This file is indexed.

/usr/lib/python2.7/dist-packages/numba/smartarray.py is in python-numba 0.34.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from numba.tracing import trace
from numba.errors import deprecated

import sys

import numpy as np

def _o2s(dtype, shape, order):
    # convert order parameter to strides

    if dtype is None or shape is None or order is None:
        return None

    if order == 'F':
        shape = list(shape)
        shape.reverse()
    strides = []
    itemsize = dtype.itemsize
    for i in range(len(shape), 0, -1):
        strides.append(itemsize)
        itemsize *= shape[i - 1]
    if order in ('C', None):
        strides.reverse()
    return tuple(strides)

def _s2o(dtype, shape, strides):
    # convert strides parameter to order
    # Note: strides must correspond to contiguous data layout

    if strides is None or strides[-1] == dtype.itemsize:
        order = 'C'
    elif strides[0] == dtype.itemsize:
        order = 'F'
    else:
        raise ValueError('strides do not correspond to contiguous data layout')
    s2 = _o2s(dtype, shape, order)
    if strides != s2:
        raise ValueError('strides do not correspond to contiguous data layout')
    return order

class SmartArray(object):
    """An array type that supports host and GPU storage."""

    _targets = ('host', 'gpu')

    def __init__(self, obj=None, copy=True,
                 shape=None, dtype=None, order=None, where='host'):
        """Construct a SmartArray in the memory space defined by 'where'.
        Valid invocations:

        * SmartArray(obj=<array-like object>, copy=<optional-true-or-false>):

          to create a SmartArray from an existing array-like object.
          The 'copy' argument specifies whether to adopt or to copy it.

        * SmartArray(shape=<shape>, dtype=<dtype>, order=<order>)

          to create a new SmartArray from scratch, given the typical NumPy array
          attributes.

        (The optional 'where' argument specifies where to allocate the array
        initially. (Default: 'host')
        """

        if where not in self._targets:
            raise ValueError('"%s" is not a valid target'%where)
        # we need either a prototype or proper type info
        assert obj is not None or (shape and dtype)
        self._host = self._gpu = None
        self._host_valid = self._gpu_valid = False
        self._allocate(where, obj, dtype, shape, _o2s(dtype, shape, order), copy)
        if where == 'host':
            self._host_valid = True
            t = self._host
        else:
            self._gpu_valid = True
            t = self._gpu
        self._shape = t.shape
        self._strides = t.strides
        self._dtype = t.dtype
        self._ndim = t.ndim
        self._size = t.size

    @property
    def shape(self): return self._shape

    @property
    def strides(self): return self._strides

    @property
    def dtype(self): return self._dtype

    @property
    def ndim(self): return self._ndim

    @property
    def size(self): return self._size

    def get(self, where='host'):
        """Return the representation of 'self' in the given memory space."""

        if where not in self._targets:
            raise ValueError('"%s" is not a valid target'%where)
        self._sync(where)
        if where == 'host': return self._host
        elif where == 'gpu': return self._gpu
        else: raise ValueError('unknown memory space "%s"'%where)

    @deprecated("get('host')")
    def host(self): return self.get('host')
    @deprecated("get('gpu')")
    def gpu(self): return self.get('gpu')

    def mark_changed(self, where='host'):
        """Mark the given location as changed, broadcast updates if needed."""

        if where not in self._targets:
            raise ValueError('"%s" is not a valid target'%where)
        if where == 'host':
            self._invalidate('gpu')
            # only sync if there are active views
            if self._gpu is not None and sys.getrefcount(self._gpu) > 2:
                self._sync('gpu')
        elif where == 'gpu':
            self._invalidate('host')
            # only sync if there are active views
            if self._host is not None and sys.getrefcount(self._host) > 2:
                self._sync('host')

    @deprecated("mark_changed('host')")
    def host_changed(self): return self.mark_changed('host')
    @deprecated("mark_changed('gpu')")
    def gpu_changed(self): return self.mark_changed('gpu')

    def __array__(self, *args):

        self._sync('host')
        return np.array(self._host, *args)

    def _sync(self, where):
        """Sync the data in one memory space with the other."""

        if where == 'gpu':
            if self._gpu is None:
                self._allocate('gpu', None, self.dtype, self.shape, self.strides)
            if not self._gpu_valid:
                self._copy_to_gpu()
        else:
            if self._host is None:
                self._allocate('host', None, self.dtype, self.shape, self.strides)
            if not self._host_valid:
                self._copy_to_host()

    @trace
    def _invalidate(self, where):
        """Mark the host / device array as out-of-date."""

        if where == 'gpu':
            self._gpu_valid = False
        else:
            self._host_valid = False

    @trace
    def _allocate(self, where, obj=None, dtype=None, shape=None, strides=None,
                  copy=True):
        if dtype:
            dtype = np.dtype(dtype)
        if where == 'host':
            if obj is not None:
                self._host = np.array(obj, dtype, copy=copy)
            else:
                self._host = np.empty(shape, dtype, _s2o(dtype, shape, strides))
        else:
            # Don't import this at module-scope as it may not be available
            # in all environments (e.g., CUDASIM)
            from numba.cuda.cudadrv import devicearray as da
            if obj is not None:
                # If 'obj' is an array-like object but not an ndarray,
                # construct an ndarray first to extract all the parameters we need.
                if not isinstance(obj, np.ndarray):
                    obj = np.array(obj, copy=False)
                self._gpu = da.from_array_like(obj)
            else:
                if strides is None:
                    strides = _o2s(dtype, shape, 'C')
                self._gpu = da.DeviceNDArray(shape, strides, dtype)

    @trace
    def _copy_to_gpu(self):
        self._gpu.copy_to_device(self._host)
        self._gpu_valid = True

    @trace
    def _copy_to_host(self):
        self._gpu.copy_to_host(self._host)
        self._host_valid = True

    @staticmethod
    def _maybe_wrap(value):
        """If `value` is an ndarray, wrap it in a SmartArray,
        otherwise return `value` itself."""

        if isinstance(value, np.ndarray):
            return SmartArray(value, copy=False)
        else:
            return value
        
    @trace
    def __getattr__(self, name):
        """Transparently forward attribute access to the host array."""

        if self._host is None:
            self._allocate('host', None, self.dtype, self.shape, self.strides)

        # FIXME: for some attributes we need to sync first !
        return self._maybe_wrap(getattr(self._host, name))

    def __len__(self): return self.shape[0]
    def __eq__(self, other):
        if type(self) is not type(other): return False
        # FIXME: If both arrays have valid GPU data, compare there.
        return self._maybe_wrap(self.get('host') == other.get('host'))
    def __getitem__(self, *args):
        return self._maybe_wrap(self.get('host').__getitem__(*args))
    def __setitem__(self, *args):
        return self._maybe_wrap(self.get('host').__setitem__(*args))
    def astype(self, *args):
        return self._maybe_wrap(self.get('host').astype(*args))