This file is indexed.

/usr/lib/python2.7/dist-packages/numba/dummyarray.py is in python-numba 0.34.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
from __future__ import print_function, division

from collections import namedtuple
import itertools
import functools
import operator

import numpy as np


Extent = namedtuple("Extent", ["begin", "end"])


class Dim(object):
    """A single dimension of the array

    Attributes
    ----------
    start:
        start offset
    stop:
        stop offset
    size:
        number of items
    stride:
        item stride
    """
    __slots__ = 'start', 'stop', 'size', 'stride', 'single'

    def __init__(self, start, stop, size, stride, single):
        if stop < start:
            raise ValueError("end offset is before start offset")
        self.start = start
        self.stop = stop
        self.size = size
        self.stride = stride
        self.single = single
        assert not single or size == 1

    def __getitem__(self, item):
        if isinstance(item, slice):
            start, stop, step = item.start, item.stop, item.step
            single = False
        else:
            single = True
            start = item
            stop = start + 1
            step = None

        if start is None:
            start = 0
        if stop is None:
            stop = self.size
        if step is None:
            step = 1

        stride = step * self.stride

        if start >= 0:
            start = self.start + start * self.stride
        else:
            start = self.stop + start * self.stride

        if stop >= 0:
            stop = self.start + stop * self.stride
        else:
            stop = self.stop + stop * self.stride

        size = (stop - start + (stride - 1)) // stride

        if self.start >= start >= self.stop:
            raise IndexError("start index out-of-bound")

        if self.start >= stop >= self.stop:
            raise IndexError("stop index out-of-bound")

        if stop < start:
            start = stop
            size = 0

        return Dim(start, stop, size, stride, single)

    def get_offset(self, idx):
        return self.start + idx * self.stride

    def __repr__(self):
        strfmt = "Dim(start=%s, stop=%s, size=%s, stride=%s)"
        return strfmt % (self.start, self.stop, self.size, self.stride)

    def normalize(self, base):
        return Dim(start=self.start - base, stop=self.stop - base,
                   size=self.size, stride=self.stride, single=self.single)

    def copy(self, start=None, stop=None, size=None, stride=None, single=None):
        if start is None:
            start = self.start
        if stop is None:
            stop = self.stop
        if size is None:
            size = self.size
        if stride is None:
            stride = self.stride
        if single is None:
            single = self.single
        return Dim(start, stop, size, stride, single)

    def is_contiguous(self, itemsize):
        return self.stride == itemsize


def compute_index(indices, dims):
    return sum(d.get_offset(i) for i, d in zip(indices, dims))


class Element(object):
    is_array = False

    def __init__(self, extent):
        self.extent = extent

    def iter_contiguous_extent(self):
        yield self.extent


class Array(object):
    """A dummy numpy array-like object.  Consider it an array without the
    actual data, but offset from the base data pointer.

    Attributes
    ----------
    dims: tuple of Dim
        describing each dimension of the array

    ndim: int
        number of dimension

    shape: tuple of int
        size of each dimension

    strides: tuple of int
        stride of each dimension

    itemsize: int
        itemsize

    extent: (start, end)
        start and end offset containing the memory region
    """
    is_array = True

    @classmethod
    def from_desc(cls, offset, shape, strides, itemsize):
        dims = []
        for ashape, astride in zip(shape, strides):
            dim = Dim(offset, offset + ashape * astride, ashape, astride,
                      single=False)
            dims.append(dim)
        return cls(dims, itemsize)

    def __init__(self, dims, itemsize):
        self.dims = tuple(dims)
        self.ndim = len(self.dims)
        self.shape = tuple(dim.size for dim in self.dims)
        self.strides = tuple(dim.stride for dim in self.dims)
        self.itemsize = itemsize
        self.size = np.prod(self.shape)
        self.extent = self._compute_extent()
        self.flags = self._compute_layout()

    def _compute_layout(self):
        flags = {}

        if not self.dims:
            # Records have no dims, and we can treat them as contiguous
            flags['F_CONTIGUOUS'] = True
            flags['C_CONTIGUOUS'] = True
            return flags

        leftmost = self.dims[0].is_contiguous(self.itemsize)
        rightmost = self.dims[-1].is_contiguous(self.itemsize)

        def is_contig(traverse):
            last = next(traverse)
            for dim in traverse:
                if last.size != 0 and last.size * last.stride != dim.stride:
                    return False
                last = dim
            return True

        flags['F_CONTIGUOUS'] = leftmost and is_contig(iter(self.dims))
        flags['C_CONTIGUOUS'] = rightmost and is_contig(reversed(self.dims))
        return flags

    def _compute_extent(self):
        firstidx = [0] * self.ndim
        lastidx = [s - 1 for s in self.shape]
        start = compute_index(firstidx, self.dims)
        stop = compute_index(lastidx, self.dims) + self.itemsize
        return Extent(start, stop)

    def __repr__(self):
        return '<Array dims=%s itemsize=%s>' % (self.dims, self.itemsize)

    def __getitem__(self, item):
        if not isinstance(item, tuple):
            item = [item]
        else:
            item = list(item)

        nitem = len(item)
        ndim = len(self.dims)
        if nitem > ndim:
            raise IndexError("%d extra indices given" % (nitem - ndim,))

        # Add empty slices for missing indices
        while len(item) < ndim:
            item.append(slice(None, None))

        dims = [dim.__getitem__(it) for dim, it in zip(self.dims, item)]
        newshape = [d.size for d in dims if not d.single]
        arr = Array(dims, self.itemsize)
        if newshape:
            return arr.reshape(*newshape)[0]
        else:
            return Element(arr.extent)

    @property
    def is_c_contig(self):
        return self.flags['C_CONTIGUOUS']

    @property
    def is_f_contig(self):
        return self.flags['F_CONTIGUOUS']

    def iter_contiguous_extent(self):
        """ Generates extents
        """
        if self.is_c_contig or self.is_f_contig:
            yield self.extent
        else:
            if self.dims[0].stride < self.dims[-1].stride:
                innerdim = self.dims[0]
                outerdims = self.dims[1:]
                outershape = self.shape[1:]
            else:
                innerdim = self.dims[-1]
                outerdims = self.dims[:-1]
                outershape = self.shape[:-1]

            if innerdim.is_contiguous(self.itemsize):
                oslen = [range(s) for s in outershape]
                for indices in itertools.product(*oslen):
                    base = compute_index(indices, outerdims)
                    yield base + innerdim.start, base + innerdim.stop
            else:
                oslen = [range(s) for s in self.shape]
                for indices in itertools.product(*oslen):
                    offset = compute_index(indices, self.dims)
                    yield offset, offset + self.itemsize

    def reshape(self, *newshape, **kws):
        oldnd = self.ndim
        newnd = len(newshape)

        if newshape == self.shape:
            return self, None

        order = kws.pop('order', 'C')
        if kws:
            raise TypeError('unknown keyword arguments %s' % kws.keys())
        if order not in 'CFA':
            raise ValueError('order not C|F|A')

        newsize = functools.reduce(operator.mul, newshape, 1)

        if order == 'A':
            order = 'F' if self.is_f_contig else 'C'

        if newsize != self.size:
            raise ValueError("reshape changes the size of the array")

        elif newnd == 1 or self.is_c_contig or self.is_f_contig:
            if order == 'C':
                newstrides = list(iter_strides_c_contig(self, newshape))
            elif order == 'F':
                newstrides = list(iter_strides_f_contig(self, newshape))
            else:
                raise AssertionError("unreachable")

            ret = self.from_desc(self.extent.begin, shape=newshape,
                                 strides=newstrides, itemsize=self.itemsize)

            return ret, list(self.iter_contiguous_extent())
        else:
            raise NotImplementedError("reshape on non-contiguous array")

    def ravel(self, order='C'):
        if order not in 'CFA':
            raise ValueError('order not C|F|A')

        if self.ndim <= 1:
            return self

        elif (order == 'C' and self.is_c_contig or
                          order == 'F' and self.is_f_contig):
            newshape = (self.size,)
            newstrides = (self.itemsize,)
            arr = self.from_desc(self.extent.begin, newshape, newstrides,
                                 self.itemsize)
            return arr, list(self.iter_contiguous_extent())

        else:
            raise NotImplementedError("ravel on non-contiguous array")


def iter_strides_f_contig(arr, shape=None):
    """yields the f-contigous strides
    """
    shape = arr.shape if shape is None else shape
    itemsize = arr.itemsize
    yield itemsize
    sum = 1
    for s in shape[:-1]:
        sum *= s
        yield sum * itemsize


def iter_strides_c_contig(arr, shape=None):
    """yields the c-contigous strides
    """
    shape = arr.shape if shape is None else shape
    itemsize = arr.itemsize

    def gen():
        yield itemsize
        sum = 1
        for s in reversed(shape[1:]):
            sum *= s
            yield sum * itemsize

    for i in reversed(list(gen())):
        yield i


def is_element_indexing(item, ndim):
    if isinstance(item, slice):
        return False

    elif isinstance(item, tuple):
        if len(item) == ndim:
            if not any(isinstance(it, slice) for it in item):
                return True

    else:
        return True

    return False