/usr/lib/python2.7/dist-packages/numba/dataflow.py is in python-numba 0.34.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 | from __future__ import print_function, division, absolute_import
import collections
from pprint import pprint
import sys
import warnings
from numba import utils
class DataFlowAnalysis(object):
"""
Perform stack2reg
This is necessary to resolve blocks that propagates stack value.
This would allow the use of `and` and `or` and python2.6 jumps.
"""
def __init__(self, cfa):
self.cfa = cfa
self.bytecode = cfa.bytecode
# { block offset -> BlockInfo }
self.infos = {}
self.edge_process = {}
def run(self):
for blk in self.cfa.iterliveblocks():
self.infos[blk.offset] = self.run_on_block(blk)
def run_on_block(self, blk):
incoming_blocks = []
info = BlockInfo(blk, blk.offset, incoming_blocks)
edge_callbacks = []
for ib, pops in self.cfa.incoming_blocks(blk):
# By nature of Python bytecode, there will be no incoming
# variables from subsequent blocks. This is an easy way
# of breaking the potential circularity of the problem.
if ib.offset >= blk.offset:
continue
ib = self.infos[ib.offset]
incoming_blocks.append(ib)
if (ib.offset, blk.offset) in self.edge_process:
edge_callbacks.append(self.edge_process[(ib.offset, blk.offset)])
# Compute stack offset at block entry
# The stack effect of our predecessors should be known
assert ib.stack_offset is not None, ib
new_offset = ib.stack_offset + ib.stack_effect - pops
if new_offset < 0:
raise RuntimeError("computed negative stack offset for %s"
% blk)
if info.stack_offset is None:
info.stack_offset = new_offset
elif info.stack_offset != new_offset:
warnings.warn("inconsistent stack offset for %s" % blk,
RuntimeWarning)
# Compute syntax blocks at block entry
assert ib.syntax_blocks is not None, ib
if info.syntax_blocks is None:
info.syntax_blocks = ib.syntax_blocks[:]
elif info.syntax_blocks != ib.syntax_blocks:
warnings.warn("inconsistent entry syntax blocks for %s" % blk,
RuntimeWarning)
if info.stack_offset is None:
# No incoming blocks => assume it's the entry block
info.stack_offset = 0
info.syntax_blocks = []
info.stack_effect = 0
for callback in edge_callbacks:
callback(info)
for offset in blk:
inst = self.bytecode[offset]
self.dispatch(info, inst)
return info
def dump(self):
for blk in utils.itervalues(self.infos):
blk.dump()
def dispatch(self, info, inst):
fname = "op_%s" % inst.opname.replace('+', '_')
fn = getattr(self, fname, self.handle_unknown_opcode)
fn(info, inst)
def handle_unknown_opcode(self, info, inst):
msg = "Use of unknown opcode {} at line {} of {}"
raise NotImplementedError(msg.format(inst.opname, inst.lineno,
self.bytecode.func_id.filename))
def dup_topx(self, info, inst, count):
orig = [info.pop() for _ in range(count)]
orig.reverse()
# We need to actually create new temporaries if we want the
# IR optimization pass to work correctly (see issue #580)
duped = [info.make_temp() for _ in range(count)]
info.append(inst, orig=orig, duped=duped)
for val in orig:
info.push(val)
for val in duped:
info.push(val)
def add_syntax_block(self, info, block):
"""
Add an inner syntax block.
"""
block.stack_offset = info.stack_offset
info.syntax_blocks.append(block)
def pop_syntax_block(self, info):
"""
Pop the innermost syntax block and revert its stack effect.
"""
block = info.syntax_blocks.pop()
assert info.stack_offset >= block.stack_offset
while info.stack_offset + info.stack_effect > block.stack_offset:
info.pop(discard=True)
return block
def op_DUP_TOPX(self, info, inst):
count = inst.arg
assert 1 <= count <= 5, "Invalid DUP_TOPX count"
self.dup_topx(info, inst, count)
def op_DUP_TOP(self, info, inst):
self.dup_topx(info, inst, count=1)
def op_DUP_TOP_TWO(self, info, inst):
self.dup_topx(info, inst, count=2)
def op_ROT_TWO(self, info, inst):
first = info.pop()
second = info.pop()
info.push(first)
info.push(second)
def op_ROT_THREE(self, info, inst):
first = info.pop()
second = info.pop()
third = info.pop()
info.push(first)
info.push(third)
info.push(second)
def op_ROT_FOUR(self, info, inst):
first = info.pop()
second = info.pop()
third = info.pop()
forth = info.pop()
info.push(first)
info.push(forth)
info.push(third)
info.push(second)
def op_UNPACK_SEQUENCE(self, info, inst):
count = inst.arg
iterable = info.pop()
stores = [info.make_temp() for _ in range(count)]
tupleobj = info.make_temp()
info.append(inst, iterable=iterable, stores=stores, tupleobj=tupleobj)
for st in reversed(stores):
info.push(st)
def op_BUILD_TUPLE(self, info, inst):
count = inst.arg
items = list(reversed([info.pop() for _ in range(count)]))
tup = info.make_temp()
info.append(inst, items=items, res=tup)
info.push(tup)
def op_BUILD_LIST(self, info, inst):
count = inst.arg
items = list(reversed([info.pop() for _ in range(count)]))
lst = info.make_temp()
info.append(inst, items=items, res=lst)
info.push(lst)
def op_LIST_APPEND(self, info, inst):
value = info.pop()
# Python 2.7+ added an argument to LIST_APPEND.
if sys.version_info[:2] == (2, 6):
target = info.pop()
else:
index = inst.arg
target = info.peek(index)
appendvar = info.make_temp()
res = info.make_temp()
info.append(inst, target=target, value=value, appendvar=appendvar, res=res)
def op_BUILD_MAP(self, info, inst):
dct = info.make_temp()
count = inst.arg
items = []
if sys.version_info >= (3, 5):
# In 3.5+, BUILD_MAP takes <count> pairs from the stack
for i in range(count):
v, k = info.pop(), info.pop()
items.append((k, v))
info.append(inst, items=items[::-1], size=count, res=dct)
info.push(dct)
def op_BUILD_SET(self, info, inst):
count = inst.arg
# Note: related python bug http://bugs.python.org/issue26020
items = list(reversed([info.pop() for _ in range(count)]))
res = info.make_temp()
info.append(inst, items=items, res=res)
info.push(res)
def op_POP_TOP(self, info, inst):
info.pop(discard=True)
def op_STORE_ATTR(self, info, inst):
target = info.pop()
value = info.pop()
info.append(inst, target=target, value=value)
def op_DELETE_ATTR(self, info, inst):
target = info.pop()
info.append(inst, target=target)
def op_STORE_FAST(self, info, inst):
value = info.pop()
info.append(inst, value=value)
def op_STORE_MAP(self, info, inst):
key = info.pop()
value = info.pop()
dct = info.tos
info.append(inst, dct=dct, key=key, value=value)
def op_STORE_DEREF(self, info, inst):
value = info.pop()
info.append(inst, value=value)
def op_LOAD_FAST(self, info, inst):
name = self.bytecode.co_varnames[inst.arg]
res = info.make_temp(name)
info.append(inst, res=res)
info.push(res)
def op_LOAD_CONST(self, info, inst):
res = info.make_temp('const')
info.append(inst, res=res)
info.push(res)
def op_LOAD_GLOBAL(self, info, inst):
res = info.make_temp()
info.append(inst, res=res)
info.push(res)
def op_LOAD_DEREF(self, info, inst):
res = info.make_temp()
info.append(inst, res=res)
info.push(res)
def op_LOAD_ATTR(self, info, inst):
item = info.pop()
res = info.make_temp()
info.append(inst, item=item, res=res)
info.push(res)
def op_BINARY_SUBSCR(self, info, inst):
index = info.pop()
target = info.pop()
res = info.make_temp()
info.append(inst, index=index, target=target, res=res)
info.push(res)
def op_STORE_SUBSCR(self, info, inst):
index = info.pop()
target = info.pop()
value = info.pop()
info.append(inst, target=target, index=index, value=value)
def op_DELETE_SUBSCR(self, info, inst):
index = info.pop()
target = info.pop()
info.append(inst, target=target, index=index)
def op_GET_ITER(self, info, inst):
value = info.pop()
res = info.make_temp()
info.append(inst, value=value, res=res)
info.push(res)
def op_FOR_ITER(self, info, inst):
iterator = info.tos
pair = info.make_temp()
indval = info.make_temp()
pred = info.make_temp()
info.append(inst, iterator=iterator, pair=pair, indval=indval, pred=pred)
info.push(indval)
# Setup for stack POP (twice) at loop exit (before processing instruction at jump target)
def pop_info(info):
info.pop()
info.pop()
self.edge_process[(info.block.offset, inst.get_jump_target())] = pop_info
if utils.PYVERSION < (3, 6):
def _op_call_function(self, info, inst, has_vararg):
narg = inst.arg & 0xff
nkws = (inst.arg >> 8) & 0xff
def pop_kws():
val = info.pop()
key = info.pop()
return key, val
vararg = info.pop() if has_vararg else None
kws = list(reversed([pop_kws() for _ in range(nkws)]))
args = list(reversed([info.pop() for _ in range(narg)]))
func = info.pop()
res = info.make_temp()
info.append(inst, func=func, args=args, kws=kws, res=res,
vararg=vararg)
info.push(res)
def op_CALL_FUNCTION(self, info, inst):
self._op_call_function(info, inst, has_vararg=False)
def op_CALL_FUNCTION_VAR(self, info, inst):
self._op_call_function(info, inst, has_vararg=True)
else:
def op_CALL_FUNCTION(self, info, inst):
narg = inst.arg
args = list(reversed([info.pop() for _ in range(narg)]))
func = info.pop()
res = info.make_temp()
info.append(inst, func=func, args=args, res=res)
info.push(res)
def op_CALL_FUNCTION_KW(self, info, inst):
narg = inst.arg
names = info.pop() # tuple of names
args = list(reversed([info.pop() for _ in range(narg)]))
func = info.pop()
res = info.make_temp()
info.append(inst, func=func, args=args, names=names, res=res)
info.push(res)
def op_CALL_FUNCTION_EX(self, info, inst):
if inst.arg & 1:
errmsg = 'CALL_FUNCTION_EX with **kwargs not supported'
raise NotImplementedError(errmsg)
vararg = info.pop()
func = info.pop()
res = info.make_temp()
info.append(inst, func=func, vararg=vararg, res=res)
info.push(res)
def op_BUILD_TUPLE_UNPACK_WITH_CALL(self, info, inst):
# Builds tuple from other tuples on the stack
tuples = list(reversed([info.pop() for _ in range(inst.arg)]))
temps = [info.make_temp() for _ in range(len(tuples) - 1)]
info.append(inst, tuples=tuples, temps=temps)
# The result is in the last temp var
info.push(temps[-1])
def op_BUILD_CONST_KEY_MAP(self, info, inst):
keys = info.pop()
vals = list(reversed([info.pop() for _ in range(inst.arg)]))
keytmps = [info.make_temp() for _ in range(inst.arg)]
res = info.make_temp()
info.append(inst, keys=keys, keytmps=keytmps, values=vals, res=res)
info.push(res)
def op_PRINT_ITEM(self, info, inst):
warnings.warn("Python2 style print partially supported. Please use "
"Python3 style print.", RuntimeWarning)
item = info.pop()
printvar = info.make_temp()
res = info.make_temp()
info.append(inst, item=item, printvar=printvar, res=res)
def op_PRINT_NEWLINE(self, info, inst):
printvar = info.make_temp()
res = info.make_temp()
info.append(inst, printvar=printvar, res=res)
def _unaryop(self, info, inst):
val = info.pop()
res = info.make_temp()
info.append(inst, value=val, res=res)
info.push(res)
op_UNARY_NEGATIVE = _unaryop
op_UNARY_POSITIVE = _unaryop
op_UNARY_NOT = _unaryop
op_UNARY_INVERT = _unaryop
def _binaryop(self, info, inst):
rhs = info.pop()
lhs = info.pop()
res = info.make_temp()
info.append(inst, lhs=lhs, rhs=rhs, res=res)
info.push(res)
op_COMPARE_OP = _binaryop
op_INPLACE_ADD = _binaryop
op_INPLACE_SUBTRACT = _binaryop
op_INPLACE_MULTIPLY = _binaryop
op_INPLACE_DIVIDE = _binaryop
op_INPLACE_TRUE_DIVIDE = _binaryop
op_INPLACE_FLOOR_DIVIDE = _binaryop
op_INPLACE_MODULO = _binaryop
op_INPLACE_POWER = _binaryop
op_INPLACE_MATRIX_MULTIPLY = _binaryop
op_INPLACE_LSHIFT = _binaryop
op_INPLACE_RSHIFT = _binaryop
op_INPLACE_AND = _binaryop
op_INPLACE_OR = _binaryop
op_INPLACE_XOR = _binaryop
op_BINARY_ADD = _binaryop
op_BINARY_SUBTRACT = _binaryop
op_BINARY_MULTIPLY = _binaryop
op_BINARY_DIVIDE = _binaryop
op_BINARY_TRUE_DIVIDE = _binaryop
op_BINARY_FLOOR_DIVIDE = _binaryop
op_BINARY_MODULO = _binaryop
op_BINARY_POWER = _binaryop
op_BINARY_MATRIX_MULTIPLY = _binaryop
op_BINARY_LSHIFT = _binaryop
op_BINARY_RSHIFT = _binaryop
op_BINARY_AND = _binaryop
op_BINARY_OR = _binaryop
op_BINARY_XOR = _binaryop
def op_SLICE_0(self, info, inst):
"""
TOS = TOS[:]
"""
tos = info.pop()
res = info.make_temp()
slicevar = info.make_temp()
indexvar = info.make_temp()
nonevar = info.make_temp()
info.append(inst, base=tos, res=res, slicevar=slicevar,
indexvar=indexvar, nonevar=nonevar)
info.push(res)
def op_SLICE_1(self, info, inst):
"""
TOS = TOS1[TOS:]
"""
tos = info.pop()
tos1 = info.pop()
res = info.make_temp()
slicevar = info.make_temp()
indexvar = info.make_temp()
nonevar = info.make_temp()
info.append(inst, base=tos1, start=tos, res=res, slicevar=slicevar,
indexvar=indexvar, nonevar=nonevar)
info.push(res)
def op_SLICE_2(self, info, inst):
"""
TOS = TOS1[:TOS]
"""
tos = info.pop()
tos1 = info.pop()
res = info.make_temp()
slicevar = info.make_temp()
indexvar = info.make_temp()
nonevar = info.make_temp()
info.append(inst, base=tos1, stop=tos, res=res, slicevar=slicevar,
indexvar=indexvar, nonevar=nonevar)
info.push(res)
def op_SLICE_3(self, info, inst):
"""
TOS = TOS2[TOS1:TOS]
"""
tos = info.pop()
tos1 = info.pop()
tos2 = info.pop()
res = info.make_temp()
slicevar = info.make_temp()
indexvar = info.make_temp()
info.append(inst, base=tos2, start=tos1, stop=tos, res=res,
slicevar=slicevar, indexvar=indexvar)
info.push(res)
def op_STORE_SLICE_0(self, info, inst):
"""
TOS[:] = TOS1
"""
tos = info.pop()
value = info.pop()
slicevar = info.make_temp()
indexvar = info.make_temp()
nonevar = info.make_temp()
info.append(inst, base=tos, value=value, slicevar=slicevar,
indexvar=indexvar, nonevar=nonevar)
def op_STORE_SLICE_1(self, info, inst):
"""
TOS1[TOS:] = TOS2
"""
tos = info.pop()
tos1 = info.pop()
value = info.pop()
slicevar = info.make_temp()
indexvar = info.make_temp()
nonevar = info.make_temp()
info.append(inst, base=tos1, start=tos, slicevar=slicevar,
value=value, indexvar=indexvar, nonevar=nonevar)
def op_STORE_SLICE_2(self, info, inst):
"""
TOS1[:TOS] = TOS2
"""
tos = info.pop()
tos1 = info.pop()
value = info.pop()
slicevar = info.make_temp()
indexvar = info.make_temp()
nonevar = info.make_temp()
info.append(inst, base=tos1, stop=tos, value=value, slicevar=slicevar,
indexvar=indexvar, nonevar=nonevar)
def op_STORE_SLICE_3(self, info, inst):
"""
TOS2[TOS1:TOS] = TOS3
"""
tos = info.pop()
tos1 = info.pop()
tos2 = info.pop()
value = info.pop()
slicevar = info.make_temp()
indexvar = info.make_temp()
info.append(inst, base=tos2, start=tos1, stop=tos, value=value,
slicevar=slicevar, indexvar=indexvar)
def op_DELETE_SLICE_0(self, info, inst):
"""
del TOS[:]
"""
tos = info.pop()
slicevar = info.make_temp()
indexvar = info.make_temp()
nonevar = info.make_temp()
info.append(inst, base=tos, slicevar=slicevar,
indexvar=indexvar, nonevar=nonevar)
def op_DELETE_SLICE_1(self, info, inst):
"""
del TOS1[TOS:]
"""
tos = info.pop()
tos1 = info.pop()
slicevar = info.make_temp()
indexvar = info.make_temp()
nonevar = info.make_temp()
info.append(inst, base=tos1, start=tos, slicevar=slicevar,
indexvar=indexvar, nonevar=nonevar)
def op_DELETE_SLICE_2(self, info, inst):
"""
del TOS1[:TOS]
"""
tos = info.pop()
tos1 = info.pop()
slicevar = info.make_temp()
indexvar = info.make_temp()
nonevar = info.make_temp()
info.append(inst, base=tos1, stop=tos, slicevar=slicevar,
indexvar=indexvar, nonevar=nonevar)
def op_DELETE_SLICE_3(self, info, inst):
"""
del TOS2[TOS1:TOS]
"""
tos = info.pop()
tos1 = info.pop()
tos2 = info.pop()
slicevar = info.make_temp()
indexvar = info.make_temp()
info.append(inst, base=tos2, start=tos1, stop=tos,
slicevar=slicevar, indexvar=indexvar)
def op_BUILD_SLICE(self, info, inst):
"""
slice(TOS1, TOS) or slice(TOS2, TOS1, TOS)
"""
argc = inst.arg
if argc == 2:
tos = info.pop()
tos1 = info.pop()
start = tos1
stop = tos
step = None
elif argc == 3:
tos = info.pop()
tos1 = info.pop()
tos2 = info.pop()
start = tos2
stop = tos1
step = tos
else:
raise Exception("unreachable")
slicevar = info.make_temp()
res = info.make_temp()
info.append(inst, start=start, stop=stop, step=step, res=res,
slicevar=slicevar)
info.push(res)
def op_POP_JUMP_IF_TRUE(self, info, inst):
pred = info.pop()
info.append(inst, pred=pred)
info.terminator = inst
def op_POP_JUMP_IF_FALSE(self, info, inst):
pred = info.pop()
info.append(inst, pred=pred)
info.terminator = inst
def op_JUMP_IF_TRUE(self, info, inst):
pred = info.tos
info.append(inst, pred=pred)
info.terminator = inst
def op_JUMP_IF_FALSE(self, info, inst):
pred = info.tos
info.append(inst, pred=pred)
info.terminator = inst
op_JUMP_IF_FALSE_OR_POP = op_JUMP_IF_FALSE
op_JUMP_IF_TRUE_OR_POP = op_JUMP_IF_TRUE
def op_JUMP_ABSOLUTE(self, info, inst):
info.append(inst)
info.terminator = inst
def op_JUMP_FORWARD(self, info, inst):
info.append(inst)
info.terminator = inst
def op_BREAK_LOOP(self, info, inst):
self.pop_syntax_block(info)
info.append(inst)
info.terminator = inst
def op_RETURN_VALUE(self, info, inst):
info.append(inst, retval=info.pop(), castval=info.make_temp())
info.terminator = inst
def op_YIELD_VALUE(self, info, inst):
val = info.pop()
res = info.make_temp()
info.append(inst, value=val, res=res)
info.push(res)
def op_SETUP_LOOP(self, info, inst):
self.add_syntax_block(info, LoopBlock())
info.append(inst)
def op_POP_BLOCK(self, info, inst):
block = self.pop_syntax_block(info)
info.append(inst)
def op_RAISE_VARARGS(self, info, inst):
if inst.arg == 0:
exc = None
elif inst.arg == 1:
exc = info.pop()
else:
raise ValueError("Multiple argument raise is not supported.")
info.append(inst, exc=exc)
def op_MAKE_FUNCTION(self, info, inst, MAKE_CLOSURE=False):
if utils.PYVERSION == (2, 7):
name = None
else:
name = info.pop()
code = info.pop()
closure = annotations = kwdefaults = defaults = None
if utils.PYVERSION < (3, 0):
if MAKE_CLOSURE:
closure = info.pop()
num_posdefaults = inst.arg
if num_posdefaults > 0:
defaults = []
for i in range(num_posdefaults):
defaults.append(info.pop())
defaults = tuple(defaults)
elif utils.PYVERSION >= (3, 0) and utils.PYVERSION < (3, 6):
num_posdefaults = inst.arg & 0xff
num_kwdefaults = (inst.arg >> 8) & 0xff
num_annotations = (inst.arg >> 16) & 0x7fff
if MAKE_CLOSURE:
closure = info.pop()
if num_annotations > 0:
annotations = info.pop()
if num_kwdefaults > 0:
kwdefaults = []
for i in range(num_kwdefaults):
v = info.pop()
k = info.pop()
kwdefaults.append((k,v))
kwdefaults = tuple(kwdefaults)
if num_posdefaults:
defaults = []
for i in range(num_posdefaults):
defaults.append(info.pop())
defaults = tuple(defaults)
else:
if inst.arg & 0x8:
closure = info.pop()
if inst.arg & 0x4:
annotations = info.pop()
if inst.arg & 0x2:
kwdefaults = info.pop()
if inst.arg & 0x1:
defaults = info.pop()
res = info.make_temp()
info.append(inst, name=name, code=code, closure=closure, annotations=annotations,
kwdefaults=kwdefaults, defaults=defaults, res=res)
info.push(res)
def op_MAKE_CLOSURE(self, info, inst):
self.op_MAKE_FUNCTION(info, inst, MAKE_CLOSURE=True)
def op_LOAD_CLOSURE(self, info, inst):
res = info.make_temp()
info.append(inst, res=res)
info.push(res)
def _ignored(self, info, inst):
pass
class LoopBlock(object):
__slots__ = ('stack_offset',)
def __init__(self):
self.stack_offset = None
class BlockInfo(object):
def __init__(self, block, offset, incoming_blocks):
self.block = block
self.offset = offset
# The list of incoming BlockInfo objects (obtained by control
# flow analysis).
self.incoming_blocks = incoming_blocks
self.stack = []
# Outgoing variables from this block:
# { outgoing phi name -> var name }
self.outgoing_phis = {}
self.insts = []
self.tempct = 0
self._term = None
self.stack_offset = None
self.stack_effect = 0
self.syntax_blocks = None
def __repr__(self):
return "<%s at offset %d>" % (self.__class__.__name__, self.offset)
def dump(self):
print("offset", self.offset, "{")
print(" stack: ", end='')
pprint(self.stack)
pprint(self.insts)
print("}")
def make_temp(self, prefix=''):
self.tempct += 1
name = '$%s%s.%s' % (prefix, self.offset, self.tempct)
return name
def push(self, val):
self.stack_effect += 1
self.stack.append(val)
def pop(self, discard=False):
"""
Pop a variable from the stack, or request it from incoming blocks if
the stack is empty.
If *discard* is true, the variable isn't meant to be used anymore,
which allows reducing the number of temporaries created.
"""
if not self.stack:
self.stack_offset -= 1
if not discard:
return self.make_incoming()
else:
self.stack_effect -= 1
return self.stack.pop()
def peek(self, k):
"""
Return the k'th element back from the top of the stack.
peek(1) is the top of the stack.
"""
num_pops = k
top_k = [self.pop() for _ in range(num_pops)]
r = top_k[-1]
for i in range(num_pops - 1, -1, -1):
self.push(top_k[i])
return r
def make_incoming(self):
"""
Create an incoming variable (due to not enough values being
available on our stack) and request its assignment from our
incoming blocks' own stacks.
"""
assert self.incoming_blocks
ret = self.make_temp('phi')
for ib in self.incoming_blocks:
stack_index = self.stack_offset + self.stack_effect
ib.request_outgoing(self, ret, stack_index)
return ret
def request_outgoing(self, outgoing_block, phiname, stack_index):
"""
Request the assignment of the next available stack variable
for block *outgoing_block* with target name *phiname*.
"""
if phiname in self.outgoing_phis:
# If phiname was already requested, ignore this new request
# (can happen with a diamond-shaped block flow structure).
return
if stack_index < self.stack_offset:
assert self.incoming_blocks
for ib in self.incoming_blocks:
ib.request_outgoing(self, phiname, stack_index)
else:
varname = self.stack[stack_index - self.stack_offset]
self.outgoing_phis[phiname] = varname
@property
def tos(self):
r = self.pop()
self.push(r)
return r
def append(self, inst, **kws):
self.insts.append((inst.offset, kws))
@property
def terminator(self):
assert self._term is None
return self._term
@terminator.setter
def terminator(self, inst):
self._term = inst
|