/usr/lib/python2.7/dist-packages/numba/cgutils.py is in python-numba 0.34.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 | """
Generic helpers for LLVM code generation.
"""
from __future__ import print_function, division, absolute_import
import collections
from contextlib import contextmanager
import functools
from llvmlite import ir
from . import utils
bool_t = ir.IntType(1)
int8_t = ir.IntType(8)
int32_t = ir.IntType(32)
intp_t = ir.IntType(utils.MACHINE_BITS)
voidptr_t = int8_t.as_pointer()
true_bit = bool_t(1)
false_bit = bool_t(0)
true_byte = int8_t(1)
false_byte = int8_t(0)
def as_bool_bit(builder, value):
return builder.icmp_unsigned('!=', value, value.type(0))
def make_anonymous_struct(builder, values, struct_type=None):
"""
Create an anonymous struct containing the given LLVM *values*.
"""
if struct_type is None:
struct_type = ir.LiteralStructType([v.type for v in values])
struct_val = struct_type(ir.Undefined)
for i, v in enumerate(values):
struct_val = builder.insert_value(struct_val, v, i)
return struct_val
def make_bytearray(buf):
"""
Make a byte array constant from *buf*.
"""
b = bytearray(buf)
n = len(b)
return ir.Constant(ir.ArrayType(ir.IntType(8), n), b)
_struct_proxy_cache = {}
def create_struct_proxy(fe_type, kind='value'):
"""
Returns a specialized StructProxy subclass for the given fe_type.
"""
cache_key = (fe_type, kind)
res = _struct_proxy_cache.get(cache_key)
if res is None:
base = {'value': ValueStructProxy,
'data': DataStructProxy,
}[kind]
clsname = base.__name__ + '_' + str(fe_type)
bases = (base,)
clsmembers = dict(_fe_type=fe_type)
res = type(clsname, bases, clsmembers)
_struct_proxy_cache[cache_key] = res
return res
def copy_struct(dst, src, repl={}):
"""
Copy structure from *src* to *dst* with replacement from *repl*.
"""
repl = repl.copy()
# copy data from src or use those in repl
for k in src._datamodel._fields:
v = repl.pop(k, getattr(src, k))
setattr(dst, k, v)
# use remaining key-values in repl
for k, v in repl.items():
setattr(dst, k, v)
return dst
class _StructProxy(object):
"""
Creates a `Structure` like interface that is constructed with information
from DataModel instance. FE type must have a data model that is a
subclass of StructModel.
"""
# The following class members must be overridden by subclass
_fe_type = None
def __init__(self, context, builder, value=None, ref=None):
from numba import datamodel # Avoid circular import
self._context = context
self._datamodel = self._context.data_model_manager[self._fe_type]
if not isinstance(self._datamodel, datamodel.StructModel):
raise TypeError("Not a structure model: {0}".format(self._datamodel))
self._builder = builder
self._be_type = self._get_be_type(self._datamodel)
assert not is_pointer(self._be_type)
outer_ref, ref = self._make_refs(ref)
if ref.type.pointee != self._be_type:
raise AssertionError("bad ref type: expected %s, got %s"
% (self._be_type.as_pointer(), ref.type))
if value is not None:
if value.type != outer_ref.type.pointee:
raise AssertionError("bad value type: expected %s, got %s"
% (outer_ref.type.pointee, value.type))
self._builder.store(value, outer_ref)
self._value = ref
self._outer_ref = outer_ref
def _make_refs(self, ref):
"""
Return an (outer ref, value ref) pair. By default, these are
the same pointers, but a derived class may override this.
"""
if ref is None:
ref = alloca_once(self._builder, self._be_type, zfill=True)
return ref, ref
def _get_be_type(self, datamodel):
raise NotImplementedError
def _cast_member_to_value(self, index, val):
raise NotImplementedError
def _cast_member_from_value(self, index, val):
raise NotImplementedError
def _get_ptr_by_index(self, index):
return gep_inbounds(self._builder, self._value, 0, index)
def _get_ptr_by_name(self, attrname):
index = self._datamodel.get_field_position(attrname)
return self._get_ptr_by_index(index)
def __getattr__(self, field):
"""
Load the LLVM value of the named *field*.
"""
if not field.startswith('_'):
return self[self._datamodel.get_field_position(field)]
else:
raise AttributeError(field)
def __setattr__(self, field, value):
"""
Store the LLVM *value* into the named *field*.
"""
if field.startswith('_'):
return super(_StructProxy, self).__setattr__(field, value)
self[self._datamodel.get_field_position(field)] = value
def __getitem__(self, index):
"""
Load the LLVM value of the field at *index*.
"""
member_val = self._builder.load(self._get_ptr_by_index(index))
return self._cast_member_to_value(index, member_val)
def __setitem__(self, index, value):
"""
Store the LLVM *value* into the field at *index*.
"""
ptr = self._get_ptr_by_index(index)
value = self._cast_member_from_value(index, value)
if value.type != ptr.type.pointee:
if (is_pointer(value.type) and is_pointer(ptr.type.pointee)
and value.type.pointee == ptr.type.pointee.pointee):
# Differ by address-space only
# Auto coerce it
value = self._context.addrspacecast(self._builder,
value,
ptr.type.pointee.addrspace)
else:
raise TypeError("Invalid store of {value.type} to "
"{ptr.type.pointee} in "
"{self._datamodel} "
"(trying to write member #{index})"
.format(value=value, ptr=ptr, self=self,
index=index))
self._builder.store(value, ptr)
def __len__(self):
"""
Return the number of fields.
"""
return self._datamodel.field_count
def _getpointer(self):
"""
Return the LLVM pointer to the underlying structure.
"""
return self._outer_ref
def _getvalue(self):
"""
Load and return the value of the underlying LLVM structure.
"""
return self._builder.load(self._outer_ref)
def _setvalue(self, value):
"""
Store the value in this structure.
"""
assert not is_pointer(value.type)
assert value.type == self._be_type, (value.type, self._be_type)
self._builder.store(value, self._value)
class ValueStructProxy(_StructProxy):
"""
Create a StructProxy suitable for accessing regular values
(e.g. LLVM values or alloca slots).
"""
def _get_be_type(self, datamodel):
return datamodel.get_value_type()
def _cast_member_to_value(self, index, val):
return val
def _cast_member_from_value(self, index, val):
return val
class DataStructProxy(_StructProxy):
"""
Create a StructProxy suitable for accessing data persisted in memory.
"""
def _get_be_type(self, datamodel):
return datamodel.get_data_type()
def _cast_member_to_value(self, index, val):
model = self._datamodel.get_model(index)
return model.from_data(self._builder, val)
def _cast_member_from_value(self, index, val):
model = self._datamodel.get_model(index)
return model.as_data(self._builder, val)
class Structure(object):
"""
A high-level object wrapping a alloca'ed LLVM structure, including
named fields and attribute access.
"""
# XXX Should this warrant several separate constructors?
def __init__(self, context, builder, value=None, ref=None, cast_ref=False):
self._type = context.get_struct_type(self)
self._context = context
self._builder = builder
if ref is None:
self._value = alloca_once(builder, self._type)
if value is not None:
assert not is_pointer(value.type)
assert value.type == self._type, (value.type, self._type)
builder.store(value, self._value)
else:
assert value is None
assert is_pointer(ref.type)
if self._type != ref.type.pointee:
if cast_ref:
ref = builder.bitcast(ref, self._type.as_pointer())
else:
raise TypeError(
"mismatching pointer type: got %s, expected %s"
% (ref.type.pointee, self._type))
self._value = ref
self._namemap = {}
self._fdmap = []
self._typemap = []
base = int32_t(0)
for i, (k, tp) in enumerate(self._fields):
self._namemap[k] = i
self._fdmap.append((base, int32_t(i)))
self._typemap.append(tp)
def _get_ptr_by_index(self, index):
ptr = self._builder.gep(self._value, self._fdmap[index], inbounds=True)
return ptr
def _get_ptr_by_name(self, attrname):
return self._get_ptr_by_index(self._namemap[attrname])
def __getattr__(self, field):
"""
Load the LLVM value of the named *field*.
"""
if not field.startswith('_'):
return self[self._namemap[field]]
else:
raise AttributeError(field)
def __setattr__(self, field, value):
"""
Store the LLVM *value* into the named *field*.
"""
if field.startswith('_'):
return super(Structure, self).__setattr__(field, value)
self[self._namemap[field]] = value
def __getitem__(self, index):
"""
Load the LLVM value of the field at *index*.
"""
return self._builder.load(self._get_ptr_by_index(index))
def __setitem__(self, index, value):
"""
Store the LLVM *value* into the field at *index*.
"""
ptr = self._get_ptr_by_index(index)
if ptr.type.pointee != value.type:
fmt = "Type mismatch: __setitem__(%d, ...) expected %r but got %r"
raise AssertionError(fmt % (index,
str(ptr.type.pointee),
str(value.type)))
self._builder.store(value, ptr)
def __len__(self):
"""
Return the number of fields.
"""
return len(self._namemap)
def _getpointer(self):
"""
Return the LLVM pointer to the underlying structure.
"""
return self._value
def _getvalue(self):
"""
Load and return the value of the underlying LLVM structure.
"""
return self._builder.load(self._value)
def _setvalue(self, value):
"""Store the value in this structure"""
assert not is_pointer(value.type)
assert value.type == self._type, (value.type, self._type)
self._builder.store(value, self._value)
# __iter__ is derived by Python from __len__ and __getitem__
def alloca_once(builder, ty, size=None, name='', zfill=False):
"""Allocate stack memory at the entry block of the current function
pointed by ``builder`` withe llvm type ``ty``. The optional ``size`` arg
set the number of element to allocate. The default is 1. The optional
``name`` arg set the symbol name inside the llvm IR for debugging.
If ``zfill`` is set, also filling zeros to the memory.
"""
if isinstance(size, utils.INT_TYPES):
size = ir.Constant(intp_t, size)
with builder.goto_entry_block():
ptr = builder.alloca(ty, size=size, name=name)
if zfill:
builder.store(ty(None), ptr)
return ptr
def alloca_once_value(builder, value, name=''):
"""
Like alloca_once(), but passing a *value* instead of a type. The
type is inferred and the allocated slot is also initialized with the
given value.
"""
storage = alloca_once(builder, value.type)
builder.store(value, storage)
return storage
def insert_pure_function(module, fnty, name):
"""
Insert a pure function (in the functional programming sense) in the
given module.
"""
fn = module.get_or_insert_function(fnty, name=name)
fn.attributes.add("readonly")
fn.attributes.add("nounwind")
return fn
def terminate(builder, bbend):
bb = builder.basic_block
if bb.terminator is None:
builder.branch(bbend)
def get_null_value(ltype):
return ltype(None)
def is_null(builder, val):
null = get_null_value(val.type)
return builder.icmp_unsigned('==', null, val)
def is_not_null(builder, val):
null = get_null_value(val.type)
return builder.icmp_unsigned('!=', null, val)
def if_unlikely(builder, pred):
return builder.if_then(pred, likely=False)
def if_likely(builder, pred):
return builder.if_then(pred, likely=True)
def ifnot(builder, pred):
return builder.if_then(builder.not_(pred))
def increment_index(builder, val):
"""
Increment an index *val*.
"""
one = val.type(1)
# We pass the "nsw" flag in the hope that LLVM understands the index
# never changes sign. Unfortunately this doesn't always work
# (e.g. ndindex()).
return builder.add(val, one, flags=['nsw'])
Loop = collections.namedtuple('Loop', ('index', 'do_break'))
@contextmanager
def for_range(builder, count, start=None, intp=None):
"""
Generate LLVM IR for a for-loop in [start, count).
*start* is equal to 0 by default.
Yields a Loop namedtuple with the following members:
- `index` is the loop index's value
- `do_break` is a no-argument callable to break out of the loop
"""
if intp is None:
intp = count.type
if start is None:
start = intp(0)
stop = count
bbcond = builder.append_basic_block("for.cond")
bbbody = builder.append_basic_block("for.body")
bbend = builder.append_basic_block("for.end")
def do_break():
builder.branch(bbend)
bbstart = builder.basic_block
builder.branch(bbcond)
with builder.goto_block(bbcond):
index = builder.phi(intp, name="loop.index")
pred = builder.icmp_signed('<', index, stop)
builder.cbranch(pred, bbbody, bbend)
with builder.goto_block(bbbody):
yield Loop(index, do_break)
# Update bbbody as a new basic block may have been activated
bbbody = builder.basic_block
incr = increment_index(builder, index)
terminate(builder, bbcond)
index.add_incoming(start, bbstart)
index.add_incoming(incr, bbbody)
builder.position_at_end(bbend)
@contextmanager
def for_range_slice(builder, start, stop, step, intp=None, inc=True):
"""
Generate LLVM IR for a for-loop based on a slice. Yields a
(index, count) tuple where `index` is the slice index's value
inside the loop, and `count` the iteration count.
Parameters
-------------
builder : object
Builder object
start : int
The beginning value of the slice
stop : int
The end value of the slice
step : int
The step value of the slice
intp :
The data type
inc : boolean, optional
Signals whether the step is positive (True) or negative (False).
Returns
-----------
None
"""
if intp is None:
intp = start.type
bbcond = builder.append_basic_block("for.cond")
bbbody = builder.append_basic_block("for.body")
bbend = builder.append_basic_block("for.end")
bbstart = builder.basic_block
builder.branch(bbcond)
with builder.goto_block(bbcond):
index = builder.phi(intp, name="loop.index")
count = builder.phi(intp, name="loop.count")
if (inc):
pred = builder.icmp_signed('<', index, stop)
else:
pred = builder.icmp_signed('>', index, stop)
builder.cbranch(pred, bbbody, bbend)
with builder.goto_block(bbbody):
yield index, count
bbbody = builder.basic_block
incr = builder.add(index, step)
next_count = increment_index(builder, count)
terminate(builder, bbcond)
index.add_incoming(start, bbstart)
index.add_incoming(incr, bbbody)
count.add_incoming(ir.Constant(intp, 0), bbstart)
count.add_incoming(next_count, bbbody)
builder.position_at_end(bbend)
@contextmanager
def for_range_slice_generic(builder, start, stop, step):
"""
A helper wrapper for for_range_slice(). This is a context manager which
yields two for_range_slice()-alike context managers, the first for
the positive step case, the second for the negative step case.
Use:
with for_range_slice_generic(...) as (pos_range, neg_range):
with pos_range as (idx, count):
...
with neg_range as (idx, count):
...
"""
intp = start.type
is_pos_step = builder.icmp_signed('>=', step, ir.Constant(intp, 0))
pos_for_range = for_range_slice(builder, start, stop, step, intp, inc=True)
neg_for_range = for_range_slice(builder, start, stop, step, intp, inc=False)
@contextmanager
def cm_cond(cond, inner_cm):
with cond:
with inner_cm as value:
yield value
with builder.if_else(is_pos_step, likely=True) as (then, otherwise):
yield cm_cond(then, pos_for_range), cm_cond(otherwise, neg_for_range)
@contextmanager
def loop_nest(builder, shape, intp, order='C'):
"""
Generate a loop nest walking a N-dimensional array.
Yields a tuple of N indices for use in the inner loop body,
iterating over the *shape* space.
If *order* is 'C' (the default), indices are incremented inside-out
(i.e. (0,0), (0,1), (0,2), (1,0) etc.).
If *order* is 'F', they are incremented outside-in
(i.e. (0,0), (1,0), (2,0), (0,1) etc.).
This has performance implications when walking an array as it impacts
the spatial locality of memory accesses.
"""
assert order in 'CF'
if not shape:
# 0-d array
yield ()
else:
if order == 'F':
_swap = lambda x: x[::-1]
else:
_swap = lambda x: x
with _loop_nest(builder, _swap(shape), intp) as indices:
assert len(indices) == len(shape)
yield _swap(indices)
@contextmanager
def _loop_nest(builder, shape, intp):
with for_range(builder, shape[0], intp=intp) as loop:
if len(shape) > 1:
with _loop_nest(builder, shape[1:], intp) as indices:
yield (loop.index,) + indices
else:
yield (loop.index,)
def pack_array(builder, values, ty=None):
"""
Pack a sequence of values in a LLVM array. *ty* should be given
if the array may be empty, in which case the type can't be inferred
from the values.
"""
n = len(values)
if ty is None:
ty = values[0].type
ary = ir.ArrayType(ty, n)(ir.Undefined)
for i, v in enumerate(values):
ary = builder.insert_value(ary, v, i)
return ary
def unpack_tuple(builder, tup, count=None):
"""
Unpack an array or structure of values, return a Python tuple.
"""
if count is None:
# Assuming *tup* is an aggregate
count = len(tup.type.elements)
vals = [builder.extract_value(tup, i)
for i in range(count)]
return vals
def get_item_pointer(builder, aryty, ary, inds, wraparound=False):
shapes = unpack_tuple(builder, ary.shape, count=aryty.ndim)
strides = unpack_tuple(builder, ary.strides, count=aryty.ndim)
return get_item_pointer2(builder, data=ary.data, shape=shapes,
strides=strides, layout=aryty.layout, inds=inds,
wraparound=wraparound)
def get_item_pointer2(builder, data, shape, strides, layout, inds,
wraparound=False):
if wraparound:
# Wraparound
indices = []
for ind, dimlen in zip(inds, shape):
negative = builder.icmp_signed('<', ind, ind.type(0))
wrapped = builder.add(dimlen, ind)
selected = builder.select(negative, wrapped, ind)
indices.append(selected)
else:
indices = inds
if not indices:
# Indexing with empty tuple
return builder.gep(data, [int32_t(0)])
intp = indices[0].type
# Indexing code
if layout in 'CF':
steps = []
# Compute steps for each dimension
if layout == 'C':
# C contiguous
for i in range(len(shape)):
last = intp(1)
for j in shape[i + 1:]:
last = builder.mul(last, j)
steps.append(last)
elif layout == 'F':
# F contiguous
for i in range(len(shape)):
last = intp(1)
for j in shape[:i]:
last = builder.mul(last, j)
steps.append(last)
else:
raise Exception("unreachable")
# Compute index
loc = intp(0)
for i, s in zip(indices, steps):
tmp = builder.mul(i, s)
loc = builder.add(loc, tmp)
ptr = builder.gep(data, [loc])
return ptr
else:
# Any layout
dimoffs = [builder.mul(s, i) for s, i in zip(strides, indices)]
offset = functools.reduce(builder.add, dimoffs)
return pointer_add(builder, data, offset)
def _scalar_pred_against_zero(builder, value, fpred, icond):
nullval = value.type(0)
if isinstance(value.type, (ir.FloatType, ir.DoubleType)):
isnull = fpred(value, nullval)
elif isinstance(value.type, ir.IntType):
isnull = builder.icmp_signed(icond, value, nullval)
else:
raise TypeError("unexpected value type %s" % (value.type,))
return isnull
def is_scalar_zero(builder, value):
"""
Return a predicate representing whether *value* is equal to zero.
"""
return _scalar_pred_against_zero(
builder, value, functools.partial(builder.fcmp_ordered, '=='), '==')
def is_not_scalar_zero(builder, value):
"""
Return a predicate representin whether a *value* is not equal to zero.
(not exactly "not is_scalar_zero" because of nans)
"""
return _scalar_pred_against_zero(
builder, value, functools.partial(builder.fcmp_unordered, '!='), '!=')
def is_scalar_zero_or_nan(builder, value):
"""
Return a predicate representing whether *value* is equal to either zero
or NaN.
"""
return _scalar_pred_against_zero(
builder, value, functools.partial(builder.fcmp_unordered, '=='), '==')
is_true = is_not_scalar_zero
is_false = is_scalar_zero
def is_scalar_neg(builder, value):
"""
Is *value* negative? Assumes *value* is signed.
"""
return _scalar_pred_against_zero(
builder, value, functools.partial(builder.fcmp_ordered, '<'), '<')
def guard_null(context, builder, value, exc_tuple):
"""
Guard against *value* being null or zero.
*exc_tuple* should be a (exception type, arguments...) tuple.
"""
with builder.if_then(is_scalar_zero(builder, value), likely=False):
exc = exc_tuple[0]
exc_args = exc_tuple[1:] or None
context.call_conv.return_user_exc(builder, exc, exc_args)
def guard_memory_error(context, builder, pointer, msg=None):
"""
Guard against *pointer* being NULL (and raise a MemoryError).
"""
assert isinstance(pointer.type, ir.PointerType), pointer.type
exc_args = (msg,) if msg else ()
with builder.if_then(is_null(builder, pointer), likely=False):
context.call_conv.return_user_exc(builder, MemoryError, exc_args)
@contextmanager
def if_zero(builder, value, likely=False):
"""
Execute the given block if the scalar value is zero.
"""
with builder.if_then(is_scalar_zero(builder, value), likely=likely):
yield
guard_zero = guard_null
def is_pointer(ltyp):
"""
Whether the LLVM type *typ* is a struct type.
"""
return isinstance(ltyp, ir.PointerType)
def get_record_member(builder, record, offset, typ):
pval = gep_inbounds(builder, record, 0, offset)
assert not is_pointer(pval.type.pointee)
return builder.bitcast(pval, typ.as_pointer())
def is_neg_int(builder, val):
return builder.icmp_signed('<', val, val.type(0))
def gep_inbounds(builder, ptr, *inds, **kws):
"""
Same as *gep*, but add the `inbounds` keyword.
"""
return gep(builder, ptr, *inds, inbounds=True, **kws)
def gep(builder, ptr, *inds, **kws):
"""
Emit a getelementptr instruction for the given pointer and indices.
The indices can be LLVM values or Python int constants.
"""
name = kws.pop('name', '')
inbounds = kws.pop('inbounds', False)
assert not kws
idx = []
for i in inds:
if isinstance(i, utils.INT_TYPES):
# NOTE: llvm only accepts int32 inside structs, not int64
ind = int32_t(i)
else:
ind = i
idx.append(ind)
return builder.gep(ptr, idx, name=name, inbounds=inbounds)
def pointer_add(builder, ptr, offset, return_type=None):
"""
Add an integral *offset* to pointer *ptr*, and return a pointer
of *return_type* (or, if omitted, the same type as *ptr*).
Note the computation is done in bytes, and ignores the width of
the pointed item type.
"""
intptr = builder.ptrtoint(ptr, intp_t)
if isinstance(offset, utils.INT_TYPES):
offset = intp_t(offset)
intptr = builder.add(intptr, offset)
return builder.inttoptr(intptr, return_type or ptr.type)
def memset(builder, ptr, size, value):
"""
Fill *size* bytes starting from *ptr* with *value*.
"""
sizety = size.type
memset = "llvm.memset.p0i8.i%d" % (sizety.width)
fn = builder.module.declare_intrinsic('llvm.memset', (voidptr_t, size.type))
ptr = builder.bitcast(ptr, voidptr_t)
if isinstance(value, int):
value = int8_t(value)
builder.call(fn, [ptr, value, size, int32_t(0), bool_t(0)])
def global_constant(builder_or_module, name, value, linkage='internal'):
"""
Get or create a (LLVM module-)global constant with *name* or *value*.
"""
if isinstance(builder_or_module, ir.Module):
module = builder_or_module
else:
module = builder_or_module.module
data = module.add_global_variable(value.type, name=name)
data.linkage = linkage
data.global_constant = True
data.initializer = value
return data
def divmod_by_constant(builder, val, divisor):
"""
Compute the (quotient, remainder) of *val* divided by the constant
positive *divisor*. The semantics reflects those of Python integer
floor division, rather than C's / LLVM's signed division and modulo.
The difference lies with a negative *val*.
"""
assert divisor > 0
divisor = val.type(divisor)
one = val.type(1)
quot = alloca_once(builder, val.type)
with builder.if_else(is_neg_int(builder, val)) as (if_neg, if_pos):
with if_pos:
# quot = val / divisor
quot_val = builder.sdiv(val, divisor)
builder.store(quot_val, quot)
with if_neg:
# quot = -1 + (val + 1) / divisor
val_plus_one = builder.add(val, one)
quot_val = builder.sdiv(val_plus_one, divisor)
builder.store(builder.sub(quot_val, one), quot)
# rem = val - quot * divisor
# (should be slightly faster than a separate modulo operation)
quot_val = builder.load(quot)
rem_val = builder.sub(val, builder.mul(quot_val, divisor))
return quot_val, rem_val
def cbranch_or_continue(builder, cond, bbtrue):
"""
Branch conditionally or continue.
Note: a new block is created and builder is moved to the end of the new
block.
"""
bbcont = builder.append_basic_block('.continue')
builder.cbranch(cond, bbtrue, bbcont)
builder.position_at_end(bbcont)
return bbcont
def memcpy(builder, dst, src, count):
"""
Emit a memcpy to the builder.
Copies each element of dst to src. Unlike the C equivalent, each element
can be any LLVM type.
Assumes
-------
* dst.type == src.type
* count is positive
"""
# Note this does seem to be optimized as a raw memcpy() by LLVM
# whenever possible...
assert dst.type == src.type
with for_range(builder, count, intp=count.type) as loop:
out_ptr = builder.gep(dst, [loop.index])
in_ptr = builder.gep(src, [loop.index])
builder.store(builder.load(in_ptr), out_ptr)
def _raw_memcpy(builder, func_name, dst, src, count, itemsize, align):
size_t = count.type
if isinstance(itemsize, utils.INT_TYPES):
itemsize = ir.Constant(size_t, itemsize)
memcpy = builder.module.declare_intrinsic(func_name,
[voidptr_t, voidptr_t, size_t])
align = ir.Constant(ir.IntType(32), align)
is_volatile = false_bit
builder.call(memcpy, [builder.bitcast(dst, voidptr_t),
builder.bitcast(src, voidptr_t),
builder.mul(count, itemsize),
align,
is_volatile])
def raw_memcpy(builder, dst, src, count, itemsize, align=1):
"""
Emit a raw memcpy() call for `count` items of size `itemsize`
from `src` to `dest`.
"""
return _raw_memcpy(builder, 'llvm.memcpy', dst, src, count, itemsize, align)
def raw_memmove(builder, dst, src, count, itemsize, align=1):
"""
Emit a raw memmove() call for `count` items of size `itemsize`
from `src` to `dest`.
"""
return _raw_memcpy(builder, 'llvm.memmove', dst, src, count, itemsize, align)
def muladd_with_overflow(builder, a, b, c):
"""
Compute (a * b + c) and return a (result, overflow bit) pair.
The operands must be signed integers.
"""
p = builder.smul_with_overflow(a, b)
prod = builder.extract_value(p, 0)
prod_ovf = builder.extract_value(p, 1)
s = builder.sadd_with_overflow(prod, c)
res = builder.extract_value(s, 0)
ovf = builder.or_(prod_ovf, builder.extract_value(s, 1))
return res, ovf
def printf(builder, format, *args):
"""
Calls printf().
Argument `format` is expected to be a Python string.
Values to be printed are listed in `args`.
Note: There is no checking to ensure there is correct number of values
in `args` and there type matches the declaration in the format string.
"""
assert isinstance(format, str)
mod = builder.module
# Make global constant for format string
cstring = voidptr_t
fmt_bytes = make_bytearray((format + '\00').encode('ascii'))
global_fmt = global_constant(mod, "printf_format", fmt_bytes)
fnty = ir.FunctionType(int32_t, [cstring], var_arg=True)
# Insert printf()
try:
fn = mod.get_global('printf')
except KeyError:
fn = ir.Function(mod, fnty, name="printf")
# Call
ptr_fmt = builder.bitcast(global_fmt, cstring)
return builder.call(fn, [ptr_fmt] + list(args))
if utils.PY3:
def normalize_ir_text(text):
"""
Normalize the given string to latin1 compatible encoding that is suitable
for use in LLVM IR.
"""
# Just re-encoding to latin1 is enough
return text.encode('utf8').decode('latin1')
else:
def normalize_ir_text(text):
"""
No-op for python2. Assume there won't be unicode names.
"""
return text
|