/usr/lib/python2.7/dist-packages/openturns/analytical.py is in python-openturns 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 3.0.12
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
"""Analytical uncertainty propagation algorithms."""
from sys import version_info as _swig_python_version_info
if _swig_python_version_info >= (2, 7, 0):
def swig_import_helper():
import importlib
pkg = __name__.rpartition('.')[0]
mname = '.'.join((pkg, '_analytical')).lstrip('.')
try:
return importlib.import_module(mname)
except ImportError:
return importlib.import_module('_analytical')
_analytical = swig_import_helper()
del swig_import_helper
elif _swig_python_version_info >= (2, 6, 0):
def swig_import_helper():
from os.path import dirname
import imp
fp = None
try:
fp, pathname, description = imp.find_module('_analytical', [dirname(__file__)])
except ImportError:
import _analytical
return _analytical
try:
_mod = imp.load_module('_analytical', fp, pathname, description)
finally:
if fp is not None:
fp.close()
return _mod
_analytical = swig_import_helper()
del swig_import_helper
else:
import _analytical
del _swig_python_version_info
try:
_swig_property = property
except NameError:
pass # Python < 2.2 doesn't have 'property'.
try:
import builtins as __builtin__
except ImportError:
import __builtin__
def _swig_setattr_nondynamic(self, class_type, name, value, static=1):
if (name == "thisown"):
return self.this.own(value)
if (name == "this"):
if type(value).__name__ == 'SwigPyObject':
self.__dict__[name] = value
return
method = class_type.__swig_setmethods__.get(name, None)
if method:
return method(self, value)
if (not static):
if _newclass:
object.__setattr__(self, name, value)
else:
self.__dict__[name] = value
else:
raise AttributeError("You cannot add attributes to %s" % self)
def _swig_setattr(self, class_type, name, value):
return _swig_setattr_nondynamic(self, class_type, name, value, 0)
def _swig_getattr(self, class_type, name):
if (name == "thisown"):
return self.this.own()
method = class_type.__swig_getmethods__.get(name, None)
if method:
return method(self)
raise AttributeError("'%s' object has no attribute '%s'" % (class_type.__name__, name))
def _swig_repr(self):
try:
strthis = "proxy of " + self.this.__repr__()
except __builtin__.Exception:
strthis = ""
return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
try:
_object = object
_newclass = 1
except __builtin__.Exception:
class _object:
pass
_newclass = 0
class SwigPyIterator(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)
def __init__(self, *args, **kwargs):
raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
__swig_destroy__ = _analytical.delete_SwigPyIterator
__del__ = lambda self: None
def value(self):
return _analytical.SwigPyIterator_value(self)
def incr(self, n=1):
return _analytical.SwigPyIterator_incr(self, n)
def decr(self, n=1):
return _analytical.SwigPyIterator_decr(self, n)
def distance(self, x):
return _analytical.SwigPyIterator_distance(self, x)
def equal(self, x):
return _analytical.SwigPyIterator_equal(self, x)
def copy(self):
return _analytical.SwigPyIterator_copy(self)
def next(self):
return _analytical.SwigPyIterator_next(self)
def __next__(self):
return _analytical.SwigPyIterator___next__(self)
def previous(self):
return _analytical.SwigPyIterator_previous(self)
def advance(self, n):
return _analytical.SwigPyIterator_advance(self, n)
def __eq__(self, x):
return _analytical.SwigPyIterator___eq__(self, x)
def __ne__(self, x):
return _analytical.SwigPyIterator___ne__(self, x)
def __iadd__(self, n):
return _analytical.SwigPyIterator___iadd__(self, n)
def __isub__(self, n):
return _analytical.SwigPyIterator___isub__(self, n)
def __add__(self, n):
return _analytical.SwigPyIterator___add__(self, n)
def __sub__(self, *args):
return _analytical.SwigPyIterator___sub__(self, *args)
def __iter__(self):
return self
SwigPyIterator_swigregister = _analytical.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)
GCC_VERSION = _analytical.GCC_VERSION
class TestFailed:
"""TestFailed is used to raise an uniform exception in tests."""
__type = "TestFailed"
def __init__(self, reason=""):
self.reason = reason
def type(self):
return TestFailed.__type
def what(self):
return self.reason
def __str__(self):
return TestFailed.__type + ": " + self.reason
def __lshift__(self, ch):
self.reason += ch
return self
import openturns.base
import openturns.common
import openturns.typ
import openturns.statistics
import openturns.graph
import openturns.func
import openturns.geom
import openturns.diff
import openturns.optim
import openturns.experiment
import openturns.solver
import openturns.algo
import openturns.model_copula
import openturns.metamodel
import openturns.weightedexperiment
import openturns.orthogonalbasis
import openturns.randomvector
import openturns.transformation
class AnalyticalResult(openturns.common.PersistentObject):
"""
Analytical result.
Available constructors:
AnalyticalResult(*designPoint, limitStateVariable, isInFailureSpace*)
Notes
-----
Structure created by the method run() of the :class:`~openturns.Analytical`
class and obtained thanks to its method getAnalyticalResult().
Parameters
----------
designPoint : sequence of float
Design point in the standard space resulting from the optimization
algorithm.
limitStateVariable : :class:`~openturns.Event`
Event of which the probability is calculated.
isInFailureSpace : bool
Indicates whether the origin of the standard space is in the failure space.
"""
__swig_setmethods__ = {}
for _s in [openturns.common.PersistentObject]:
__swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
__setattr__ = lambda self, name, value: _swig_setattr(self, AnalyticalResult, name, value)
__swig_getmethods__ = {}
for _s in [openturns.common.PersistentObject]:
__swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
__getattr__ = lambda self, name: _swig_getattr(self, AnalyticalResult, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _analytical.AnalyticalResult_getClassName(self)
ELLIPTICAL = _analytical.AnalyticalResult_ELLIPTICAL
CLASSICAL = _analytical.AnalyticalResult_CLASSICAL
PHYSICAL = _analytical.AnalyticalResult_PHYSICAL
def getStandardSpaceDesignPoint(self):
"""
Accessor to the design point in the standard space.
Returns
-------
designPoint : :class:`~openturns.Point`
Design point in the standard space resulting from the optimization
algorithm.
"""
return _analytical.AnalyticalResult_getStandardSpaceDesignPoint(self)
def setStandardSpaceDesignPoint(self, standardSpaceDesignPoint):
"""
Accessor to the design point in the standard space.
Parameters
----------
designPoint : sequence of float
Design point in the standard space resulting from the optimization
algorithm.
"""
return _analytical.AnalyticalResult_setStandardSpaceDesignPoint(self, standardSpaceDesignPoint)
def getPhysicalSpaceDesignPoint(self):
"""
Accessor to the design point in the physical space.
Returns
-------
designPoint : :class:`~openturns.Point`
Design point in the physical space resulting from the optimization
algorithm.
"""
return _analytical.AnalyticalResult_getPhysicalSpaceDesignPoint(self)
def getLimitStateVariable(self):
"""
Accessor to the event of which the probability is calculated.
Returns
-------
limitStateVariable : :class:`~openturns.Event`
Event of which the probability is calculated.
"""
return _analytical.AnalyticalResult_getLimitStateVariable(self)
def getIsStandardPointOriginInFailureSpace(self):
"""
Accessor to know if the standard point origin is in the failure space.
Returns
-------
isInFailureSpace : bool
Indicates whether the origin of the standard space is in the failure space.
"""
return _analytical.AnalyticalResult_getIsStandardPointOriginInFailureSpace(self)
def setIsStandardPointOriginInFailureSpace(self, isStandardPointOriginInFailureSpace):
"""
Accessor to specify if the standard point origin is in the failure space.
Parameters
----------
isInFailureSpace : bool
Indicates whether the origin of the standard space is in the failure space.
"""
return _analytical.AnalyticalResult_setIsStandardPointOriginInFailureSpace(self, isStandardPointOriginInFailureSpace)
def getMeanPointInStandardEventDomain(self):
"""
Accessor to the mean point in the standard event domain.
Returns
-------
meanPoint : :class:`~openturns.Point`
Mean point of the standard space distribution restricted to the event
domain:
:math:`\\displaystyle \\frac{1}{E_1(-\\beta)}\\int_{\\beta}^{\\infty} u_1 p_1(u_1)\\di{u_1}`
where :math:`E_1` is the spheric univariate distribution of the standard
space and :math:`\\beta` the reliability index.
"""
return _analytical.AnalyticalResult_getMeanPointInStandardEventDomain(self)
def setMeanPointInStandardEventDomain(self, meanPointInStandardEventDomain):
"""
Accessor to the mean point in the standard event domain.
Parameters
----------
meanPoint : sequence of float
Mean point of the standard space distribution restricted to the event
domain:
:math:`\\displaystyle \\frac{1}{E_1(-\\beta)}\\int_{\\beta}^{\\infty} u_1 p_1(u_1)\\di{u_1}`
where :math:`E_1` is the spheric univariate distribution of the standard
space and :math:`\\beta` the reliability index.
"""
return _analytical.AnalyticalResult_setMeanPointInStandardEventDomain(self, meanPointInStandardEventDomain)
def getImportanceFactors(self, *args):
"""
Accessor to the importance factors.
Parameters
----------
type : int, optional
- When *ot.AnalyticalResult.ELLIPTICAL*, the importance factors
are evaluated as the square of the co-factors of the design point in the
elliptical space of the iso-probabilistic transformation (Y-space).
- When *ot.AnalyticalResult.CLASSICAL* they are evaluated as the square of
the co-factors of the design point in the U-space.
- When *ot.AnalyticalResult.PHYSICAL*, the importance factors are evaluated
as the square of the physical sensitivities.
By default *type = ot.AnalyticalResult.ELLIPTICAL*.
Notes
-----
- If the importance factors are evaluated as the square of the
co-factors of the design point in the U-space :
.. math::
\\alpha_i^2 = \\frac{(u_i^*)^2}
{\\beta_{HL}^2}
- If the importance factors are evaluated as the square of the co-factors of the
design point in the Y-space :
.. math::
\\alpha_i^2 = \\frac{(y_i^*)^2}
{\\|\\vect{y}^*\\|^2}
where
.. math::
Y^* = \\left(
\\begin{array}{c}
E^{-1}\\circ F_1(X_1^*) \\\\
E^{-1}\\circ F_2(X_2^*) \\\\
\\vdots \\\\
E^{-1}\\circ F_n(X_n^*)
\\end{array}
\\right)
with :math:`\\vect{X}^*` is the design point in the physical space and :math:`E`
the univariate standard CDF of the elliptical space. In the case where the
input distribution of :math:`\\vect{X}` has an elliptical copula
:math:`C_E`, then :math:`E` has the same type as :math:`C_E`.
In the case where the input distribution of :math:`\\vect{X}` has a copula
:math:`C` which is not elliptical, then :math:`E=\\Phi` where :math:`\\Phi`
is the CDF of the standard normal.
- If the importance factors are evaluated as the square of the physical sensitivities :
.. math::
\\alpha_i^2 = \\displaystyle \\frac{s_i^2}{{\\|s\\|}^2}
where
.. math::
s_i = \\displaystyle \\frac{\\partial \\beta}{\\partial x_i} (x^*)
= \\sum_{j=1}^n \\frac{\\partial \\beta}{\\partial u_i} \\frac{\\partial u_j}{\\partial x_i} (x^*)
Returns
-------
factors : :class:`~openturns.PointWithDescription`
Sequence containing the importance factors with a description for each
component.
"""
return _analytical.AnalyticalResult_getImportanceFactors(self, *args)
def drawImportanceFactors(self, *args):
"""
Draw the importance factors.
Parameters
----------
type : int, optional
See :meth:`getImportanceFactors`
Returns
-------
graph : :class:`~openturns.Graph`
Pie of the importance factors of the probabilistic variables.
"""
return _analytical.AnalyticalResult_drawImportanceFactors(self, *args)
def getHasoferReliabilityIndex(self):
"""
Accessor to the Hasofer Reliability Index.
Returns
-------
index : float
Hasofer Reliability Index which is the distance of the design point from
the origin of the standard space :math:`\\beta_{HL}=||\\vect{u}^*||`.
"""
return _analytical.AnalyticalResult_getHasoferReliabilityIndex(self)
def getHasoferReliabilityIndexSensitivity(self):
"""
Accessor to the sensitivities of the Hasofer Reliability Index.
Returns
-------
sensitivity : :class:`~openturns.PointWithDescription`
Sequence containing the sensitivities of the Hasofer Reliability Index to
the parameters of the probabilistic input vector (marginals and dependence
structure) with a description for each component.
"""
return _analytical.AnalyticalResult_getHasoferReliabilityIndexSensitivity(self)
def getOptimizationResult(self):
"""
Accessor to the result of the optimization problem.
Returns
-------
result : :class:`~openturns.OptimizationResult`
Contains the design point in the standard space and information concerning
the convergence of the optimization algorithm.
"""
return _analytical.AnalyticalResult_getOptimizationResult(self)
def setOptimizationResult(self, optimizationResult):
"""
Accessor to the result of the optimization problem.
Parameters
----------
result : :class:`~openturns.OptimizationResult`
Contains the design point in the standard space and information concerning
the convergence of the optimization algorithm.
"""
return _analytical.AnalyticalResult_setOptimizationResult(self, optimizationResult)
def drawHasoferReliabilityIndexSensitivity(self, *args):
"""
Draw the sensitivity of the Hasofer Reliability Index.
Parameters
----------
width : float, optional
Value to calculate the shift position of the :class:`~openturns.BarPlot`.
By default it is 1.0.
Returns
-------
graphCollection : sequence of two :class:`~openturns.Graph` containing a barplot
The first graph drawing the sensitivity of the Hasofer Reliability Index to
the parameters of the marginals of the probabilistic input vector.
The second graph drawing the sensitivity of the Hasofer Reliability Index
to the parameters of the dependence structure of the probabilistic input
vector.
"""
return _analytical.AnalyticalResult_drawHasoferReliabilityIndexSensitivity(self, *args)
def __repr__(self):
return _analytical.AnalyticalResult___repr__(self)
def __init__(self, *args):
this = _analytical.new_AnalyticalResult(*args)
try:
self.this.append(this)
except __builtin__.Exception:
self.this = this
__swig_destroy__ = _analytical.delete_AnalyticalResult
__del__ = lambda self: None
AnalyticalResult_swigregister = _analytical.AnalyticalResult_swigregister
AnalyticalResult_swigregister(AnalyticalResult)
class Analytical(openturns.common.PersistentObject):
"""
Base class to evaluate the probability of failure of a system.
Available constructors:
Analytical(*nearestPointAlgorithm, event, physicalStartingPoint*)
Parameters
----------
nearestPointAlgorithm : :class:`~openturns.OptimizationAlgorithm`
Optimization algorithm used to research the design point.
event : :class:`~openturns.Event`
Failure event.
physicalStartingPoint : sequence of float
Starting point of the optimization algorithm, declared in the physical
space.
Notes
-----
Used in reliability analysis, Analytical is a base class for the approximation
methods :class:`~openturns.FORM` and :class:`~openturns.SORM` enabling to
evaluate the failure probability of a system.
A failure event is defined as follows :
:math:`\\cD_f = \\{\\vect{X} \\in \\Rset^n \\, | \\, g(\\vect{X},\\vect{d}) \\le 0\\}`
where :math:`\\vect{X}` denotes a random input vector representing the sources
of uncertainties, :math:`\\vect{d}` is a determinist vector representing the
fixed variables. :math:`g(\\vect{X},\\vect{d})` is the limit state function of
the model separating the failure domain from the safe domain.
Considering :math:`f_\\vect{X}(\\vect{x})` the joint probability density function
of the random variables :math:`\\vect{X}`, the probability of failure of the
event :math:`\\cD_f` is :
.. math::
P_f = \\int_{g(\\vect{X},\\vect{d})\\le 0}f_\\vect{X}(\\vect{x})\\di{\\vect{x}}
The analytical methods use an isoprobabilistic transformation to move from
the physical space to the standard normal space (U-space) where distributions
are spherical (invariant by rotation by definition), with zero mean, unit
variance and unit correlation matrix. The usual isoprobabilistic
transformations are the Generalized Nataf transformation and the Rosenblatt one.
In that new U-space, the event has the new expression defined
from the transformed limit state function of the model
:math:`G : \\cD_f = \\{\\vect{U} \\in \\Rset^n \\, | \\, G(\\vect{U}\\,,\\,\\vect{d}) \\le 0\\}`
and its boundary :
:math:`\\{\\vect{U} \\in \\Rset^n \\, | \\,G(\\vect{U}\\,,\\,\\vect{d}) = 0\\}`.
Then, the event probability :math:`P_f` rewrites :
.. math::
P_f = \\Prob{G(\\vect{U}\\,,\\,\\vect{d})\\leq 0}
= \\int_{\\Rset^n} \\boldsymbol{1}_{G(\\vect{u}\\,,\\,\\vect{d}) \\leq 0}\\,f_{\\vect{U}}(\\vect{u})\\di{\\vect{u}}
where :math:`f_{\\vect{U}}` is the density function of the distribution in the
standard space.
The analytical methods rely on the assumption that most of the contribution
to :math:`P_f` comes from points located in the vicinity of a particular point
:math:`P^*`, the **design point**, defined in the U-space as the point located
on the limit state surface verifying the event of maximum likelihood. Given the
probabilistic characteristics of the U-space, :math:`P^*` has a geometrical
interpretation: it is the point located on the event boundary and at minimal
distance from the origin of the U-space. Thus, considering :math:`\\vect{u}^*`
its coordinates in the U-space, the design point is the result of the
constrained optimization problem :
.. math::
\\vect{u}^* = argmin \\{||\\vect{u}|| \\, | \\, G(\\vect{u}) = 0 \\}
Then the limit state surface is approximated in the standard space by a linear
surface (:class:`~openturns.FORM`) or by a quadratic surface
(:class:`~openturns.SORM`) at the design point in order to evaluate the
failure probability. For more information on this evaluation, see the
documentation associated with these two methods.
The result of the optimization problem is recoverable thanks to the method
:meth:`getAnalyticalResult`.
The unicity and the strongness of the design point can be checked thanks to the
:class:`Strong Maximum Test <openturns.StrongMaximumTest>`.
See also
--------
FORM, SORM, StrongMaximumTest, Event, StandardEvent, AnalyticalResult
Examples
--------
>>> import openturns as ot
>>> myFunction = ot.SymbolicFunction(['E', 'F', 'L', 'I'], ['-F*L^3/(3*E*I)'])
>>> myDistribution = ot.Normal([50.0, 1.0, 10.0, 5.0], [1.0]*4, ot.IdentityMatrix(4))
>>> vect = ot.RandomVector(myDistribution)
>>> output = ot.RandomVector(myFunction, vect)
>>> myEvent = ot.Event(output, ot.Less(), -3.0)
>>> # We create an OptimizationAlgorithm algorithm
>>> myOptim = ot.AbdoRackwitz()
>>> myAlgo = ot.Analytical(myOptim, myEvent, [50.0, 1.0, 10.0, 5.0])
"""
__swig_setmethods__ = {}
for _s in [openturns.common.PersistentObject]:
__swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Analytical, name, value)
__swig_getmethods__ = {}
for _s in [openturns.common.PersistentObject]:
__swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
__getattr__ = lambda self, name: _swig_getattr(self, Analytical, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _analytical.Analytical_getClassName(self)
def getPhysicalStartingPoint(self):
"""
Accessor to the starting point of the optimization algorithm.
Returns
-------
point : :class:`~openturns.Point`
Starting point of the optimization algorithm, declared in the physical
space.
"""
return _analytical.Analytical_getPhysicalStartingPoint(self)
def setPhysicalStartingPoint(self, physicalStartingPoint):
"""
Accessor to the starting point of the optimization algorithm.
Parameters
----------
point : sequence of float
Starting point of the optimization algorithm, declared in the physical
space.
"""
return _analytical.Analytical_setPhysicalStartingPoint(self, physicalStartingPoint)
def getEvent(self):
"""
Accessor to the event of which the probability is calculated.
Returns
-------
event : :class:`~openturns.Event`
Event of which the probability is calculated.
"""
return _analytical.Analytical_getEvent(self)
def setEvent(self, event):
"""
Accessor to the event of which the probability is calculated.
Parameters
----------
event : :class:`~openturns.Event`
Event of which the probability is calculated.
"""
return _analytical.Analytical_setEvent(self, event)
def getNearestPointAlgorithm(self):
"""
Accessor to the optimization algorithm used to find the design point.
Returns
-------
algorithm : :class:`~openturns.OptimizationAlgorithm`
Optimization algorithm used to research the design point.
"""
return _analytical.Analytical_getNearestPointAlgorithm(self)
def setNearestPointAlgorithm(self, solver):
"""
Accessor to the optimization algorithm used to find the design point.
Parameters
----------
algorithm : :class:`~openturns.OptimizationAlgorithm`
Optimization algorithm used to research the design point.
"""
return _analytical.Analytical_setNearestPointAlgorithm(self, solver)
def getAnalyticalResult(self):
"""
Accessor to the result.
Returns
-------
result : :class:`~openturns.AnalyticalResult`
Result structure which contains the results of the optimisation problem.
"""
return _analytical.Analytical_getAnalyticalResult(self)
def __repr__(self):
return _analytical.Analytical___repr__(self)
def run(self):
"""
Perform the research of the design point.
Notes
-----
Performs the research of the design point and creates a
:class:`~openturns.AnalyticalResult`, the structure result which is
accessible with the method :meth:`getAnalyticalResult`.
"""
return _analytical.Analytical_run(self)
def __init__(self, *args):
this = _analytical.new_Analytical(*args)
try:
self.this.append(this)
except __builtin__.Exception:
self.this = this
__swig_destroy__ = _analytical.delete_Analytical
__del__ = lambda self: None
Analytical_swigregister = _analytical.Analytical_swigregister
Analytical_swigregister(Analytical)
class FORMResult(AnalyticalResult):
"""
Result of a FORM analysis.
Available constructors:
FORMResult(*designPoint, limitStateVariable, isInFailureSpace*)
Notes
-----
Structure created by the method run() of the :class:`~openturns.FORM`
class and obtained thanks to its method getResult().
Parameters
----------
designPoint : sequence of float
Design point in the standard space resulting from the optimization
algorithm.
limitStateVariable : :class:`~openturns.Event`
Event of which the probability is calculated.
isInFailureSpace : bool
Indicates whether the origin of the standard space is in the failure space.
See also
--------
Analytical, AnalyticalResult, SORM, SORMResult, FORM, StrongMaximumTest
"""
__swig_setmethods__ = {}
for _s in [AnalyticalResult]:
__swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
__setattr__ = lambda self, name, value: _swig_setattr(self, FORMResult, name, value)
__swig_getmethods__ = {}
for _s in [AnalyticalResult]:
__swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
__getattr__ = lambda self, name: _swig_getattr(self, FORMResult, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _analytical.FORMResult_getClassName(self)
def getEventProbability(self):
"""
Accessor to the failure probability :math:`P_f`.
Returns
-------
probability : positive float
The FORM failure probability :math:`P_f`.
"""
return _analytical.FORMResult_getEventProbability(self)
def getGeneralisedReliabilityIndex(self):
"""
Accessor to the Generalised Reliability Index.
Returns
-------
index : float
Generalised reliability index :math:`\\beta_g` from the FORM failure
probability is equal to :math:`\\pm` the Hasofer reliability index
:math:`\\beta_{HL}` according to the fact the standard space center
fulfills the event or not.
"""
return _analytical.FORMResult_getGeneralisedReliabilityIndex(self)
def getEventProbabilitySensitivity(self):
"""
Accessor to the sentivities of the FORM failure probability :math:`P_f`.
Returns
-------
sentivities : :class:`~openturns.Point`
Sentivities of the FORM failure probability with regards to the parameters
of the probabilistic input vector and to parameters of the dependence
structure of the probabilistic input vector.
"""
return _analytical.FORMResult_getEventProbabilitySensitivity(self)
def drawEventProbabilitySensitivity(self, *args):
"""
Draw the sensitivities of the FORM failure probability.
Parameters
----------
width : float, optional
Value to calculate the shift position of the :class:`~openturns.BarPlot`.
By default it is 1.0.
Returns
-------
graphCollection : list of two :class:`~openturns.Graph` containing a barplot
The first graph drawing the sensitivities of the FORM failure probability
with regards to the parameters of the probabilistic input vector.
The second graph drawing the sensitivities of the FORM failure probability
with regards to the parameters of the dependence structure of the
probabilistic input vector.
"""
return _analytical.FORMResult_drawEventProbabilitySensitivity(self, *args)
def __repr__(self):
return _analytical.FORMResult___repr__(self)
def __init__(self, *args):
this = _analytical.new_FORMResult(*args)
try:
self.this.append(this)
except __builtin__.Exception:
self.this = this
__swig_destroy__ = _analytical.delete_FORMResult
__del__ = lambda self: None
FORMResult_swigregister = _analytical.FORMResult_swigregister
FORMResult_swigregister(FORMResult)
class FORM(Analytical):
"""
First Order Reliability Method (FORM).
Available constructors:
FORM(*nearestPointAlgorithm, event, physicalStartingPoint*)
Parameters
----------
nearestPointAlgorithm : :class:`~openturns.OptimizationAlgorithm`
Optimization algorithm used to research the design point.
event : :class:`~openturns.Event`
Failure event.
physicalStartingPoint : sequence of float
Starting point of the optimization algorithm, declared in the physical
space.
Notes
-----
See :class:`~openturns.Analytical` for the description of the first steps of
the FORM analysis.
The First Order Reliability Method (FORM) consists in linearizing the limit state
function :math:`G(\\vect{U}\\,,\\,\\vect{d})` at the design point, denoted
:math:`P^*`, which is the point on the limit state surface
:math:`G(\\vect{U}\\,,\\,\\vect{d})=0` that is closest to the origin of the
standard space.
Then, the probability :math:`P_f` where the limit state surface has been
approximated by a linear surface (hyperplane) can be obtained exactly, thanks
to the rotation invariance of the standard distribution :math:`f_{\\vect{U}}` :
.. math::
P_f = \\left\\{
\\begin{array}{ll}
\\displaystyle E(-\\beta_{HL})
& \\text{if the origin of the }\\vect{u}\\text{-space lies in the domain }\\cD_f \\\\
\\displaystyle E(+\\beta_{HL}) & \\text{otherwise}
\\end{array}
\\right.
where :math:`\\beta_{HL}` is the Hasofer-Lind reliability index, defined as the
distance of the design point :math:`\\vect{u}^*` to the origin of the standard
space and :math:`E` the marginal cumulative density function of the spherical
distributions in the standard space.
The evaluation of the failure probability is stored in the data structure
:class:`~openturns.FORMResult` recoverable with the :meth:`getResult` method.
See also
--------
Analytical, AnalyticalResult, SORM, StrongMaximumTest, FORMResult
Examples
--------
>>> import openturns as ot
>>> myFunction = ot.SymbolicFunction(['E', 'F', 'L', 'I'], ['-F*L^3/(3*E*I)'])
>>> myDistribution = ot.Normal([50.0, 1.0, 10.0, 5.0], [1.0]*4, ot.IdentityMatrix(4))
>>> vect = ot.RandomVector(myDistribution)
>>> output = ot.RandomVector(myFunction, vect)
>>> event = ot.Event(output, ot.Less(), -3.0)
>>> # We create an OptimizationAlgorithm algorithm
>>> solver = ot.AbdoRackwitz()
>>> algo = ot.FORM(solver, event, [50.0, 1.0, 10.0, 5.0])
>>> algo.run()
>>> result = algo.getResult()
"""
__swig_setmethods__ = {}
for _s in [Analytical]:
__swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
__setattr__ = lambda self, name, value: _swig_setattr(self, FORM, name, value)
__swig_getmethods__ = {}
for _s in [Analytical]:
__swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
__getattr__ = lambda self, name: _swig_getattr(self, FORM, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _analytical.FORM_getClassName(self)
def getResult(self):
"""
Accessor to the result of FORM.
Returns
-------
result : :class:`~openturns.FORMResult`
Structure containing all the results of the FORM analysis.
"""
return _analytical.FORM_getResult(self)
def setResult(self, formResult):
"""
Accessor to the result of FORM.
Parameters
----------
result : :class:`~openturns.FORMResult`
Structure containing all the results of the FORM analysis.
"""
return _analytical.FORM_setResult(self, formResult)
def __repr__(self):
return _analytical.FORM___repr__(self)
def run(self):
"""
Evaluate the failure probability.
Notes
-----
Evaluate the failure probability and create a :class:`~openturns.FORMResult`,
the structure result which is accessible with the method :meth:`getResult`.
"""
return _analytical.FORM_run(self)
def __init__(self, *args):
this = _analytical.new_FORM(*args)
try:
self.this.append(this)
except __builtin__.Exception:
self.this = this
__swig_destroy__ = _analytical.delete_FORM
__del__ = lambda self: None
FORM_swigregister = _analytical.FORM_swigregister
FORM_swigregister(FORM)
class SORMResult(AnalyticalResult):
"""
Result of a SORM analysis.
Available constructors:
SORMResult(*designPoint, limitStateVariable, isInFailureSpace*)
Notes
-----
Structure created by the method run() of the :class:`~openturns.SORM`
class and obtained thanks to its method getResult().
Parameters
----------
designPoint : sequence of float
Design point in the standard space resulting from the optimization
algorithm.
limitStateVariable : :class:`~openturns.Event`
Event of which the probability is calculated.
isInFailureSpace : bool
Indicates whether the origin of the standard space is in the failure space.
See also
--------
Analytical, AnalyticalResult, FORM, FORMResult, StrongMaximumTest
"""
__swig_setmethods__ = {}
for _s in [AnalyticalResult]:
__swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
__setattr__ = lambda self, name, value: _swig_setattr(self, SORMResult, name, value)
__swig_getmethods__ = {}
for _s in [AnalyticalResult]:
__swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
__getattr__ = lambda self, name: _swig_getattr(self, SORMResult, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _analytical.SORMResult_getClassName(self)
def getEventProbabilityBreitung(self):
"""
Accessor to the failure probability :math:`P_{Breitung}`.
Returns
-------
probability : positive float
The SORM failure probability :math:`P_{Breitung}` according to the
:ref:`Breitung <Breitung_formula>` approximation.
"""
return _analytical.SORMResult_getEventProbabilityBreitung(self)
def getEventProbabilityHohenBichler(self):
"""
Accessor to the failure probability :math:`P_{Hohenbichler}`.
Returns
-------
probability : positive float
The SORM failure probability :math:`P_{Hohenbichler}` according to the
:ref:`Hohen Bichler <Hohenbichler_formula>` approximation.
"""
return _analytical.SORMResult_getEventProbabilityHohenBichler(self)
def getEventProbabilityTvedt(self):
"""
Accessor to the failure probability :math:`P_{Tvedt}`.
Returns
-------
probability : positive float
The SORM failure probability :math:`P_{Tvedt}` according to the
:ref:`Tvedt <Tvedt_formula>` approximation.
"""
return _analytical.SORMResult_getEventProbabilityTvedt(self)
def getGeneralisedReliabilityIndexBreitung(self):
"""
Accessor to the Generalised Reliability Index Breitung.
Returns
-------
index : float
Generalised reliability index evaluated from the Breitung SORM failure
probability.
.. math::
\\beta_{Breitung} = \\left \\{
\\begin{array}{ll}
\\displaystyle -\\Phi(P_{Breitung})
& \\text{if the standard space origin is not in the failure space} \\\\
\\displaystyle \\Phi(P_{Breitung}) & \\text{otherwise}
\\end{array}
\\right.
"""
return _analytical.SORMResult_getGeneralisedReliabilityIndexBreitung(self)
def getGeneralisedReliabilityIndexHohenBichler(self):
"""
Accessor to the Generalised Reliability Index HohenBichler.
Returns
-------
index : float
Generalised reliability index evaluated from the Hohen Bichler SORM failure
probability.
.. math::
\\beta_{Hohenbichler} = \\left \\{
\\begin{array}{ll}
\\displaystyle -\\Phi(P_{Hohenbichler})
& \\text{if the standard space origin is not in the failure space} \\\\
\\displaystyle \\Phi(P_{Hohenbichler}) & \\text{otherwise}
\\end{array}
\\right.
"""
return _analytical.SORMResult_getGeneralisedReliabilityIndexHohenBichler(self)
def getGeneralisedReliabilityIndexTvedt(self):
"""
Accessor to the Generalised Reliability Index Tvedt.
Returns
-------
index : float
Generalised reliability index evaluated from the Tvedt SORM failure
probability.
.. math::
\\beta_{Tvedt} = \\left \\{
\\begin{array}{ll}
\\displaystyle -\\Phi(P_{Tvedt})
& \\text{if the standard space origin is not in the failure space} \\\\
\\displaystyle \\Phi(P_{Tvedt}) & \\text{otherwise}
\\end{array}
\\right.
"""
return _analytical.SORMResult_getGeneralisedReliabilityIndexTvedt(self)
def getSortedCurvatures(self):
"""
Accessor to the sorted curvatures.
Returns
-------
curvatures : :class:`~openturns.Point`
Curvatures of the standard limite state function at the standard design
point :math:`(\\kappa_i)_{1 \\leq i \\leq n-1}` with :math:`n` the dimension
of the random vector :math:`\\vect{X}`.
"""
return _analytical.SORMResult_getSortedCurvatures(self)
def __repr__(self):
return _analytical.SORMResult___repr__(self)
def __str__(self, *args):
return _analytical.SORMResult___str__(self, *args)
def __init__(self, *args):
this = _analytical.new_SORMResult(*args)
try:
self.this.append(this)
except __builtin__.Exception:
self.this = this
__swig_destroy__ = _analytical.delete_SORMResult
__del__ = lambda self: None
SORMResult_swigregister = _analytical.SORMResult_swigregister
SORMResult_swigregister(SORMResult)
class SORM(Analytical):
"""
Second Order Reliability Method (SORM).
Available constructors:
SORM(*nearestPointAlgorithm, event, physicalStartingPoint*)
Parameters
----------
nearestPointAlgorithm : :class:`~openturns.OptimizationAlgorithm`
Optimization algorithm used to research the design point.
event : :class:`~openturns.Event`
Failure event.
physicalStartingPoint : sequence of float
Starting point of the optimization algorithm, declared in the physical
space.
Notes
-----
See :class:`~openturns.Analytical` for the description of the first steps of
the SORM analysis.
The Second Order Reliability Method (SORM) consists in approximating the limit
state surface in U-space at the design point :math:`P^*` by a quadratic
surface. SORM is usually more accurate than FORM e.g. in case when the event
boundary is highly curved.
Let us denote by :math:`n` the dimension of the random vector :math:`\\vect{X}`
and :math:`(\\kappa_i)_{1 \\leq i \\leq n-1}` the :math:`n-1` main curvatures of
the limit state function at the design point in the standard space.
Several approximations of the failure probability :math:`P_f` are available in
the standard version of OpenTURNS, detailed here in the case where the origin
of the standard space does not belong to the failure domain :
- Breitung's formula :
.. _Breitung_formula:
.. math ::
P_{Breitung} = E(-\\beta_{HL})\\prod_{i=1}^{n-1} \\frac{1}{\\sqrt{1 + \\beta_{HL}\\kappa_i}}
:math:`E` the marginal cumulative density function of the spherical
distributions in the standard space and :math:`\\beta_{HL}` is the Hasofer-Lind
reliability index, defined as the distance of the design point
:math:`\\vect{u}^*` to the origin of the standard space.
- Hohen Bichler's formula is an approximation of the previous equation :
.. _Hohenbichler_formula:
.. math ::
\\displaystyle P_{Hohenbichler} = \\Phi(-\\beta_{HL})
\\prod_{i=1}^{n-1} \\left(
1 + \\frac{\\phi(\\beta_{HL})}{\\Phi(-\\beta_{HL})}\\kappa_i
\\right) ^{-1/2}
where :math:`\\Phi` is the cumulative distribution function of the
standard 1D normal distribution and :math:`\\phi` is the standard Gaussian
probability density function.
- Tvedt's formula :
.. _Tvedt_formula:
.. math ::
\\left\\{
\\begin{array}{lcl}
\\displaystyle P_{Tvedt} & = & A_1 + A_2 + A_3 \\\\
\\displaystyle A_1 & = & \\displaystyle
\\Phi(-\\beta_{HL}) \\prod_{i=1}^{N-1} \\left( 1 + \\beta_{HL} \\kappa_i \\right) ^{-1/2}\\\\
\\displaystyle A_2 & = & \\displaystyle
\\left[ \\beta_{HL} \\Phi(-\\beta_{HL}) - \\phi(\\beta_{HL}) \\right]
\\left[ \\prod_{j=1}^{N-1} \\left( 1 + \\beta_{HL} \\kappa_i \\right) ^{-1/2} -
\\prod_{j=1}^{N-1} \\left( 1 + (1 + \\beta_{HL}) \\kappa_i \\right) ^{-1/2}
\\right ] \\\\
\\displaystyle A_3 & = & \\displaystyle (1 + \\beta_{HL})
\\left[ \\beta_{HL} \\Phi(-\\beta_{HL}) - \\phi(\\beta_{HL}) \\right]
\\left[ \\prod_{j=1}^{N-1} \\left( 1 + \\beta_{HL} \\kappa_i \\right) ^{-1/2} -
{\\cR}e \\left( \\prod_{j=1}^{N-1} \\left( 1 + (i + \\beta_{HL}) \\kappa_j \\right) ^{-1/2}
\\right)\\right ]
\\end{array}
\\right.
where :math:`{\\cR}e(z)` is the real part of the complex number :math:`z` and
:math:`i` the complex number such that :math:`i^2 = -1`.
The evaluation of the failure probability is stored in the data structure
:class:`~openturns.SORMResult` recoverable with the :meth:`getResult` method.
See also
--------
Analytical, AnalyticalResult, FORM, StrongMaximumTest, SORMResult
Examples
--------
>>> import openturns as ot
>>> myFunction = ot.SymbolicFunction(['E', 'F', 'L', 'I'], ['-F*L^3/(3*E*I)'])
>>> myDistribution = ot.Normal([50.0, 1.0, 10.0, 5.0], [1.0]*4, ot.IdentityMatrix(4))
>>> vect = ot.RandomVector(myDistribution)
>>> output = ot.RandomVector(myFunction, vect)
>>> event = ot.Event(output, ot.Less(), -3.0)
>>> # We create an OptimizationAlgorithm algorithm
>>> solver = ot.AbdoRackwitz()
>>> algo = ot.SORM(solver, event, [50.0, 1.0, 10.0, 5.0])
>>> algo.run()
>>> result = algo.getResult()
"""
__swig_setmethods__ = {}
for _s in [Analytical]:
__swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
__setattr__ = lambda self, name, value: _swig_setattr(self, SORM, name, value)
__swig_getmethods__ = {}
for _s in [Analytical]:
__swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
__getattr__ = lambda self, name: _swig_getattr(self, SORM, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _analytical.SORM_getClassName(self)
def getResult(self):
"""
Accessor to the result of SORM.
Returns
-------
result : :class:`~openturns.SORMResult`
Structure containing all the results of the SORM analysis.
"""
return _analytical.SORM_getResult(self)
def setResult(self, sormResult):
"""
Accessor to the result of SORM.
Parameters
----------
result : :class:`~openturns.SORMResult`
Structure containing all the results of the SORM analysis.
"""
return _analytical.SORM_setResult(self, sormResult)
def __repr__(self):
return _analytical.SORM___repr__(self)
def run(self):
"""
Evaluate the failure probability.
Notes
-----
Evaluate the failure probability and create a :class:`~openturns.SORMResult`,
the structure result which is accessible with the method :meth:`getResult`.
"""
return _analytical.SORM_run(self)
def __init__(self, *args):
this = _analytical.new_SORM(*args)
try:
self.this.append(this)
except __builtin__.Exception:
self.this = this
__swig_destroy__ = _analytical.delete_SORM
__del__ = lambda self: None
SORM_swigregister = _analytical.SORM_swigregister
SORM_swigregister(SORM)
class StrongMaximumTest(openturns.common.PersistentObject):
"""
Strong Maximum Test.
Available constructors:
StrongMaximumTest(*event, designPoint, importanceLevel, accuracyLevel, confidenceLevel*)
StrongMaximumTest(*event, designPoint, importanceLevel, accuracyLevel, pointNumber*)
Parameters
----------
event : :class:`~openturns.StandardEvent`
Failure event :math:`\\cD_f` defining in the standard space (U-space).
designPoint : sequence of float
Design point in the standard space resulting from the optimization
algorithm.
importanceLevel : float, :math:`0 < \\varepsilon < 1`
Importance level.
accuracyLevel : float, :math:`\\tau > 0`
Accuracy level. It is recommanded to take :math:`\\tau \\leq 4`.
confidenceLevel : positive float, :math:`0 < (1-q) < 1`
Confidence level.
pointNumber : int, :math:`N > 0`
Number of points used to perform the Strong Maximum Test, evaluated by the
limit state function.
Notes
-----
The Strong Maximum Test helps to evaluate the quality of the design point
:math:`P^*` resulting from the optimization algorithm launched for example by
the :class:`~openturns.Analytical` class or its derived classes
:class:`~openturns.FORM` and :class:`~openturns.SORM`.
It checks whether the design point computed is :
- the *true* design point, which means a global maximum point,
- a *strong* design point, which means that there is no other local maximum
located on the event boundary and which likelihood is slightly inferior to
the design point one.
The Strong Maximum Test will sample the sphere centered on the origin of the
standard space and of radius :
:math:`R = \\beta_{HL} (1 + \\tau \\delta_{\\varepsilon})` with :math:`\\tau > 0`,
:math:`\\delta_{\\varepsilon}=\\sqrt{1 - 2 \\frac{ln(\\varepsilon)}{\\beta_{HL}^2}} - 1`
and :math:`\\beta_{HL}` the Hasofer-Lind reliability index.
The number :math:`N` of the simulations sampling the sphere of radius :math:`R`
is determined to ensure that the test detects with a probability greater than
:math:`(1-q)` any point of :math:`\\cD_f` outside the design point vicinity
which contribution to :math:`P_f` is not negligeable (i.e. which density value
in the U-space is greater than :math:`\\varepsilon` times the density value at
the design point).
See also
--------
Analytical, SORM, FORM, SORMResult, FORMResult
Examples
--------
>>> import openturns as ot
>>> myFunction = ot.SymbolicFunction(['E', 'F', 'L', 'I'], ['-F*L^3/(3*E*I)'])
>>> myDistribution = ot.Normal([50.0, 1.0, 10.0, 5.0], [1.0]*4, ot.IdentityMatrix(4))
>>> vect = ot.RandomVector(myDistribution)
>>> output = ot.RandomVector(myFunction, vect)
>>> myEvent = ot.Event(output, ot.Less(), -3.0)
>>> # FORM analyse to get the design point
>>> myAlgo = ot.FORM(ot.AbdoRackwitz(), myEvent, [50.0, 1.0, 10.0, 5.0])
>>> myAlgo.run()
>>> FORMresult = myAlgo.getResult()
>>> designPoint = FORMresult.getStandardSpaceDesignPoint()
>>> # Strong Max Test
>>> myStandardEvent = ot.StandardEvent(myEvent)
>>> myTest = ot.StrongMaximumTest(myStandardEvent, designPoint, 0.15, 3, 0.99)
>>> myTest.run()
"""
__swig_setmethods__ = {}
for _s in [openturns.common.PersistentObject]:
__swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
__setattr__ = lambda self, name, value: _swig_setattr(self, StrongMaximumTest, name, value)
__swig_getmethods__ = {}
for _s in [openturns.common.PersistentObject]:
__swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
__getattr__ = lambda self, name: _swig_getattr(self, StrongMaximumTest, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _analytical.StrongMaximumTest_getClassName(self)
def getStandardSpaceDesignPoint(self):
"""
Accessor to the design point in the standard space.
Returns
-------
point : :class:`~openturns.Point`
Design point in the standard space.
"""
return _analytical.StrongMaximumTest_getStandardSpaceDesignPoint(self)
def getEvent(self):
"""
Accessor to the event in the standard space.
Returns
-------
event : :class:`~openturns.StandardEvent`
Failure event :math:`\\cD_f` in the standard space on which is based the
Strong Maximum Test.
"""
return _analytical.StrongMaximumTest_getEvent(self)
def getImportanceLevel(self):
"""
Accessor to the importance level.
Returns
-------
level : float
Importance level :math:`\\varepsilon`.
"""
return _analytical.StrongMaximumTest_getImportanceLevel(self)
def getAccuracyLevel(self):
"""
Accessor to the accuracy level.
Returns
-------
accuracy : positive float
Accuracy level :math:`\\tau`.
"""
return _analytical.StrongMaximumTest_getAccuracyLevel(self)
def getConfidenceLevel(self):
"""
Accessor to the confidence level.
Returns
-------
level : positive float
Confidence level :math:`(1-q)`.
"""
return _analytical.StrongMaximumTest_getConfidenceLevel(self)
def getDesignPointVicinity(self):
"""
Accessor to the design point vinicity.
Returns
-------
vicinity : float, :math:`v > 0`
Design point vinicity :math:`v = \\frac{1} {1 + \\tau \\delta_{\\varepsilon}}`.
"""
return _analytical.StrongMaximumTest_getDesignPointVicinity(self)
def getPointNumber(self):
"""
Accessor to the number of points.
Returns
-------
number : int, :math:`N > 0`
Number of points used to perform the Strong Maximum Test, evaluated by the
limit state function.
"""
return _analytical.StrongMaximumTest_getPointNumber(self)
def getDeltaEpsilon(self):
"""
Accessor to the parameter :math:`\\delta_{\\varepsilon}`.
Returns
-------
delta_epsilon : float
:math:`\\delta_{\\varepsilon} = \\sqrt{1 - 2 \\frac{ln(\\varepsilon)}{\\beta^2}} - 1`.
"""
return _analytical.StrongMaximumTest_getDeltaEpsilon(self)
def run(self):
"""Perform the Strong Maximum Test."""
return _analytical.StrongMaximumTest_run(self)
def getNearDesignPointVerifyingEventPoints(self):
"""
Accessor to the points verifying the event and near of the design point.
Returns
-------
points : :class:`~openturns.Sample`
The points of the discretized sphere which are inside the vicinity of
the standard design point and which verify the event.
"""
return _analytical.StrongMaximumTest_getNearDesignPointVerifyingEventPoints(self)
def getFarDesignPointVerifyingEventPoints(self):
"""
Accessor to the points verifying the event and far of the design point.
Returns
-------
points : :class:`~openturns.Sample`
The points of the discretized sphere which are out of the vicinity of
the standard design point and which verify the event.
"""
return _analytical.StrongMaximumTest_getFarDesignPointVerifyingEventPoints(self)
def getNearDesignPointViolatingEventPoints(self):
"""
Accessor to the points not verifying the event and near of the design point.
Returns
-------
point : :class:`~openturns.Sample`
The points of the discretized sphere which are out of the vicinity of
the standard design point and which don't verify the event.
"""
return _analytical.StrongMaximumTest_getNearDesignPointViolatingEventPoints(self)
def getFarDesignPointViolatingEventPoints(self):
"""
Accessor to the points not verifying the event and far of the design point.
Returns
-------
points : :class:`~openturns.Sample`
The points of the discretized sphere which are out of the vicinity of
the standard design point and which don't verify the event.
"""
return _analytical.StrongMaximumTest_getFarDesignPointViolatingEventPoints(self)
def getNearDesignPointVerifyingEventValues(self):
"""
Accessor to values of the limit state function.
Returns
-------
values : :class:`~openturns.Sample`
The values of the limit state function on the points of the
discretized sphere which are inside the vicinity of the standard design
point and which verify the event.
"""
return _analytical.StrongMaximumTest_getNearDesignPointVerifyingEventValues(self)
def getFarDesignPointVerifyingEventValues(self):
"""
Accessor to values of the limit state function.
Returns
-------
values : :class:`~openturns.Sample`
The values of the limit state function on the points of the
discretized sphere which are out of the vicinity of the standard design
point and which verify the event.
"""
return _analytical.StrongMaximumTest_getFarDesignPointVerifyingEventValues(self)
def getNearDesignPointViolatingEventValues(self):
"""
Accessor to values of the limit state function.
Returns
-------
values : :class:`~openturns.Sample`
The values of the limit state function on the points of the
discretized sphere which are inside the vicinity of the standard design
point and which don't verify the event.
"""
return _analytical.StrongMaximumTest_getNearDesignPointViolatingEventValues(self)
def getFarDesignPointViolatingEventValues(self):
"""
Accessor to values of the limit state function.
Returns
-------
values : :class:`~openturns.Sample`
The values of the limit state function on the points of the
discretized sphere which are out of the vicinity of the standard design
point and which don't verify the event.
"""
return _analytical.StrongMaximumTest_getFarDesignPointViolatingEventValues(self)
def __repr__(self):
return _analytical.StrongMaximumTest___repr__(self)
def __init__(self, *args):
this = _analytical.new_StrongMaximumTest(*args)
try:
self.this.append(this)
except __builtin__.Exception:
self.this = this
__swig_destroy__ = _analytical.delete_StrongMaximumTest
__del__ = lambda self: None
StrongMaximumTest_swigregister = _analytical.StrongMaximumTest_swigregister
StrongMaximumTest_swigregister(StrongMaximumTest)
# This file is compatible with both classic and new-style classes.
|