for example, if zero is included in the
    array of possibilities, then it is guaranteed to be one of
    the chosen ticks.
    """

    def __init__(self, locs, nbins=None):
        self.locs = np.asarray(locs)
        self.nbins = nbins
        if self.nbins is not None:
            self.nbins = max(self.nbins, 2)

    def set_params(self, nbins=None):
        """Set parameters within this locator."""
        if nbins is not None:
            self.nbins = nbins

    def __call__(self):
        return self.tick_values(None, None)

    def tick_values(self, vmin, vmax):
        """"
        Return the locations of the ticks.

        .. note::

            Because the values are fixed, vmin and vmax are not used in this
            method.

        """
        if self.nbins is None:
            return self.locs
        step = max(int(0.99 + len(self.locs) / float(self.nbins)), 1)
        ticks = self.locs[::step]
        for i in range(1, step):
            ticks1 = self.locs[i::step]
            if np.abs(ticks1).min() < np.abs(ticks).min():
                ticks = ticks1
        return self.raise_if_exceeds(ticks)


class NullLocator(Locator):
    """
    No ticks
    """

    def __call__(self):
        return self.tick_values(None, None)

    def tick_values(self, vmin, vmax):
        """"
        Return the locations of the ticks.

        .. note::

            Because the values are Null, vmin and vmax are not used in this
            method.
        """
        return []


class LinearLocator(Locator):
    """
    Determine the tick locations

    The first time this function is called it will try to set the
    number of ticks to make a nice tick partitioning.  Thereafter the
    number of ticks will be fixed so that interactive navigation will
    be nice

    """
    def __init__(self, numticks=None, presets=None):
        """
        Use presets to set locs based on lom.  A dict mapping vmin, vmax->locs
        """
        self.numticks = numticks
        if presets is None:
            self.presets = {}
        else:
            self.presets = presets

    def set_params(self, numticks=None, presets=None):
        """Set parameters within this locator."""
        if presets is not None:
            self.presets = presets
        if numticks is not None:
            self.numticks = numticks

    def __call__(self):
        'Return the locations of the ticks'
        vmin, vmax = self.axis.get_view_interval()
        return self.tick_values(vmin, vmax)

    def tick_values(self, vmin, vmax):
        vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05)
        if vmax < vmin:
            vmin, vmax = vmax, vmin

        if (vmin, vmax) in self.presets:
            return self.presets[(vmin, vmax)]

        if self.numticks is None:
            self._set_numticks()

        if self.numticks == 0:
            return []
        ticklocs = np.linspace(vmin, vmax, self.numticks)

        return self.raise_if_exceeds(ticklocs)

    def _set_numticks(self):
        self.numticks = 11  # todo; be smart here; this is just for dev

    def view_limits(self, vmin, vmax):
        'Try to choose the view limits intelligently'

        if vmax < vmin:
            vmin, vmax = vmax, vmin

        if vmin == vmax:
            vmin -= 1
            vmax += 1

        if rcParams['axes.autolimit_mode'] == 'round_numbers':
            exponent, remainder = _divmod(
                math.log10(vmax - vmin), math.log10(max(self.numticks - 1, 1)))
            exponent -= (remainder < .5)
            scale = max(self.numticks - 1, 1) ** (-exponent)
            vmin = math.floor(scale * vmin) / scale
            vmax = math.ceil(scale * vmax) / scale

        return mtransforms.nonsingular(vmin, vmax)


def closeto(x, y):
    if abs(x - y) < 1e-10:
        return True
    else:
        return False


class Base(object):
    'this solution has some hacks to deal with floating point inaccuracies'
    def __init__(self, base):
        if base <= 0:
            raise ValueError("'base' must be positive")
        self._base = base

    def lt(self, x):
        'return the largest multiple of base < x'
        d, m = _divmod(x, self._base)
        if closeto(m, 0) and not closeto(m / self._base, 1):
            return (d - 1) * self._base
        return d * self._base

    def le(self, x):
        'return the largest multiple of base <= x'
        d, m = _divmod(x, self._base)
        if closeto(m / self._base, 1):  # was closeto(m, self._base)
            #looks like floating point error
            return (d + 1) * self._base
        return d * self._base

    def gt(self, x):
        'return the smallest multiple of base > x'
        d, m = _divmod(x, self._base)
        if closeto(m / self._base, 1):
            #looks like floating point error
            return (d + 2) * self._base
        return (d + 1) * self._base

    def ge(self, x):
        'return the smallest multiple of base >= x'
        d, m = _divmod(x, self._base)
        if closeto(m, 0) and not closeto(m / self._base, 1):
            return d * self._base
        return (d + 1) * self._base

    def get_base(self):
        return self._base


class MultipleLocator(Locator):
    """
    Set a tick on every integer that is multiple of base in the
    view interval
    """

    def __init__(self, base=1.0):
        self._base = Base(base)

    def set_params(self, base):
        """Set parameters within this locator."""
        if base is not None:
            self._base = base

    def __call__(self):
        'Return the locations of the ticks'
        vmin, vmax = self.axis.get_view_interval()
        return self.tick_values(vmin, vmax)

    def tick_values(self, vmin, vmax):
        if vmax < vmin:
            vmin, vmax = vmax, vmin
        vmin = self._base.ge(vmin)
        base = self._base.get_base()
        n = (vmax - vmin + 0.001 * base) // base
        locs = vmin - base + np.arange(n + 3) * base
        return self.raise_if_exceeds(locs)

    def view_limits(self, dmin, dmax):
        """
        Set the view limits to the nearest multiples of base that
        contain the data
        """
        if rcParams['axes.autolimit_mode'] == 'round_numbers':
            vmin = self._base.le(dmin)
            vmax = self._base.ge(dmax)
            if vmin == vmax:
                vmin -= 1
                vmax += 1
        else:
            vmin = dmin
            vmax = dmax

        return mtransforms.nonsingular(vmin, vmax)


def scale_range(vmin, vmax, n=1, threshold=100):
    dv = abs(vmax - vmin)  # > 0 as nonsingular is called before.
    meanv = (vmax + vmin) / 2
    if abs(meanv) / dv < threshold:
        offset = 0
    else:
        offset = math.copysign(10 ** (math.log10(abs(meanv)) // 1), meanv)
    scale = 10 ** (math.log10(dv / n) // 1)
    return scale, offset


class MaxNLocator(Locator):
    """
    Select no more than N intervals at nice locations.
    """
    default_params = dict(nbins=10,
                          steps=None,
                          integer=False,
                          symmetric=False,
                          prune=None,
                          min_n_ticks=2)

    def __init__(self, *args, **kwargs):
        """
        Keyword args:

        *nbins*
            Maximum number of intervals; one less than max number of
            ticks.  If the string `'auto'`, the number of bins will be
            automatically determined based on the length of the axis.

        *steps*
            Sequence of nice numbers starting with 1 and ending with 10;
            e.g., [1, 2, 4, 5, 10]

        *integer*
            If True, ticks will take only integer values, provided
            at least `min_n_ticks` integers are found within the
            view limits.

        *symmetric*
            If True, autoscaling will result in a range symmetric
            about zero.

        *prune*
            ['lower' | 'upper' | 'both' | None]
            Remove edge ticks -- useful for stacked or ganged plots
            where the upper tick of one axes overlaps with the lower
            tick of the axes above it, primarily when
            `rcParams['axes.autolimit_mode']` is `'round_numbers'`.
            If `prune=='lower'`, the smallest tick will
            be removed.  If `prune=='upper'`, the largest tick will be
            removed.  If `prune=='both'`, the largest and smallest ticks
            will be removed.  If `prune==None`, no ticks will be removed.

        *min_n_ticks*
            Relax `nbins` and `integer` constraints if necessary to
            obtain this minimum number of ticks.

        """
        if args:
            kwargs['nbins'] = args[0]
            if len(args) > 1:
                raise ValueError(
                    "Keywords are required for all arguments except 'nbins'")
        self.set_params(**self.default_params)
        self.set_params(**kwargs)

    @staticmethod
    def _validate_steps(steps):
        if not np.iterable(steps):
            raise ValueError('steps argument must be a sequence of numbers '
                             'from 1 to 10')
        steps = np.asarray(steps)
        if np.any(np.diff(steps) <= 0):
            raise ValueError('steps argument must be uniformly increasing')
        if steps[-1] > 10 or steps[0] < 1:
            warnings.warn('Steps argument should be a sequence of numbers\n'
                          'increasing from 1 to 10, inclusive. Behavior with\n'
                          'values outside this range is undefined, and will\n'
                          'raise a ValueError in future versions of mpl.')
        if steps[0] != 1:
            steps = np.hstack((1, steps))
        if steps[-1] != 10:
            steps = np.hstack((steps, 10))
        return steps

    @staticmethod
    def _staircase(steps):
        # Make an extended staircase within which the needed
        # step will be found.  This is probably much larger
        # than necessary.
        flights = (0.1 * steps[:-1], steps, 10 * steps[1])
        return np.hstack(flights)

    def set_params(self, **kwargs):
        """Set parameters within this locator."""
        if 'nbins' in kwargs:
            self._nbins = kwargs['nbins']
            if self._nbins != 'auto':
                self._nbins = int(self._nbins)
        if 'trim' in kwargs:
            warnings.warn(
                "The 'trim' keyword has no effect since version 2.0.",
                mplDeprecation)
        if 'symmetric' in kwargs:
            self._symmetric = kwargs['symmetric']
        if 'prune' in kwargs:
            prune = kwargs['prune']
            if prune is not None and prune not in ['upper', 'lower', 'both']:
                raise ValueError(
                    "prune must be 'upper', 'lower', 'both', or None")
            self._prune = prune
        if 'min_n_ticks' in kwargs:
            self._min_n_ticks = max(1, kwargs['min_n_ticks'])
        if 'steps' in kwargs:
            steps = kwargs['steps']
            if steps is None:
                self._steps = np.array([1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10])
            else:
                self._steps = self._validate_steps(steps)
            self._extended_steps = self._staircase(self._steps)
        if 'integer' in kwargs:
            self._integer = kwargs['integer']

    def _raw_ticks(self, vmin, vmax):
        if self._nbins == 'auto':
            if self.axis is not None:
                nbins = np.clip(self.axis.get_tick_space(),
                                max(1, self._min_n_ticks - 1), 9)
            else:
                nbins = 9
        else:
            nbins = self._nbins

        scale, offset = scale_range(vmin, vmax, nbins)
        _vmin = vmin - offset
        _vmax = vmax - offset
        raw_step = (vmax - vmin) / nbins
        steps = self._extended_steps * scale
        if self._integer:
            # For steps > 1, keep only integer values.
            igood = (steps < 1) | (np.abs(steps - np.round(steps)) < 0.001)
            steps = steps[igood]

        istep = np.nonzero(steps >= raw_step)[0][0]

        # Classic round_numbers mode may require a larger step.
        if rcParams['axes.autolimit_mode'] == 'round_numbers':
            for istep in range(istep, len(steps)):
                step = steps[istep]
                best_vmin = (_vmin // step) * step
                best_vmax = best_vmin + step * nbins
                if (best_vmax >= _vmax):
                    break

        # This is an upper limit; move to smaller steps if necessary.
        for i in range(istep):
            step = steps[istep - i]
            if (self._integer and
                    np.floor(_vmax) - np.ceil(_vmin) >= self._min_n_ticks - 1):
                step = max(1, step)
            best_vmin = (_vmin // step) * step

            low = np.round(Base(step).le(_vmin - best_vmin) / step)
            high = np.round(Base(step).ge(_vmax - best_vmin) / step)
            ticks = np.arange(low, high + 1) * step + best_vmin + offset
            nticks = ((ticks <= vmax) & (ticks >= vmin)).sum()
            if nticks >= self._min_n_ticks:
                break
        return ticks

    @cbook.deprecated("2.0")
    def bin_boundaries(self, vmin, vmax):
        return self._raw_ticks(vmin, vmax)

    def __call__(self):
        vmin, vmax = self.axis.get_view_interval()
        return self.tick_values(vmin, vmax)

    def tick_values(self, vmin, vmax):
        if self._symmetric:
            vmax = max(abs(vmin), abs(vmax))
            vmin = -vmax
        vmin, vmax = mtransforms.nonsingular(
            vmin, vmax, expander=1e-13, tiny=1e-14)
        locs = self._raw_ticks(vmin, vmax)

        prune = self._prune
        if prune == 'lower':
            locs = locs[1:]
        elif prune == 'upper':
            locs = locs[:-1]
        elif prune == 'both':
            locs = locs[1:-1]
        return self.raise_if_exceeds(locs)

    def view_limits(self, dmin, dmax):
        if self._symmetric:
            dmax = max(abs(dmin), abs(dmax))
            dmin = -dmax

        dmin, dmax = mtransforms.nonsingular(
            dmin, dmax, expander=1e-12, tiny=1e-13)

        if rcParams['axes.autolimit_mode'] == 'round_numbers':
            return self._raw_ticks(dmin, dmax)[[0, -1]]
        else:
            return dmin, dmax


def decade_down(x, base=10):
    'floor x to the nearest lower decade'
    if x == 0.0:
        return -base
    lx = np.floor(np.log(x) / np.log(base))
    return base ** lx


def decade_up(x, base=10):
    'ceil x to the nearest higher decade'
    if x == 0.0:
        return base
    lx = np.ceil(np.log(x) / np.log(base))
    return base ** lx


def nearest_long(x):
    if x == 0:
        return long(0)
    elif x > 0:
        return long(x + 0.5)
    else:
        return long(x - 0.5)


def is_decade(x, base=10):
    if not np.isfinite(x):
        return False
    if x == 0.0:
        return True
    lx = np.log(np.abs(x)) / np.log(base)
    return is_close_to_int(lx)


def is_close_to_int(x):
    if not np.isfinite(x):
        return False
    return abs(x - nearest_long(x)) < 1e-10


class LogLocator(Locator):
    """
    Determine the tick locations for log axes
    """

    def __init__(self, base=10.0, subs=(1.0,), numdecs=4, numticks=None):
        """
        Place ticks on the locations : subs[j] * base**i

        Parameters
        ----------
        subs : None, string, or sequence of float, optional, default (1.0,)
            Gives the multiples of integer powers of the base at which
            to place ticks.  The default places ticks only at
            integer powers of the base.
            The permitted string values are ``'auto'`` and ``'all'``,
            both of which use an algorithm based on the axis view
            limits to determine whether and how to put ticks between
            integer powers of the base.  With ``'auto'``, ticks are
            placed only between integer powers; with ``'all'``, the
            integer powers are included.  A value of None is
            equivalent to ``'auto'``.

        """
        if numticks is None:
            if rcParams['_internal.classic_mode']:
                numticks = 15
            else:
                numticks = 'auto'
        self.base(base)
        self.subs(subs)
        self.numdecs = numdecs
        self.numticks = numticks

    def set_params(self, base=None, subs=None, numdecs=None, numticks=None):
        """Set parameters within this locator."""
        if base is not None:
            self.base(base)
        if subs is not None:
            self.subs(subs)
        if numdecs is not None:
            self.numdecs = numdecs
        if numticks is not None:
            self.numticks = numticks

    # FIXME: these base and subs functions are contrary to our
    # usual and desired API.

    def base(self, base):
        """
        set the base of the log scaling (major tick every base**i, i integer)
        """
        self._base = float(base)

    def subs(self, subs):
        """
        set the minor ticks for the log scaling every base**i*subs[j]
        """
        if subs is None:  # consistency with previous bad API
            self._subs = 'auto'
        elif isinstance(subs, six.string_types):
            if subs not in ('all', 'auto'):
                raise ValueError("A subs string must be 'all' or 'auto'; "
                                 "found '%s'." % subs)
            self._subs = subs
        else:
            self._subs = np.asarray(subs, dtype=float)

    def __call__(self):
        'Return the locations of the ticks'
        vmin, vmax = self.axis.get_view_interval()
        return self.tick_values(vmin, vmax)

    def tick_values(self, vmin, vmax):
        if self.numticks == 'auto':
            if self.axis is not None:
                numticks = np.clip(self.axis.get_tick_space(), 2, 9)
            else:
                numticks = 9
        else:
            numticks = self.numticks

        b = self._base
        # dummy axis has no axes attribute
        if hasattr(self.axis, 'axes') and self.axis.axes.name == 'polar':
            vmax = math.ceil(math.log(vmax) / math.log(b))
            decades = np.arange(vmax - self.numdecs, vmax)
            ticklocs = b ** decades

            return ticklocs

        if vmin <= 0.0:
            if self.axis is not None:
                vmin = self.axis.get_minpos()

            if vmin <= 0.0 or not np.isfinite(vmin):
                raise ValueError(
                    "Data has no positive values, and therefore can not be "
                    "log-scaled.")

        vmin = math.log(vmin) / math.log(b)
        vmax = math.log(vmax) / math.log(b)

        if vmax < vmin:
            vmin, vmax = vmax, vmin

        numdec = math.floor(vmax) - math.ceil(vmin)

        if isinstance(self._subs, six.string_types):
            _first = 2.0 if self._subs == 'auto' else 1.0
            if numdec > 10 or b < 3:
                if self._subs == 'auto':
                    return np.array([])  # no minor or major ticks
                else:
                    subs = np.array([1.0])  # major ticks
            else:
                subs = np.arange(_first, b)
        else:
            subs = self._subs

        stride = 1

        if rcParams['_internal.classic_mode']:
            # Leave the bug left over from the PY2-PY3 transition.
            while numdec / stride + 1 > numticks:
                stride += 1
        else:
            while numdec // stride + 1 > numticks:
                stride += 1

        # Does subs include anything other than 1?
        have_subs = len(subs) > 1 or (len(subs == 1) and subs[0] != 1.0)

        decades = np.arange(math.floor(vmin) - stride,
                            math.ceil(vmax) + 2 * stride, stride)

        if hasattr(self, '_transform'):
            ticklocs = self._transform.inverted().transform(decades)
            if have_subs:
                if stride == 1:
                    ticklocs = np.ravel(np.outer(subs, ticklocs))
                else:
                    ticklocs = []
        else:
            if have_subs:
                ticklocs = []
                if stride == 1:
                    for decadeStart in b ** decades:
                        ticklocs.extend(subs * decadeStart)
            else:
                ticklocs = b ** decades

        return self.raise_if_exceeds(np.asarray(ticklocs))

    def view_limits(self, vmin, vmax):
        'Try to choose the view limits intelligently'
        b = self._base

        vmin, vmax = self.nonsingular(vmin, vmax)

        if self.axis.axes.name == 'polar':
            vmax = math.ceil(math.log(vmax) / math.log(b))
            vmin = b ** (vmax - self.numdecs)

        if rcParams['axes.autolimit_mode'] == 'round_numbers':
            if not is_decade(vmin, self._base):
                vmin = decade_down(vmin, self._base)
            if not is_decade(vmax, self._base):
                vmax = decade_up(vmax, self._base)

        return vmin, vmax

    def nonsingular(self, vmin, vmax):
        if not np.isfinite(vmin) or not np.isfinite(vmax):
            return 1, 10  # initial range, no data plotted yet

        if vmin > vmax:
            vmin, vmax = vmax, vmin
        if vmax <= 0:
            warnings.warn(
                "Data has no positive values, and therefore cannot be "
                "log-scaled.")
            return 1, 10

        minpos = self.axis.get_minpos()
        if not np.isfinite(minpos):
            minpos = 1e-300  # This should never take effect.
        if vmin <= 0:
            vmin = minpos
        if vmin == vmax:
            vmin = decade_down(vmin, self._base)
            vmax = decade_up(vmax, self._base)
        return vmin, vmax


class SymmetricalLogLocator(Locator):
    """
    Determine the tick locations for symmetric log axes
    """

    def __init__(self, transform=None, subs=None, linthresh=None, base=None):
        """
        place ticks on the location= base**i*subs[j]
        """
        if transform is not None:
            self._base = transform.base
            self._linthresh = transform.linthresh
        elif linthresh is not None and base is not None:
            self._base = base
            self._linthresh = linthresh
        else:
            raise ValueError("Either transform, or both linthresh "
                             "and base, must be provided.")
        if subs is None:
            self._subs = [1.0]
        else:
            self._subs = subs
        self.numticks = 15

    def set_params(self, subs=None, numticks=None):
        """Set parameters within this locator."""
        if numticks is not None:
            self.numticks = numticks
        if subs is not None:
            self._subs = subs

    def __call__(self):
        'Return the locations of the ticks'
        # Note, these are untransformed coordinates
        vmin, vmax = self.axis.get_view_interval()
        return self.tick_values(vmin, vmax)

    def tick_values(self, vmin, vmax):
        b = self._base
        t = self._linthresh

        if vmax < vmin:
            vmin, vmax = vmax, vmin

        # The domain is divided into three sections, only some of
        # which may actually be present.
        #
        # <======== -t ==0== t ========>
        # aaaaaaaaa    bbbbb   ccccccccc
        #
        # a) and c) will have ticks at integral log positions.  The
        # number of ticks needs to be reduced if there are more
        # than self.numticks of them.
        #
        # b) has a tick at 0 and only 0 (we assume t is a small
        # number, and the linear segment is just an implementation
        # detail and not interesting.)
        #
        # We could also add ticks at t, but that seems to usually be
        # uninteresting.
        #
        # "simple" mode is when the range falls entirely within (-t,
        # t) -- it should just display (vmin, 0, vmax)

        has_a = has_b = has_c = False
        if vmin < -t:
            has_a = True
            if vmax > -t:
                has_b = True
                if vmax > t:
                    has_c = True
        elif vmin < 0:
            if vmax > 0:
                has_b = True
                if vmax > t:
                    has_c = True
            else:
                return [vmin, vmax]
        elif vmin < t:
            if vmax > t:
                has_b = True
                has_c = True
            else:
                return [vmin, vmax]
        else:
            has_c = True

        def get_log_range(lo, hi):
            lo = np.floor(np.log(lo) / np.log(b))
            hi = np.ceil(np.log(hi) / np.log(b))
            return lo, hi

        # First, calculate all the ranges, so we can determine striding
        if has_a:
            if has_b:
                a_range = get_log_range(t, -vmin + 1)
            else:
                a_range = get_log_range(-vmax, -vmin + 1)
        else:
            a_range = (0, 0)

        if has_c:
            if has_b:
                c_range = get_log_range(t, vmax + 1)
            else:
                c_range = get_log_range(vmin, vmax + 1)
        else:
            c_range = (0, 0)

        total_ticks = (a_range[1] - a_range[0]) + (c_range[1] - c_range[0])
        if has_b:
            total_ticks += 1
        stride = max(np.floor(float(total_ticks) / (self.numticks - 1)), 1)

        decades = []
        if has_a:
            decades.extend(-1 * (b ** (np.arange(a_range[0], a_range[1],
                                                 stride)[::-1])))

        if has_b:
            decades.append(0.0)

        if has_c:
            decades.extend(b ** (np.arange(c_range[0], c_range[1], stride)))

        # Add the subticks if requested
        if self._subs is None:
            subs = np.arange(2.0, b)
        else:
            subs = np.asarray(self._subs)

        if len(subs) > 1 or subs[0] != 1.0:
            ticklocs = []
            for decade in decades:
                ticklocs.extend(subs * decade)
        else:
            ticklocs = decades

        return self.raise_if_exceeds(np.array(ticklocs))

    def view_limits(self, vmin, vmax):
        'Try to choose the view limits intelligently'
        b = self._base
        if vmax < vmin:
            vmin, vmax = vmax, vmin

        if rcParams['axes.autolimit_mode'] == 'round_numbers':
            if not is_decade(abs(vmin), b):
                if vmin < 0:
                    vmin = -decade_up(-vmin, b)
                else:
                    vmin = decade_down(vmin, b)
            if not is_decade(abs(vmax), b):
                if vmax < 0:
                    vmax = -decade_down(-vmax, b)
                else:
                    vmax = decade_up(vmax, b)

            if vmin == vmax:
                if vmin < 0:
                    vmin = -decade_up(-vmin, b)
                    vmax = -decade_down(-vmax, b)
                else:
                    vmin = decade_down(vmin, b)
                    vmax = decade_up(vmax, b)

        result = mtransforms.nonsingular(vmin, vmax)
        return result


class LogitLocator(Locator):
    """
    Determine the tick locations for logit axes
    """

    def __init__(self, minor=False):
        """
        place ticks on the logit locations
        """
        self.minor = minor

    def set_params(self, minor=None):
        """Set parameters within this locator."""
        if minor is not None:
            self.minor = minor

    def __call__(self):
        'Return the locations of the ticks'
        vmin, vmax = self.axis.get_view_interval()
        return self.tick_values(vmin, vmax)

    def tick_values(self, vmin, vmax):
        # dummy axis has no axes attribute
        if hasattr(self.axis, 'axes') and self.axis.axes.name == 'polar':
            raise NotImplementedError('Polar axis cannot be logit scaled yet')

        vmin, vmax = self.nonsingular(vmin, vmax)
        vmin = np.log10(vmin / (1 - vmin))
        vmax = np.log10(vmax / (1 - vmax))

        decade_min = np.floor(vmin)
        decade_max = np.ceil(vmax)

        # major ticks
        if not self.minor:
            ticklocs = []
            if (decade_min <= -1):
                expo = np.arange(decade_min, min(0, decade_max + 1))
                ticklocs.extend(list(10**expo))
            if (decade_min <= 0) and (decade_max >= 0):
                ticklocs.append(0.5)
            if (decade_max >= 1):
                expo = -np.arange(max(1, decade_min), decade_max + 1)
                ticklocs.extend(list(1 - 10**expo))

        # minor ticks
        else:
            ticklocs = []
            if (decade_min <= -2):
                expo = np.arange(decade_min, min(-1, decade_max))
                newticks = np.outer(np.arange(2, 10), 10**expo).ravel()
                ticklocs.extend(list(newticks))
            if (decade_min <= 0) and (decade_max >= 0):
                ticklocs.extend([0.2, 0.3, 0.4, 0.6, 0.7, 0.8])
            if (decade_max >= 2):
                expo = -np.arange(max(2, decade_min), decade_max + 1)
                newticks = 1 - np.outer(np.arange(2, 10), 10**expo).ravel()
                ticklocs.extend(list(newticks))

        return self.raise_if_exceeds(np.array(ticklocs))

    def nonsingular(self, vmin, vmax):
        initial_range = (1e-7, 1 - 1e-7)
        if not np.isfinite(vmin) or not np.isfinite(vmax):
            return initial_range  # no data plotted yet

        if vmin > vmax:
            vmin, vmax = vmax, vmin

        # what to do if a window beyond ]0, 1[ is chosen
        if self.axis is not None:
            minpos = self.axis.get_minpos()
            if not np.isfinite(minpos):
                return initial_range  # again, no data plotted
        else:
            minpos = 1e-7  # should not occur in normal use

        # NOTE: for vmax, we should query a property similar to get_minpos, but
        # related to the maximal, less-than-one data point. Unfortunately,
        # Bbox._minpos is defined very deep in the BBox and updated with data,
        # so for now we use 1 - minpos as a substitute.

        if vmin <= 0:
            vmin = minpos
        if vmax >= 1:
            vmax = 1 - minpos
        if vmin == vmax:
            return 0.1 * vmin, 1 - 0.1 * vmin

        return vmin, vmax


class AutoLocator(MaxNLocator):
    def __init__(self):
        if rcParams['_internal.classic_mode']:
            nbins = 9
            steps = [1, 2, 5, 10]
        else:
            nbins = 'auto'
            steps = [1, 2, 2.5, 5, 10]
        MaxNLocator.__init__(self, nbins=nbins, steps=steps)


class AutoMinorLocator(Locator):
    """
    Dynamically find minor tick positions based on the positions of
    major ticks. The scale must be linear with major ticks evenly spaced.
    """
    def __init__(self, n=None):
        """
        *n* is the number of subdivisions of the interval between
        major ticks; e.g., n=2 will place a single minor tick midway
        between major ticks.

        If *n* is omitted or None, it will be set to 5 or 4.
        """
        self.ndivs = n

    def __call__(self):
        'Return the locations of the ticks'
        if self.axis.get_scale() == 'log':
            warnings.warn('AutoMinorLocator does not work with logarithmic '
                          'scale')
            return []

        majorlocs = self.axis.get_majorticklocs()
        try:
            majorstep = majorlocs[1] - majorlocs[0]
        except IndexError:
            # Need at least two major ticks to find minor tick locations
            # TODO: Figure out a way to still be able to display minor
            # ticks without two major ticks visible. For now, just display
            # no ticks at all.
            return []

        if self.ndivs is None:
            x = int(np.round(10 ** (np.log10(majorstep) % 1)))
            if x in [1, 5, 10]:
                ndivs = 5
            else:
                ndivs = 4
        else:
            ndivs = self.ndivs

        minorstep = majorstep / ndivs

        vmin, vmax = self.axis.get_view_interval()
        if vmin > vmax:
            vmin, vmax = vmax, vmin

        t0 = majorlocs[0]
        tmin = ((vmin - t0) // minorstep + 1) * minorstep
        tmax = ((vmax - t0) // minorstep + 1) * minorstep
        locs = np.arange(tmin, tmax, minorstep) + t0
        cond = np.abs((locs - t0) % majorstep) > minorstep / 10.0
        locs = locs.compress(cond)

        return self.raise_if_exceeds(np.array(locs))

    def tick_values(self, vmin, vmax):
        raise NotImplementedError('Cannot get tick locations for a '
                                  '%s type.' % type(self))


class OldAutoLocator(Locator):
    """
    On autoscale this class picks the best MultipleLocator to set the
    view limits and the tick locs.

    """
    def __init__(self):
        self._locator = LinearLocator()

    def __call__(self):
        'Return the locations of the ticks'
        self.refresh()
        return self.raise_if_exceeds(self._locator())

    def tick_values(self, vmin, vmax):
        raise NotImplementedError('Cannot get tick locations for a '
                                  '%s type.' % type(self))

    def refresh(self):
        'refresh internal information based on current lim'
        vmin, vmax = self.axis.get_view_interval()
        vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05)
        d = abs(vmax - vmin)
        self._locator = self.get_locator(d)

    def view_limits(self, vmin, vmax):
        'Try to choose the view limits intelligently'

        d = abs(vmax - vmin)
        self._locator = self.get_locator(d)
        return self._locator.view_limits(vmin, vmax)

    def get_locator(self, d):
        'pick the best locator based on a distance'
        d = abs(d)
        if d <= 0:
            locator = MultipleLocator(0.2)
        else:

            try:
                ld = math.log10(d)
            except OverflowError:
                raise RuntimeError('AutoLocator illegal data interval range')

            fld = math.floor(ld)
            base = 10 ** fld

            #if ld==fld:  base = 10**(fld-1)
            #else:        base = 10**fld

            if d >= 5 * base:
                ticksize = base
            elif d >= 2 * base:
                ticksize = base / 2.0
            else:
                ticksize = base / 5.0
            locator = MultipleLocator(ticksize)

        return locator