This file is indexed.

/usr/lib/python2.7/dist-packages/numba/controlflow.py is in python-numba 0.34.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
from __future__ import print_function, division, absolute_import

import collections
import functools
import sys

from numba import utils


# List of bytecodes creating a new block in the control flow graph
# (in addition to explicit jump labels).
NEW_BLOCKERS = frozenset(['SETUP_LOOP', 'FOR_ITER'])


class CFBlock(object):

    def __init__(self, offset):
        self.offset = offset
        self.body = []
        # A map of jumps to outgoing blocks (successors):
        #   { offset of outgoing block -> number of stack pops }
        self.outgoing_jumps = {}
        # A map of jumps to incoming blocks (predecessors):
        #   { offset of incoming block -> number of stack pops }
        self.incoming_jumps = {}
        self.terminating = False

    def __repr__(self):
        args = self.offset, sorted(self.outgoing_jumps), sorted(self.incoming_jumps)
        return "block(offset:%d, outgoing: %s, incoming: %s)" % args

    def __iter__(self):
        return iter(self.body)


class Loop(
    collections.namedtuple("Loop", ("entries", "exits", "header", "body"))):
    """
    A control flow loop, as detected by a CFGraph object.
    """

    __slots__ = ()

    # The loop header is enough to detect that two loops are really
    # the same, assuming they belong to the same graph.
    # (note: in practice, only one loop instance is created per graph
    #  loop, so identity would be fine)

    def __eq__(self, other):
        return isinstance(other, Loop) and other.header == self.header

    def __hash__(self):
        return hash(self.header)


class CFGraph(object):
    """
    Generic (almost) implementation of a Control Flow Graph.
    """

    def __init__(self):
        self._nodes = set()
        self._preds = collections.defaultdict(set)
        self._succs = collections.defaultdict(set)
        self._edge_data = {}
        self._entry_point = None

    def add_node(self, node):
        """
        Add *node* to the graph.  This is necessary before adding any
        edges from/to the node.  *node* can be any hashable object.
        """
        self._nodes.add(node)

    def add_edge(self, src, dest, data=None):
        """
        Add an edge from node *src* to node *dest*, with optional
        per-edge *data*.
        If such an edge already exists, it is replaced (duplicate edges
        are not possible).
        """
        assert src in self._nodes
        assert dest in self._nodes
        self._add_edge(src, dest, data)

    def successors(self, src):
        """
        Yield (node, data) pairs representing the successors of node *src*.
        (*data* will be None if no data was specified when adding the edge)
        """
        for dest in self._succs[src]:
            yield dest, self._edge_data[src, dest]

    def predecessors(self, dest):
        """
        Yield (node, data) pairs representing the predecessors of node *dest*.
        (*data* will be None if no data was specified when adding the edge)
        """
        for src in self._preds[dest]:
            yield src, self._edge_data[src, dest]

    def set_entry_point(self, node):
        """
        Set the entry point of the graph to *node*.
        """
        assert node in self._nodes
        self._entry_point = node

    def process(self):
        """
        Compute various properties of the control flow graph.  The graph
        must have been fully populated, and its entry point specified.
        """
        if self._entry_point is None:
            raise RuntimeError("no entry point defined!")
        self._eliminate_dead_blocks()
        self._find_exit_points()
        self._find_dominators()
        self._find_back_edges()
        self._find_topo_order()
        self._find_descendents()
        self._find_loops()
        self._find_post_dominators()

    def dominators(self):
        """
        Return a dictionary of {node -> set(nodes)} mapping each node to
        the nodes dominating it.

        A node D dominates a node N when any path leading to N must go through D.
        """
        return self._doms

    def post_dominators(self):
        """
        Return a dictionary of {node -> set(nodes)} mapping each node to
        the nodes post-dominating it.

        A node P post-dominates a node N when any path starting from N must go
        through P.
        """
        return self._post_doms

    def descendents(self, node):
        """
        Return the set of descendents of the given *node*, in topological
        order (ignoring back edges).
        """
        return self._descs[node]

    def entry_point(self):
        """
        Return the entry point node.
        """
        assert self._entry_point is not None
        return self._entry_point

    def exit_points(self):
        """
        Return the computed set of exit nodes (may be empty).
        """
        return self._exit_points

    def backbone(self):
        """
        Return the set of nodes constituting the graph's backbone.
        (i.e. the nodes that every path starting from the entry point
         must go through).  By construction, it is non-empty: it contains
         at least the entry point.
        """
        return self._post_doms[self._entry_point]

    def loops(self):
        """
        Return a dictionary of {node -> loop} mapping each loop header
        to the loop (a Loop instance) starting with it.
        """
        return self._loops

    def in_loops(self, node):
        """
        Return the list of Loop objects the *node* belongs to,
        from innermost to outermost.
        """
        return [self._loops[x] for x in self._in_loops[node]]

    def dead_nodes(self):
        """
        Return the set of dead nodes (eliminated from the graph).
        """
        return self._dead_nodes

    def nodes(self):
        """
        Return the set of live nodes.
        """
        return self._nodes

    def topo_order(self):
        """
        Return the sequence of nodes in topological order (ignoring back
        edges).
        """
        return self._topo_order

    def topo_sort(self, nodes, reverse=False):
        """
        Iterate over the *nodes* in topological order (ignoring back edges).
        The sort isn't guaranteed to be stable.
        """
        nodes = set(nodes)
        it = self._topo_order
        if reverse:
            it = reversed(it)
        for n in it:
            if n in nodes:
                yield n

    def dump(self, file=None):
        """
        Dump extensive debug information.
        """
        import pprint
        file = file or sys.stdout
        if 1:
            print("CFG adjacency lists:", file=file)
            self._dump_adj_lists(file)
        print("CFG dominators:", file=file)
        pprint.pprint(self._doms, stream=file)
        print("CFG post-dominators:", file=file)
        pprint.pprint(self._post_doms, stream=file)
        print("CFG back edges:", sorted(self._back_edges), file=file)
        print("CFG loops:", file=file)
        pprint.pprint(self._loops, stream=file)
        print("CFG node-to-loops:", file=file)
        pprint.pprint(self._in_loops, stream=file)

    # Internal APIs

    def _add_edge(self, from_, to, data=None):
        # This internal version allows adding edges to/from unregistered
        # (ghost) nodes.
        self._preds[to].add(from_)
        self._succs[from_].add(to)
        self._edge_data[from_, to] = data

    def _remove_node_edges(self, node):
        for succ in self._succs.pop(node, ()):
            self._preds[succ].remove(node)
            del self._edge_data[node, succ]
        for pred in self._preds.pop(node, ()):
            self._succs[pred].remove(node)
            del self._edge_data[pred, node]

    def _dfs(self, entries=None):
        if entries is None:
            entries = (self._entry_point,)
        seen = set()
        stack = list(entries)
        while stack:
            node = stack.pop()
            if node not in seen:
                yield node
                seen.add(node)
                for succ in self._succs[node]:
                    stack.append(succ)

    def _eliminate_dead_blocks(self):
        """
        Eliminate all blocks not reachable from the entry point, and
        stash them into self._dead_nodes.
        """
        live = set()
        for node in self._dfs():
            live.add(node)
        self._dead_nodes = self._nodes - live
        self._nodes = live
        # Remove all edges leading from dead nodes
        for dead in self._dead_nodes:
            self._remove_node_edges(dead)

    def _find_exit_points(self):
        """
        Compute the graph's exit points.
        """
        exit_points = set()
        for n in self._nodes:
            if not self._succs.get(n):
                exit_points.add(n)
        self._exit_points = exit_points

    def _find_dominators_internal(self, post=False):
        # See theoretical description in
        # http://en.wikipedia.org/wiki/Dominator_%28graph_theory%29
        # The algorithm implemented here uses a todo-list as described
        # in http://pages.cs.wisc.edu/~fischer/cs701.f08/finding.loops.html
        if post:
            entries = set(self._exit_points)
            preds_table = self._succs
            succs_table = self._preds
        else:
            entries = set([self._entry_point])
            preds_table = self._preds
            succs_table = self._succs

        if not entries:
            raise RuntimeError("no entry points: dominator algorithm "
                               "cannot be seeded")

        doms = {}
        for e in entries:
            doms[e] = set([e])

        todo = []
        for n in self._nodes:
            if n not in entries:
                doms[n] = set(self._nodes)
                todo.append(n)

        while todo:
            n = todo.pop()
            if n in entries:
                continue
            new_doms = set([n])
            preds = preds_table[n]
            if preds:
                new_doms |= functools.reduce(set.intersection,
                                             [doms[p] for p in preds])
            if new_doms != doms[n]:
                assert len(new_doms) < len(doms[n])
                doms[n] = new_doms
                todo.extend(succs_table[n])
        return doms

    def _find_dominators(self):
        self._doms = self._find_dominators_internal(post=False)

    def _find_post_dominators(self):
        # To handle infinite loops correctly, we need to add a dummy
        # exit point, and link members of infinite loops to it.
        dummy_exit = object()
        self._exit_points.add(dummy_exit)
        for loop in self._loops.values():
            if not loop.exits:
                for b in loop.body:
                    self._add_edge(b, dummy_exit)
        self._post_doms = self._find_dominators_internal(post=True)
        # Fix the _post_doms table to make no reference to the dummy exit
        del self._post_doms[dummy_exit]
        for doms in self._post_doms.values():
            doms.discard(dummy_exit)
        self._remove_node_edges(dummy_exit)
        self._exit_points.remove(dummy_exit)

    # Finding loops and back edges: see
    # http://pages.cs.wisc.edu/~fischer/cs701.f08/finding.loops.html

    def _find_back_edges(self):
        """
        Find back edges.  An edge (src, dest) is a back edge if and
        only if *dest* dominates *src*.
        """
        back_edges = set()
        for src, succs in self._succs.items():
            back = self._doms[src] & succs
            # In CPython bytecode, at most one back edge can flow from a
            # given block.
            assert len(back) <= 1
            back_edges.update((src, dest) for dest in back)
        self._back_edges = back_edges

    def _find_topo_order(self):
        succs = self._succs
        back_edges = self._back_edges
        post_order = []
        seen = set()

        def _dfs_rec(node):
            if node not in seen:
                seen.add(node)
                for dest in succs[node]:
                    if (node, dest) not in back_edges:
                        _dfs_rec(dest)
                post_order.append(node)

        _dfs_rec(self._entry_point)
        post_order.reverse()
        self._topo_order = post_order

    def _find_descendents(self):
        descs = {}
        for node in reversed(self._topo_order):
            descs[node] = node_descs = set()
            for succ in self._succs[node]:
                if (node, succ) not in self._back_edges:
                    node_descs.add(succ)
                    node_descs.update(descs[succ])
        self._descs = descs

    def _find_loops(self):
        """
        Find the loops defined by the graph's back edges.
        """
        bodies = {}
        for src, dest in self._back_edges:
            # The destination of the back edge is the loop header
            header = dest
            # Build up the loop body from the back edge's source node,
            # up to the source header.
            body = set([header])
            queue = [src]
            while queue:
                n = queue.pop()
                if n not in body:
                    body.add(n)
                    queue.extend(self._preds[n])
            # There can be several back edges to a given loop header;
            # if so, merge the resulting body fragments.
            if header in bodies:
                bodies[header].update(body)
            else:
                bodies[header] = body

        # Create a Loop object for each header.
        loops = {}
        for header, body in bodies.items():
            entries = set()
            exits = set()
            for n in body:
                entries.update(self._preds[n] - body)
                exits.update(self._succs[n] - body)
            loop = Loop(header=header, body=body, entries=entries, exits=exits)
            loops[header] = loop
        self._loops = loops

        # Compute the loops to which each node belongs.
        in_loops = dict((n, []) for n in self._nodes)
        # Sort loops from longest to shortest
        # This ensures that outer loops will come before inner loops
        for loop in sorted(loops.values(), key=lambda loop: len(loop.body)):
            for n in loop.body:
                in_loops[n].append(loop.header)
        self._in_loops = in_loops

    def _dump_adj_lists(self, file):
        adj_lists = dict((src, list(dests))
                         for src, dests in self._succs.items())
        import pprint
        pprint.pprint(adj_lists, stream=file)


class ControlFlowAnalysis(object):
    """
    Attributes
    ----------
    - bytecode

    - blocks

    - blockseq

    - doms: dict of set
        Dominators

    - backbone: set of block offsets
        The set of block that is common to all possible code path.

    """
    def __init__(self, bytecode):
        self.bytecode = bytecode
        self.blocks = {}
        self.liveblocks = {}
        self.blockseq = []
        self.doms = None
        self.backbone = None
        # Internal temp states
        self._force_new_block = True
        self._curblock = None
        self._blockstack = []
        self._loops = []

    def iterblocks(self):
        """
        Return all blocks in sequence of occurrence
        """
        for i in self.blockseq:
            yield self.blocks[i]

    def iterliveblocks(self):
        """
        Return all live blocks in sequence of occurrence
        """
        for i in self.blockseq:
            if i in self.liveblocks:
                yield self.blocks[i]

    def incoming_blocks(self, block):
        """
        Yield (incoming block, number of stack pops) pairs for *block*.
        """
        for i, pops in block.incoming_jumps.items():
            if i in self.liveblocks:
                yield self.blocks[i], pops

    def dump(self, file=None):
        self.graph.dump(file=None)

    def run(self):
        for inst in self._iter_inst():
            fname = "op_%s" % inst.opname
            fn = getattr(self, fname, None)
            if fn is not None:
                fn(inst)
            else:
                assert not inst.is_jump, inst

        # Close all blocks
        for cur, nxt in zip(self.blockseq, self.blockseq[1:]):
            blk = self.blocks[cur]
            if not blk.outgoing_jumps and not blk.terminating:
                blk.outgoing_jumps[nxt] = 0

        graph = CFGraph()
        for b in self.blocks:
            graph.add_node(b)
        for b in self.blocks.values():
            for out, pops in b.outgoing_jumps.items():
                graph.add_edge(b.offset, out, pops)
        graph.set_entry_point(min(self.blocks))
        graph.process()
        self.graph = graph

        # Fill incoming
        for b in utils.itervalues(self.blocks):
            for out, pops in b.outgoing_jumps.items():
                self.blocks[out].incoming_jumps[b.offset] = pops

        # Find liveblocks
        self.liveblocks = dict((i, self.blocks[i])
                               for i in self.graph.nodes())

        for lastblk in reversed(self.blockseq):
            if lastblk in self.liveblocks:
                break
        else:
            raise AssertionError("No live block that exits!?")

        # Find backbone
        backbone = self.graph.backbone()
        # Filter out in loop blocks (Assuming no other cyclic control blocks)
        # This is to unavoid variable defined in loops to be considered as
        # function scope.
        inloopblocks = set()

        for b in self.blocks.keys():
            for s, e in self._loops:
                if s <= b < e:
                    inloopblocks.add(b)

        self.backbone = backbone - inloopblocks

    def jump(self, target, pops=0):
        """
        Register a jump (conditional or not) to *target* offset.
        *pops* is the number of stack pops implied by the jump (default 0).
        """
        self._curblock.outgoing_jumps[target] = pops

    def _iter_inst(self):
        for inst in self.bytecode:
            if self._use_new_block(inst):
                self._start_new_block(inst)
            self._curblock.body.append(inst.offset)
            yield inst

    def _use_new_block(self, inst):
        if inst.offset in self.bytecode.labels:
            res = True
        elif inst.opname in NEW_BLOCKERS:
            res = True
        else:
            res = self._force_new_block

        self._force_new_block = False
        return res

    def _start_new_block(self, inst):
        self._curblock = CFBlock(inst.offset)
        self.blocks[inst.offset] = self._curblock
        self.blockseq.append(inst.offset)

    def op_SETUP_LOOP(self, inst):
        end = inst.get_jump_target()
        self._blockstack.append(end)
        self._loops.append((inst.offset, end))
        # TODO: Looplifting requires the loop entry be its own block.
        #       Forcing a new block here is the simplest solution for now.
        #       But, we should consider other less ad-hoc ways.
        self.jump(inst.next)
        self._force_new_block = True

    def op_POP_BLOCK(self, inst):
        self._blockstack.pop()

    def op_FOR_ITER(self, inst):
        self.jump(inst.get_jump_target())
        self.jump(inst.next)
        self._force_new_block = True

    def _op_ABSOLUTE_JUMP_IF(self, inst):
        self.jump(inst.get_jump_target())
        self.jump(inst.next)
        self._force_new_block = True

    op_POP_JUMP_IF_FALSE = _op_ABSOLUTE_JUMP_IF
    op_POP_JUMP_IF_TRUE = _op_ABSOLUTE_JUMP_IF
    op_JUMP_IF_FALSE = _op_ABSOLUTE_JUMP_IF
    op_JUMP_IF_TRUE = _op_ABSOLUTE_JUMP_IF

    def _op_ABSOLUTE_JUMP_OR_POP(self, inst):
        self.jump(inst.get_jump_target())
        self.jump(inst.next, pops=1)
        self._force_new_block = True

    op_JUMP_IF_FALSE_OR_POP = _op_ABSOLUTE_JUMP_OR_POP
    op_JUMP_IF_TRUE_OR_POP = _op_ABSOLUTE_JUMP_OR_POP

    def op_JUMP_ABSOLUTE(self, inst):
        self.jump(inst.get_jump_target())
        self._force_new_block = True

    def op_JUMP_FORWARD(self, inst):
        self.jump(inst.get_jump_target())
        self._force_new_block = True

    def op_RETURN_VALUE(self, inst):
        self._curblock.terminating = True
        self._force_new_block = True

    def op_RAISE_VARARGS(self, inst):
        self._curblock.terminating = True
        self._force_new_block = True

    def op_BREAK_LOOP(self, inst):
        self.jump(self._blockstack[-1])
        self._force_new_block = True