This file is indexed.

/usr/lib/python2.7/dist-packages/openturns/uncertainty.py is in python-openturns 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
# This file was automatically generated by SWIG (http://www.swig.org).
# Version 3.0.12
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.

"""Probabilistic meta-package."""


from sys import version_info as _swig_python_version_info
if _swig_python_version_info >= (2, 7, 0):
    def swig_import_helper():
        import importlib
        pkg = __name__.rpartition('.')[0]
        mname = '.'.join((pkg, '_uncertainty')).lstrip('.')
        try:
            return importlib.import_module(mname)
        except ImportError:
            return importlib.import_module('_uncertainty')
    _uncertainty = swig_import_helper()
    del swig_import_helper
elif _swig_python_version_info >= (2, 6, 0):
    def swig_import_helper():
        from os.path import dirname
        import imp
        fp = None
        try:
            fp, pathname, description = imp.find_module('_uncertainty', [dirname(__file__)])
        except ImportError:
            import _uncertainty
            return _uncertainty
        try:
            _mod = imp.load_module('_uncertainty', fp, pathname, description)
        finally:
            if fp is not None:
                fp.close()
        return _mod
    _uncertainty = swig_import_helper()
    del swig_import_helper
else:
    import _uncertainty
del _swig_python_version_info

try:
    _swig_property = property
except NameError:
    pass  # Python < 2.2 doesn't have 'property'.

try:
    import builtins as __builtin__
except ImportError:
    import __builtin__

def _swig_setattr_nondynamic(self, class_type, name, value, static=1):
    if (name == "thisown"):
        return self.this.own(value)
    if (name == "this"):
        if type(value).__name__ == 'SwigPyObject':
            self.__dict__[name] = value
            return
    method = class_type.__swig_setmethods__.get(name, None)
    if method:
        return method(self, value)
    if (not static):
        if _newclass:
            object.__setattr__(self, name, value)
        else:
            self.__dict__[name] = value
    else:
        raise AttributeError("You cannot add attributes to %s" % self)


def _swig_setattr(self, class_type, name, value):
    return _swig_setattr_nondynamic(self, class_type, name, value, 0)


def _swig_getattr(self, class_type, name):
    if (name == "thisown"):
        return self.this.own()
    method = class_type.__swig_getmethods__.get(name, None)
    if method:
        return method(self)
    raise AttributeError("'%s' object has no attribute '%s'" % (class_type.__name__, name))


def _swig_repr(self):
    try:
        strthis = "proxy of " + self.this.__repr__()
    except __builtin__.Exception:
        strthis = ""
    return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)

try:
    _object = object
    _newclass = 1
except __builtin__.Exception:
    class _object:
        pass
    _newclass = 0

class SwigPyIterator(_object):
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)

    def __init__(self, *args, **kwargs):
        raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _uncertainty.delete_SwigPyIterator
    __del__ = lambda self: None

    def value(self):
        return _uncertainty.SwigPyIterator_value(self)

    def incr(self, n=1):
        return _uncertainty.SwigPyIterator_incr(self, n)

    def decr(self, n=1):
        return _uncertainty.SwigPyIterator_decr(self, n)

    def distance(self, x):
        return _uncertainty.SwigPyIterator_distance(self, x)

    def equal(self, x):
        return _uncertainty.SwigPyIterator_equal(self, x)

    def copy(self):
        return _uncertainty.SwigPyIterator_copy(self)

    def next(self):
        return _uncertainty.SwigPyIterator_next(self)

    def __next__(self):
        return _uncertainty.SwigPyIterator___next__(self)

    def previous(self):
        return _uncertainty.SwigPyIterator_previous(self)

    def advance(self, n):
        return _uncertainty.SwigPyIterator_advance(self, n)

    def __eq__(self, x):
        return _uncertainty.SwigPyIterator___eq__(self, x)

    def __ne__(self, x):
        return _uncertainty.SwigPyIterator___ne__(self, x)

    def __iadd__(self, n):
        return _uncertainty.SwigPyIterator___iadd__(self, n)

    def __isub__(self, n):
        return _uncertainty.SwigPyIterator___isub__(self, n)

    def __add__(self, n):
        return _uncertainty.SwigPyIterator___add__(self, n)

    def __sub__(self, *args):
        return _uncertainty.SwigPyIterator___sub__(self, *args)
    def __iter__(self):
        return self
SwigPyIterator_swigregister = _uncertainty.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)

GCC_VERSION = _uncertainty.GCC_VERSION

class TestFailed:
    """TestFailed is used to raise an uniform exception in tests."""

    __type = "TestFailed"

    def __init__(self, reason=""):
        self.reason = reason

    def type(self):
        return TestFailed.__type

    def what(self):
        return self.reason

    def __str__(self):
        return TestFailed.__type + ": " + self.reason

    def __lshift__(self, ch):
        self.reason += ch
        return self

import openturns.base
import openturns.common
import openturns.typ
import openturns.statistics
import openturns.graph
import openturns.func
import openturns.geom
import openturns.diff
import openturns.optim
import openturns.experiment
import openturns.solver
import openturns.algo
import openturns.model_copula
import openturns.randomvector
import openturns.dist_bundle1
import openturns.dist_bundle2
import openturns.weightedexperiment
import openturns.classification
import openturns.orthogonalbasis
import openturns.metamodel
class TaylorExpansionMoments(openturns.common.PersistentObject):
    """
    First and second order Taylor expansion formulas.

    Available constructors:
        TaylorExpansionMoments(*limitStateVariable*)

    Parameters
    ----------
    limitStateVariable : :class:`~openturns.RandomVector`
        This RandomVector must be of type *Composite*, which means it must have
        been defined with the fourth usage of declaration of a RandomVector
        (from a Function and an antecedent Distribution) or with
        the class :class:`~openturns.CompositeRandomVector`.

    Notes
    -----
    In a probabilistic approach the Taylor expansion can be used
    propagate the uncertainties of the input variables :math:`\\uX` through the
    model :math:`h` towards the output variables :math:`\\uY`. It enables to access
    the central dispersion (Expectation, Variance) of the output variables.

    This method is based on a Taylor decomposition of the output variable
    :math:`\\uY` towards the :math:`\\uX` random vectors around the mean point
    :math:`\\muX`. Depending on the order of the Taylor decomposition (classically
    first order or second order), one can obtain different formulas introduced
    hereafter.

    As :math:`\\uY=h(\\uX)`, the Taylor decomposition around :math:`\\ux = \\muX` at
    the second order yields to:

    .. math::

        \\uY = h(\\muX) + <\\vect{\\vect{\\nabla}}h(\\muX) , \\: \\uX - \\muX> + \\frac{1}{2}<<\\vect{\\vect{\\vect{\\nabla }}}^2 h(\\muX,\\: \\vect{\\mu}_{\\:X}),\\: \\uX - \\muX>,\\: \\uX - \\muX> + o(\\Cov \\uX)

    where:

    - :math:`\\muX = \\Expect{\\uX}` is the vector of the input variables at the mean
      values of each component.

    - :math:`\\Cov \\uX` is the covariance matrix of the random vector `\\uX`. The
      elements are the followings :
      :math:`(\\Cov \\uX)_{ij} = \\Expect{\\left(X^i - \\Expect{X^i} \\right)^2}`

    - :math:`\\vect{\\vect{\\nabla}} h(\\muX) = \\: \\Tr{\\left( \\frac{\\partial y^i}{\\partial x^j}\\right)}_{\\ux\\: =\\: \\muX} = \\: \\Tr{\\left( \\frac{\\partial h^i(\\ux)}{\\partial x^j}\\right)}_{\\ux\\: =\\: \\muX}`
      is the transposed Jacobian matrix with :math:`i=1,\\ldots,n_Y` and
      :math:`j=1,\\ldots,n_X`.

    - :math:`\\vect{\\vect{\\vect{\\nabla^2}}} h(\\ux\\:,\\ux)` is a tensor of order 3. It
      is composed by the second order derivative towards the :math:`i^\\textrm{th}`
      and :math:`j^\\textrm{th}` components of :math:`\\ux` of the
      :math:`k^\\textrm{th}` component of the output vector :math:`h(\\ux)`. It
      yields to:
      :math:`\\left( \\nabla^2 h(\\ux) \\right)_{ijk} = \\frac{\\partial^2 (h^k(\\ux))}{\\partial x^i \\partial x^j}`

    - :math:`<\\vect{\\vect{\\nabla}}h(\\muX) , \\: \\uX - \\muX> = \\sum_{j=1}^{n_X} \\left( \\frac{\\partial {\\uy}}{\\partial {x^j}}\\right)_{\\ux = \\muX} . \\left( X^j-\\muX^j \\right)`

    -
      .. math::

          <<\\vect{\\vect{\\vect{\\nabla }}}^2 h(\\muX,\\: \\vect{\\mu}_{X}),\\: \\uX - \\muX>,\\: \\uX - \\muX> = \\left( \\Tr{(\\uX^i - \\muX^i)}. \\left(\\frac{\\partial^2 y^k}{\\partial x^i \\partial x^k}\\right)_{\\ux = \\muX}. (\\uX^j - \\muX^j) \\right)_{ijk}

    **Approximation at the order 1:**

    Expectation:

    .. math::

        \\Expect{\\uY} \\approx \\vect{h}(\\muX)

    Pay attention that :math:`\\Expect{\\uY}` is a vector. The :math:`k^\\textrm{th}`
    component of this vector is equal to the :math:`k^\\textrm{th}` component of the
    output vector computed by the model :math:`h` at the mean value.
    :math:`\\Expect{\\uY}` is thus the computation of the model at mean.

    Variance:

    .. math::

        \\Cov \\uY \\approx \\Tr{\\vect{\\vect{\\nabla}}}\\:\\vect{h}(\\muX).\\Cov \\uX.\\vect{\\vect{\\nabla}}\\:\\vect{h}(\\muX)

    **Approximation at the order 2:**

    Expectation:

    .. math::

        (\\Expect{\\uY})_k \\approx (\\vect{h}(\\muX))_k +
                                  \\left(
                                  \\sum_{i=1}^{n_X}\\frac{1}{2} (\\Cov \\uX)_{ii}.{(\\nabla^2\\:h(\\uX))}_{iik} +
                                  \\sum_{i=1}^{n_X} \\sum_{j=1}^{i-1} (\\Cov X)_{ij}.{(\\nabla^2\\:h(\\uX))}_{ijk}
                                  \\right)_k

    Variance:

    The decomposition of the variance at the order 2 is not implemented in the
    standard version of OpenTURNS. It requires both the knowledge of higher order
    derivatives of the model and the knowledge of moments of order strictly greater
    than 2 of the PDF.

    Examples
    --------
    >>> import openturns as ot
    >>> ot.RandomGenerator.SetSeed(0)
    >>> myFunc = ot.SymbolicFunction(['x1', 'x2', 'x3', 'x4'],
    ...     ['(x1*x1+x2^3*x1)/(2*x3*x3+x4^4+1)', 'cos(x2*x2+x4)/(x1*x1+1+x3^4)'])
    >>> R = ot.CorrelationMatrix(4)
    >>> for i in range(4):
    ...     R[i, i - 1] = 0.25
    >>> distribution = ot.Normal([0.2]*4, [0.1, 0.2, 0.3, 0.4], R)
    >>> # We create a distribution-based RandomVector
    >>> X = ot.RandomVector(distribution)
    >>> # We create a composite RandomVector Y from X and myFunc
    >>> Y = ot.RandomVector(myFunc, X)
    >>> # We create a Taylor expansion method to approximate moments
    >>> myTaylorExpansionMoments = ot.TaylorExpansionMoments(Y)
    >>> print(myTaylorExpansionMoments.getMeanFirstOrder())
    [0.0384615,0.932544]
    """

    __swig_setmethods__ = {}
    for _s in [openturns.common.PersistentObject]:
        __swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, TaylorExpansionMoments, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.common.PersistentObject]:
        __swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
    __getattr__ = lambda self, name: _swig_getattr(self, TaylorExpansionMoments, name)

    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _uncertainty.TaylorExpansionMoments_getClassName(self)


    def __repr__(self):
        return _uncertainty.TaylorExpansionMoments___repr__(self)

    def getLimitStateVariable(self):
        """
        Get the limit state variable.

        Returns
        -------
        limitStateVariable : :class:`~openturns.RandomVector`
            Limit state variable.
        """
        return _uncertainty.TaylorExpansionMoments_getLimitStateVariable(self)


    def getMeanFirstOrder(self):
        """
        Get the approximation at the first order of the mean.

        Returns
        -------
        mean : :class:`~openturns.Point`
            Approximation at the first order of the mean of the random vector.
        """
        return _uncertainty.TaylorExpansionMoments_getMeanFirstOrder(self)


    def getMeanSecondOrder(self):
        """
        Get the approximation at the second order of the mean.

        Returns
        -------
        mean : :class:`~openturns.Point`
            Approximation at the second order of the mean of the random vector
            (it requires that the hessian of the Function has been defined).
        """
        return _uncertainty.TaylorExpansionMoments_getMeanSecondOrder(self)


    def getCovariance(self):
        """
        Get the approximation at the first order of the covariance matrix.

        Returns
        -------
        covariance : :class:`~openturns.CovarianceMatrix`
            Approximation at the first order of the covariance matrix of the random
            vector.
        """
        return _uncertainty.TaylorExpansionMoments_getCovariance(self)


    def getValueAtMean(self):
        """
        Get the value of the function.

        Returns
        -------
        value : :class:`~openturns.Point`
            Value of the Function which defines the random vector at
            the mean point of the input random vector.
        """
        return _uncertainty.TaylorExpansionMoments_getValueAtMean(self)


    def getGradientAtMean(self):
        """
        Get the gradient of the function.

        Returns
        -------
        gradient : :class:`~openturns.Matrix`
            Gradient of the Function which defines the random vector at
            the mean point of the input random vector.
        """
        return _uncertainty.TaylorExpansionMoments_getGradientAtMean(self)


    def getHessianAtMean(self):
        """
        Get the hessian of the function.

        Returns
        -------
        hessian : :class:`~openturns.SymmetricTensor`
            Hessian of the Function which defines the random vector at
            the mean point of the input random vector.
        """
        return _uncertainty.TaylorExpansionMoments_getHessianAtMean(self)


    def getImportanceFactors(self):
        """
        Get the importance factors.

        Returns
        -------
        factors : :class:`~openturns.Point`
            Importance factors of the inputs : only when randVect is of dimension 1.
        """
        return _uncertainty.TaylorExpansionMoments_getImportanceFactors(self)


    def drawImportanceFactors(self):
        """
        Draw the importance factors.

        Returns
        -------
        graph : :class:`~openturns.Graph`
            Graph containing the pie corresponding to the importance factors of the
            probabilistic variables.
        """
        return _uncertainty.TaylorExpansionMoments_drawImportanceFactors(self)


    def __init__(self, *args):
        this = _uncertainty.new_TaylorExpansionMoments(*args)
        try:
            self.this.append(this)
        except __builtin__.Exception:
            self.this = this
    __swig_destroy__ = _uncertainty.delete_TaylorExpansionMoments
    __del__ = lambda self: None
TaylorExpansionMoments_swigregister = _uncertainty.TaylorExpansionMoments_swigregister
TaylorExpansionMoments_swigregister(TaylorExpansionMoments)

class EfficientGlobalOptimization(openturns.optim.OptimizationAlgorithmImplementation):
    """
    Efficient Global Optimization algorithm.

    The EGO algorithm [Jones1998]_ is an adaptative optimization method based on
    kriging.
    An initial design of experiment is used to build a first metamodel.
    At each iteration a new point that maximizes a criterion is chosen as
    optimizer candidate.
    The criterion uses a tradeoff between the metamodel value and the conditional
    variance.
    Then the new point is evaluated using the original model and the metamodel is
    relearnt on the extended design of experiment.

    Available constructors:
        EfficientGlobalOptimization(*problem, krigingResult*)

    Parameters
    ----------
    problem : :class:`~openturns.OptimizationProblem`
        The optimization problem to solve
        optionally, a 2nd objective marginal can be used as noise
    krigingResult : :class:`~openturns.KrigingResult`
        The result of the meta-model on the first design of experiment

    Notes
    -----
    Each point added to the metamodel design seeks to improve the current minimum.
    We chose the point so as to maximize an improvement criterion based on the
    metamodel.

    .. math::

        I(x_{new}) = max(f_{min} - Y_{new}, 0)

    The default criteria is called EI (Expected Improvement) and aims at maximizing
    the mean improvement:

    .. math::

        \\mathbb{E}\\left[I(x_{new})\\right] = \\mathbb{E}\\left[max(f_{min} - Y_{new}, 0)\\right]

    This criterion is explicited using the kriging mean and variance:

    .. math::

        \\mathbb{E}\\left[I(x_{new})\\right] = (f_{min} - m_K(x_{new})) \\Phi\\left( \\frac{f_{min} - m_K(x_{new})}{s_K(x_{new})} \\right) + s_K(x_{new}) \\phi\\left( \\frac{f_{min} - m_K(x_{new})}{s_K(x_{new})} \\right)

    An observation noise variance can be provided thanks to a 2nd objective marginal.

    .. math:: Y_{obs} = Y(x) + \\sigma_{\\epsilon}(x) \\epsilon

    In that case the AEI (Augmented Expected Improvement) formulation is used.
    As we don't have access to the real minimum of the function anymore a quantile
    of the kriging prediction is used, with the constant :math:`c`:

    .. math:: u(x) = m_K(x) + c s_K(x)

    This criterion is minimized over the design points:

    .. math:: x_{min} = \\argmax_{x_i} (u(x_i))

    The AEI criterion reads:

    .. math::

        AEI(x_{new}) = \\mathbb{E}\\left[max(m_K(x_{min}) - Y_{new}, 0)\\right] \\times \\left(1 - \\frac{\\sigma_{\\epsilon}(x_{new})}{\\sqrt{\\sigma_{\\epsilon}^2(x_{new})+s^2_K(x_{new})}} \\right)

    with

    .. math::

        \\mathbb{E}\\left[max(m_K(x_{min}) - Y_{new}, 0)\\right] = (m_K(x_{min}) - m_K(x_{new})) \\Phi\\left( \\frac{m_K(x_{min}) - m_K(x_{new})}{s_K(x_{new})} \\right) + s_K(x_{new}) \\phi\\left( \\frac{m_K(x_{min}) - m_K(x_{new})}{s_K(x_{new})} \\right)

    A less computationally expensive noise function can be provided through
    :func:`setNoiseModel()` to evaluate :math:`\\sigma^2_{\\epsilon}(x)`
    for the improvement criterion optimization, the objective being only used to
    compute values and associated noise at design points.

    By default the criteria is minimized using :class:`~openturns.MultiStart`
    with starting points uniformly sampled in the optimization problem bounds,
    see :func:`setMultiStartExperimentSize` and :func:`setMultiStartNumber`.
    This behavior can be overridden by using another solver with :func:`setOptimizationAlgorithm`.

    Examples
    --------
    >>> import openturns as ot
    >>> ot.RandomGenerator.SetSeed(0)
    >>> dim = 4
    >>> model = ot.SymbolicFunction(['x1', 'x2', 'x3', 'x4'],
    ...     ['x1*x1+x2^3*x1+x3+x4'])
    >>> bounds = ot.Interval([-5.0] * dim, [5.0] * dim)
    >>> problem = ot.OptimizationProblem()
    >>> problem.setObjective(model)
    >>> problem.setBounds(bounds)
    >>> experiment = ot.Composite([0.0] * dim, [1.0, 2.0, 4.0])
    >>> inputSample = experiment.generate()
    >>> outputSample = model(inputSample)
    >>> covarianceModel = ot.SquaredExponential([2.0] * dim, [0.1])
    >>> basis = ot.ConstantBasisFactory(dim).build()
    >>> kriging = ot.KrigingAlgorithm(inputSample, outputSample, covarianceModel, basis)
    >>> kriging.run()
    >>> algo = ot.EfficientGlobalOptimization(problem, kriging.getResult())
    >>> algo.setMaximumIterationNumber(2)
    >>> algo.run()
    >>> result = algo.getResult()
    """

    __swig_setmethods__ = {}
    for _s in [openturns.optim.OptimizationAlgorithmImplementation]:
        __swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, EfficientGlobalOptimization, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.optim.OptimizationAlgorithmImplementation]:
        __swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
    __getattr__ = lambda self, name: _swig_getattr(self, EfficientGlobalOptimization, name)

    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _uncertainty.EfficientGlobalOptimization_getClassName(self)


    def __repr__(self):
        return _uncertainty.EfficientGlobalOptimization___repr__(self)

    def run(self):
        """Launch the optimization."""
        return _uncertainty.EfficientGlobalOptimization_run(self)


    def setOptimizationAlgorithm(self, solver):
        """
        Expected improvement solver accessor.

        Parameters
        ----------
        solver : :class:`~openturns.OptimizationSolver`
            The solver used to optimize the expected improvement
        """
        return _uncertainty.EfficientGlobalOptimization_setOptimizationAlgorithm(self, solver)


    def getOptimizationAlgorithm(self):
        """
        Expected improvement solver accessor.

        Returns
        -------
        solver : :class:`~openturns.OptimizationSolver`
            The solver used to optimize the expected improvement
        """
        return _uncertainty.EfficientGlobalOptimization_getOptimizationAlgorithm(self)


    def getMultiStartExperimentSize(self):
        """
        Size of the design to draw starting points.

        Returns
        -------
        multiStartExperimentSize : int
            The size of the Monte Carlo design from which to select the best starting
            points.
        """
        return _uncertainty.EfficientGlobalOptimization_getMultiStartExperimentSize(self)


    def setMultiStartExperimentSize(self, multiStartExperimentSize):
        """
        Size of the design to draw starting points.

        Parameters
        ----------
        multiStartExperimentSize : int
            The size of the Monte Carlo design from which to select the best starting
            points.
            The default number can be tweaked with the
            `EfficientGlobalOptimization-DefaultMultiStartExperimentSize` key from
            :class:`~openturns.ResourceMap`.
        """
        return _uncertainty.EfficientGlobalOptimization_setMultiStartExperimentSize(self, multiStartExperimentSize)


    def getMultiStartNumber(self):
        """
        Number of starting points for the criterion optimization.

        Returns
        -------
        multiStartNumber : int
            The number of starting points for the criterion optimization.
        """
        return _uncertainty.EfficientGlobalOptimization_getMultiStartNumber(self)


    def setMultiStartNumber(self, multiStartNumberSize):
        """
        Number of starting points for the criterion optimization.

        Parameters
        ----------
        multiStartNumber : int
            The number of starting points for the criterion optimization.
            The default number can be tweaked with the
            `EfficientGlobalOptimization-DefaultMultiStartNumber` key from
            :class:`~openturns.ResourceMap`.
        """
        return _uncertainty.EfficientGlobalOptimization_setMultiStartNumber(self, multiStartNumberSize)


    def getParameterEstimationPeriod(self):
        """
        Parameter estimation period accessor.

        Returns
        -------
        period : int
            The number of iterations between covariance parameters re-learn.
            Default is 1 (each iteration). Can be set to 0 (never).
        """
        return _uncertainty.EfficientGlobalOptimization_getParameterEstimationPeriod(self)


    def setParameterEstimationPeriod(self, parameterEstimationPeriod):
        """
        Parameter estimation period accessor.

        Parameters
        ----------
        period : int
            The number of iterations between covariance parameters re-learn.
            Default is 1 (each iteration). Can be set to 0 (never).
            The default number can be tweaked with the
            `EfficientGlobalOptimization-DefaultParameterEstimationPeriod` key from
            :class:`~openturns.ResourceMap`.
        """
        return _uncertainty.EfficientGlobalOptimization_setParameterEstimationPeriod(self, parameterEstimationPeriod)


    def setImprovementFactor(self, improvementFactor):
        """
        Improvement criterion factor accessor.

        Parameters
        ----------
        a : float
            Used to define a stopping criterion on the improvement criterion:
            :math:`I_{max} < \\alpha |Y_{min}|`
            with :math:`I_{max}` the current maximum of the improvement
            and :math:`Y_{min}` the current optimum.
        """
        return _uncertainty.EfficientGlobalOptimization_setImprovementFactor(self, improvementFactor)


    def getImprovementFactor(self):
        """
        Improvement criterion factor accessor.

        Returns
        -------
        a : float
            Used to define a stopping criterion on the improvement criterion:
            :math:`I_{max} < \\alpha |Y_{min}|`
            with :math:`I_{max}` the current maximum of the improvement
            and :math:`Y_{min}` the current optimum.
        """
        return _uncertainty.EfficientGlobalOptimization_getImprovementFactor(self)


    def setCorrelationLengthFactor(self, b):
        """
        Correlation length stopping criterion factor accessor.

        Parameters
        ----------
        b : float
            Used to define a stopping criterion on the minimum correlation length:
            :math:`\\theta_i < \\frac{\\Delta_i^{min}}{b}`
            with :math:`\\Delta^{min}` the minimum distance between design points.
        """
        return _uncertainty.EfficientGlobalOptimization_setCorrelationLengthFactor(self, b)


    def getCorrelationLengthFactor(self):
        """
        Correlation length stopping criterion factor accessor.

        Returns
        -------
        b : float
            Used to define a stopping criterion on the minimum correlation length:
            :math:`\\theta_i < \\frac{\\Delta_i^{min}}{b}`
            with :math:`\\Delta^{min}` the minimum distance between design points.
        """
        return _uncertainty.EfficientGlobalOptimization_getCorrelationLengthFactor(self)


    def setAIETradeoff(self, c):
        """
        AEI tradeoff constant accessor.

        Parameters
        ----------
        c : float
            Used to define a quantile of the kriging prediction at the design points.
            :math:`u(x)=m_K(x)+c*s_K(x)`
        """
        return _uncertainty.EfficientGlobalOptimization_setAIETradeoff(self, c)


    def getAIETradeoff(self):
        """
        AEI tradeoff constant accessor.

        Returns
        -------
        c : float
            Used to define a quantile of the kriging prediction at the design points.
            :math:`u(x)=m_K(x)+c*s_K(x)`
        """
        return _uncertainty.EfficientGlobalOptimization_getAIETradeoff(self)


    def setNoiseModel(self, noiseModel):
        """
        Improvement noise model accessor.

        Parameters
        ----------
        noiseVariance : :class:`~openturns.Function`
            The noise variance :math:`\\sigma^2_{\\epsilon}(x)` used for the AEI
            criterion optimization only.
            Of same input dimension than the objective and 1-d output.
        """
        return _uncertainty.EfficientGlobalOptimization_setNoiseModel(self, noiseModel)


    def getNoiseModel(self):
        """
        Improvement noise model accessor.

        Returns
        -------
        noiseVariance : :class:`~openturns.Function`
            The noise variance :math:`\\sigma^2_{\\epsilon}(x)` used for the AEI
            criterion optimization only.
            Of same input dimension than the objective and 1-d output.
        """
        return _uncertainty.EfficientGlobalOptimization_getNoiseModel(self)


    def getExpectedImprovement(self):
        """
        Expected improvement values.

        Returns
        -------
        ei : :class:`~openturns.Sample`
            The expected improvement optimal values.
        """
        return _uncertainty.EfficientGlobalOptimization_getExpectedImprovement(self)


    def __init__(self, *args):
        this = _uncertainty.new_EfficientGlobalOptimization(*args)
        try:
            self.this.append(this)
        except __builtin__.Exception:
            self.this = this
    __swig_destroy__ = _uncertainty.delete_EfficientGlobalOptimization
    __del__ = lambda self: None
EfficientGlobalOptimization_swigregister = _uncertainty.EfficientGlobalOptimization_swigregister
EfficientGlobalOptimization_swigregister(EfficientGlobalOptimization)

class ANCOVA(_object):
    """
    ANalysis of COVAriance method (ANCOVA).

    Available constructor:
        ANCOVA(*functionalChaosResult, correlatedInput*)

    Parameters
    ----------
    functionalChaosResult : :class:`~openturns.FunctionalChaosResult`
        Functional chaos result approximating the model response with
        uncorrelated inputs.
    correlatedInput : 2-d sequence of float
        Correlated inputs used to compute the real values of the output.
        Its dimension must be equal to the number of inputs of the model.

    Notes
    -----
    ANCOVA, a variance-based method described in [Caniou2012]_, is a generalization
    of the ANOVA (ANalysis Of VAriance) decomposition for models with correlated
    input parameters.

    Let us consider a model :math:`Y = h(\\vect{X})` without making any hypothesis
    on the dependence structure of :math:`\\vect{X} = \\{X^1, \\ldots, X^{n_X} \\}`, a
    n_X-dimensional random vector. The covariance decomposition requires a functional
    decomposition of the model. Thus the model response :math:`Y` is expanded as a
    sum of functions of increasing dimension as follows:

    .. math::
        :label: model

        h(\\vect{X}) = h_0 + \\sum_{u\\subseteq\\{1,\\dots,n_X\\}} h_u(X_u)

    :math:`h_0` is the mean of :math:`Y`. Each function :math:`h_u` represents,
    for any non empty set :math:`u\\subseteq\\{1, \\dots, n_X\\}`, the combined
    contribution of the variables :math:`X_u` to :math:`Y`.

    Using the properties of the covariance, the variance of :math:`Y` can be
    decomposed into a variance part and a covariance part as follows:

    .. math::

        Var[Y]&= Cov\\left[h_0 + \\sum_{u\\subseteq\\{1,\\dots,n_X\\}} h_u(X_u), h_0 + \\sum_{u\\subseteq\\{1,\\dots,n_X\\}} h_u(X_u)\\right] \\\\
              &= \\sum_{u\\subseteq\\{1,\\dots,n_X\\}} \\left[Var[h_u(X_u)] + Cov[h_u(X_u), \\sum_{v\\subseteq\\{1,\\dots,n_X\\}, v\\cap u=\\varnothing} h_v(X_v)]\\right]

    This variance formula enables to define each total part of variance of
    :math:`Y` due to :math:`X_u`, :math:`S_u`, as the sum of a *physical*
    (or *uncorrelated*) part and a *correlated* part such as:

    .. math::

        S_u = \\frac{Cov[Y, h_u(X_u)]} {Var[Y]} = S_u^U + S_u^C

    where :math:`S_u^U` is the uncorrelated part of variance of Y due to :math:`X_u`:

    .. math::

        S_u^U = \\frac{Var[h_u(X_u)]} {Var[Y]}

    and :math:`S_u^C` is the contribution of the correlation of :math:`X_u` with the
    other parameters:

    .. math::

        S_u^C = \\frac{Cov\\left[h_u(X_u), \\displaystyle \\sum_{v\\subseteq\\{1,\\dots,n_X\\}, v\\cap u=\\varnothing} h_v(X_v)\\right]}
                     {Var[Y]}

    As the computational cost of the indices with the numerical model :math:`h`
    can be very high, [Caniou2012]_ suggests to approximate the model response with
    a polynomial chaos expansion:

    .. math::

        Y \\simeq \\hat{h} = \\sum_{j=0}^{P-1} \\alpha_j \\Psi_j(x)

    However, for the sake of computational simplicity, the latter is constructed
    considering *independent* components :math:`\\{X^1,\\dots,X^{n_X}\\}`. Thus the
    chaos basis is not orthogonal with respect to the correlated inputs under
    consideration, and it is only used as a metamodel to generate approximated
    evaluations of the model response and its summands :eq:`model`.

    The next step consists in identifying the component functions. For instance, for
    :math:`u = \\{1\\}`:

    .. math::

        h_1(X_1) = \\sum_{\\alpha | \\alpha_1 \\neq 0, \\alpha_{i \\neq 1} = 0} y_{\\alpha} \\Psi_{\\alpha}(\\vect{X})

    where :math:`\\alpha` is a set of degrees associated to the :math:`n_X` univariate
    polynomial :math:`\\psi_i^{\\alpha_i}(X_i)`.

    Then the model response :math:`Y` is evaluated using a sample
    :math:`X=\\{x_k, k=1,\\dots,N\\}` of the correlated joint distribution. Finally,
    the several indices are computed using the model response and its component
    functions that have been identified on the polynomial chaos.

    Examples
    --------
    >>> import openturns as ot
    >>> ot.RandomGenerator.SetSeed(0)
    >>> # Model and distribution definition
    >>> model = ot.SymbolicFunction(['X1','X2'], ['4.*X1 + 5.*X2'])
    >>> distribution = ot.ComposedDistribution([ot.Normal()] * 2)
    >>> S = ot.CorrelationMatrix(2)
    >>> S[1, 0] = 0.3
    >>> R = ot.NormalCopula().GetCorrelationFromSpearmanCorrelation(S)
    >>> CorrelatedInputDistribution = ot.ComposedDistribution([ot.Normal()] * 2, ot.NormalCopula(R))
    >>> sample = CorrelatedInputDistribution.getSample(200)
    >>> # Functional chaos computation
    >>> productBasis = ot.OrthogonalProductPolynomialFactory([ot.HermiteFactory()] * 2, ot.EnumerateFunction(2))
    >>> adaptiveStrategy = ot.FixedStrategy(productBasis, 15)
    >>> projectionStrategy = ot.LeastSquaresStrategy(ot.MonteCarloExperiment(100))
    >>> algo = ot.FunctionalChaosAlgorithm(model, distribution, adaptiveStrategy, projectionStrategy)
    >>> algo.run()
    >>> ancovaResult = ot.ANCOVA(algo.getResult(), sample)
    >>> indices = ancovaResult.getIndices()
    >>> print(indices)
    [0.408398,0.591602]
    >>> uncorrelatedIndices = ancovaResult.getUncorrelatedIndices()
    >>> print(uncorrelatedIndices)
    [0.284905,0.468108]
    >>> # Get indices measuring the correlated effects
    >>> print(indices - uncorrelatedIndices)
    [0.123494,0.123494]
    """

    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, ANCOVA, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, ANCOVA, name)
    __repr__ = _swig_repr

    def getUncorrelatedIndices(self, marginalIndex=0):
        """
        Accessor to the ANCOVA indices measuring uncorrelated effects.

        Parameters
        ----------
        marginalIndex : int, :math:`0 \\leq i < n`, optional
            Index of the model's marginal used to estimate the indices.
            By default, marginalIndex is equal to 0.

        Returns
        -------
        indices : :class:`~openturns.Point`
            List of the ANCOVA indices measuring uncorrelated effects of the inputs.
            The effects of the correlation are represented by the indices resulting
            from the subtraction of the :meth:`getIndices` and
            :meth:`getUncorrelatedIndices` lists.
        """
        return _uncertainty.ANCOVA_getUncorrelatedIndices(self, marginalIndex)


    def getIndices(self, marginalIndex=0):
        """
        Accessor to the ANCOVA indices.

        Parameters
        ----------
        marginalIndex : int, :math:`0 \\leq i < n`, optional
            Index of the model's marginal used to estimate the indices.
            By default, marginalIndex is equal to 0.

        Returns
        -------
        indices : :class:`~openturns.Point`
            List of the ANCOVA indices measuring the contribution of the
            input variables to the variance of the model. These indices are made up
            of a *physical* part and a *correlated* part. The first one is obtained
            thanks to :meth:`getUncorrelatedIndices`.
            The effects of the correlation are represented by the indices resulting
            from the subtraction of the :meth:`getIndices` and
            :meth:`getUncorrelatedIndices` lists.
        """
        return _uncertainty.ANCOVA_getIndices(self, marginalIndex)


    def __init__(self, *args):
        this = _uncertainty.new_ANCOVA(*args)
        try:
            self.this.append(this)
        except __builtin__.Exception:
            self.this = this
    __swig_destroy__ = _uncertainty.delete_ANCOVA
    __del__ = lambda self: None
ANCOVA_swigregister = _uncertainty.ANCOVA_swigregister
ANCOVA_swigregister(ANCOVA)

class FAST(_object):
    """
    Fourier Amplitude Sensitivity Testing (FAST).

    Available constructor:
        FAST(*model, distribution, N, Nr=1, M=4*)

    Parameters
    ----------
    model : :class:`~openturns.Function`
        Definition of the model to analyse.
    distribution : :class:`~openturns.Distribution`
        Contains the distributions of each model's input.
        Its dimension must be equal to the number of inputs.
    N : int, :math:`N > Nr`
        Size of the sample from which the Fourier series are calculated.
        It represents the length of the discretization of the s-space.
    Nr : int, :math:`Nr \\geq 1`
        Number of resamplings. The extended FAST method involves a part of
        randomness in the computation of the indices. So it can be asked to
        realize the procedure *Nr* times and then to calculate the
        arithmetic means of the results over the *Nr* estimates.
    M : int, :math:`0 < M < N`
        Interference factor usually equal to 4 or higher.
        It corresponds to the truncation level of the Fourier series, i.e. the
        number of harmonics that are retained in the decomposition.

    Notes
    -----
    FAST is a sensitivity analysis method which is based upon the ANOVA
    decomposition of the variance of the model response :math:`y = f(\\vect{X})`,
    the latter being represented by its Fourier expansion.
    :math:`\\vect{X}=\\{X^1,\\dots,X^{n_X}\\}` is an input random vector of :math:`n_X`
    independent components.

    OpenTURNS implements the extended FAST method consisting in computing
    alternately the first order and the total-effect indices of each input.
    This approach, widely described in the paper by [Saltelli1999]_, relies upon a
    Fourier decomposition of the model response. Its key idea is to recast this
    representation as a function of a *scalar* parameter :math:`s`, by defining
    parametric curves :math:`s \\mapsto x_i(s), i=1, \\dots, n_X` exploring the
    support of the input random vector :math:`\\vect{X}`.

    Then the Fourier expansion of the model response is:

    .. math::

        f(s) = \\sum_{k \\in \\Zset^N} A_k cos(ks) + B_k sin(ks)

    where :math:`A_k` and :math:`B_k` are Fourier coefficients whose estimates are:

    .. math::

        \\hat{A}_k &= \\frac{1}{N} \\sum_{j=1}^N f(x_j^1,\\dots,x_j^{N_X}) cos\\left(\\frac{2k\\pi (j-1)}{N} \\right) \\quad , \\quad -\\frac{N}{2} \\leq k \\leq \\frac{N}{2} \\\\
        \\hat{B}_k &= \\frac{1}{N} \\sum_{j=1}^N f(x_j^1,\\dots,x_j^{N_X}) sin\\left(\\frac{2k\\pi (j-1)}{N} \\right) \\quad , \\quad -\\frac{N}{2} \\leq k \\leq \\frac{N}{2}


    The first order indices are estimated by:

    .. math::

        \\hat{S}_i = \\frac{\\hat{D}_i}{\\hat{D}}
                  = \\frac{\\sum_{p=1}^M(\\hat{A}_{p\\omega_i}^2 + \\hat{B}_{p\\omega_i}^2)^2}
                          {\\sum_{n=1}^{(N-1)/2}(\\hat{A}_n^2 + \\hat{B}_n^2)^2}

    and the total order indices by:

    .. math::

        \\hat{T}_i = 1 - \\frac{\\hat{D}_{-i}}{\\hat{D}}
                  = 1 - \\frac{\\sum_{k=1}^{\\omega_i/2}(\\hat{A}_k^2 + \\hat{B}_k^2)^2}
                              {\\sum_{n=1}^{(N-1)/2}(\\hat{A}_n^2 + \\hat{B}_n^2)^2}

    where :math:`\\hat{D}` is the total variance, :math:`\\hat{D}_i` the portion
    of :math:`D` arising from the uncertainty of the :math:`i^{th}` input and
    :math:`\\hat{D}_{-i}` is the part of the variance due to all the inputs
    except the :math:`i^{th}` input.

    :math:`N` is the size of the sample using to compute the Fourier series and
    :math:`M` is the interference factor. *Saltelli et al.* (1999) recommanded to
    set :math:`M` to a value in the range :math:`[4, 6]`.
    :math:`\\{\\omega_i\\}, \\forall i=1, \\dots, n_X` is a set of integer frequencies
    assigned to each input :math:`X^i`. The frequency associated with the input
    for which the sensitivity indices are computed, is set to the maximum admissible
    frequency satisfying the Nyquist criterion (which ensures to avoid aliasing effects):

    .. math::

        \\omega_i = \\frac{N - 1}{2M}

    In the paper by Saltelli et al. (1999), for high sample size, it is suggested
    that :math:`16 \\leq \\omega_i/N_r \\leq 64`.


    Examples
    --------
    >>> import openturns as ot
    >>> ot.RandomGenerator.SetSeed(0)
    >>> formulaIshigami = ['sin(_pi*X1)+7*sin(_pi*X2)*sin(_pi*X2)+0.1*((_pi*X3)*(_pi*X3)*(_pi*X3)*(_pi*X3))*sin(_pi*X1)']
    >>> modelIshigami = ot.SymbolicFunction(['X1', 'X2', 'X3'], formulaIshigami)
    >>> distributions = ot.ComposedDistribution([ot.Uniform(-1.0, 1.0)] * 3)
    >>> sensitivityAnalysis = ot.FAST(modelIshigami, distributions, 101)
    >>> print(sensitivityAnalysis.getFirstOrderIndices())
    [0.311097,0.441786,0.000396837]
    """

    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, FAST, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, FAST, name)
    __repr__ = _swig_repr

    def getFirstOrderIndices(self, marginalIndex=0):
        """
        Accessor to the first order indices.

        Parameters
        ----------
        marginalIndex : int, :math:`0 \\leq i < n`, optional
            Index of the model's marginal used to estimate the indices.
            By default, marginalIndex is equal to 0.

        Returns
        -------
        indices : :class:`~openturns.Point`
            List of the first order indices of all the inputs.
        """
        return _uncertainty.FAST_getFirstOrderIndices(self, marginalIndex)


    def getTotalOrderIndices(self, marginalIndex=0):
        """
        Accessor to the total order indices.

        Parameters
        ----------
        marginalIndex : int, :math:`0 \\leq i < n`, optional
            Index of the model's  marginal used to estimate the indices.
            By default, marginalIndex is equal to 0.

        Returns
        -------
        indices : :class:`~openturns.Point`
            List of the total-effect order indices of all the inputs.
        """
        return _uncertainty.FAST_getTotalOrderIndices(self, marginalIndex)


    def getFFTAlgorithm(self):
        """
        Accessor to the FFT algorithm implementation.

        Returns
        -------
        fft : a :class:`~openturns.FFT`
            A FFT algorithm.
        """
        return _uncertainty.FAST_getFFTAlgorithm(self)


    def setFFTAlgorithm(self, fft):
        """
        Accessor to the FFT algorithm implementation.

        Parameters
        ----------
        fft : a :class:`~openturns.FFT`
            A FFT algorithm.
        """
        return _uncertainty.FAST_setFFTAlgorithm(self, fft)


    def setBlockSize(self, blockSize):
        """
        Set the block size.

        Parameters
        ----------
        k : positive int
            Size of each block the sample is splitted into, this allows to save space
            while allowing multithreading, when available we recommend to use
            the number of available CPUs, set by default to :math:`1`.
        """
        return _uncertainty.FAST_setBlockSize(self, blockSize)


    def getBlockSize(self):
        """
        Get the block size.

        Returns
        -------
        k : positive int
            Size of each block the sample is splitted into, this allows to save space
            while allowing multithreading, when available we recommend to use
            the number of available CPUs, set by default to 1.
        """
        return _uncertainty.FAST_getBlockSize(self)


    def __init__(self, *args):
        this = _uncertainty.new_FAST(*args)
        try:
            self.this.append(this)
        except __builtin__.Exception:
            self.this = this
    __swig_destroy__ = _uncertainty.delete_FAST
    __del__ = lambda self: None
FAST_swigregister = _uncertainty.FAST_swigregister
FAST_swigregister(FAST)

class SobolIndicesAlgorithmImplementation(openturns.common.PersistentObject):
    """

    Sensitivity analysis.

    Notes
    -----
    This method is concerned with analyzing the influence the random vector
    :math:`\\vect{X} = \\left( X^1, \\ldots, X^{n_X} \\right)` has on a random variable
    :math:`Y^k` which is being studied for uncertainty.

    Here we attempt to evaluate the part of variance of :math:`Y^k` due to the different components :math:`X^i`.

    We denote G the physical model such as :math:`\\vect{Y}=G(\\vect{X})`. Let us consider first the case where :math:`\\vect{Y}` is of dimension 1.

    The objective here is to develop the variability of the random variable :math:`\\vect{Y}` as function of :math:`\\vect{X} = \\left( X^1, \\ldots, X^{n_X} \\right)`. Using the Hoeffding decomposition, we got:

    .. math::

       \\Var{\\vect{Y}} = \\sum_{i=1}^{n_X} V_i + \\sum_{i<j} V_{i,j} + \\sum_{i<k<j} V_{i,j,k} + \\cdots + V_{1,2,..,n_X}

    where :

    :math:`V_i = \\Var{\\Expect{ Y \\vert X_i}}` and :math:`V_{i,j} = \\Var{\\Expect{ Y \\vert X_i, X_j}} - V_i - V_j`. Using the previous decomposition, it follows that sensitivity indices are defined as follow:


    .. math::

       \\begin{array}{ccc}
        S_i & = & \\frac{V_i}{\\Var{\\vect{Y}}} \\\\
        S_{i,j} & = & \\frac{V_{i,j}}{\\Var{\\vect{Y}}}
       \\end{array}

    :math:`(S_i)` are the first order sensitivity indices and measure the impact of :math:`X_i` in the variance :math:`\\Var{\\vect{Y}}`,
    :math:`(S_{i,j})` are the second order sensitivity indices and measure the impact of the interaction of :math:`X_i` and :math:`X_j` in the variance :math:`\\Var{\\vect{Y}}`.

    When :math:`n_X >> 1`, we use total sensitivity indices :math:`ST_i`, which is defined as the sum of all indices that count the i-th variable:

    .. math::

        ST_i =  1 - \\frac{V_{-i}}{\\Var{\\vect{Y}}} = \\frac{VT_i}{\\Var{\\vect{Y}}}, \\forall\\ i\\in(1,2,...,n_X)

    where :math:`V_{-i}` is the part of variance of :math:`\\Var{\\vect{Y}}` that do not countain the i-th variable.

    |

    In practice, to estimate these quantities, Sobol proposes to use numerical methods that rely on the two independent realizations of the random vector :math:`\\vect{X}`.
    If we consider `A` and `B` two independent samples (of size `n`) of the previous random vector:

    .. math::

       A = \\left(
       \\begin{array}{cccc}
       a_{1,1} & a_{1,2} & \\cdots & a_{1, n_X} \\\\
       a_{2,1} & a_{2,2} & \\cdots & a_{2, n_X} \\\\
       \\vdots  & \\vdots  & \\ddots  & \\vdots \\\\
       a_{n,1} & a_{1,2} & \\cdots & a_{n, n_X}
       \\end{array}
       \\right), \\  B = \\left(
       \\begin{array}{cccc}
       b_{1,1} & b_{1,2} & \\cdots & b_{1, n_X} \\\\
       b_{2,1} & b_{2,2} & \\cdots & b_{2, n_X} \\\\
       \\vdots  & \\vdots  & \\vdots  & \\vdots \\\\
       b_{n,1} & b_{1,2} & \\cdots & b_{n, n_X}
       \\end{array}
       \\right)


    Each line is a realization of the random vector. The purpose is to mix these two samples to get an estimate of the sensitivities.

    `Sobol` method require respectively :math:`C^i` and :math:`D^{i,j}` sample designs for the evaluation of first order (respectively second order) sensitivity indices. These are defined as hereafter:

    .. math::

       C^i = \\left(
       \\begin{array}{ccccc}
       b_{1,1} & b_{1,2} & a_{1,i} & \\cdots & b_{1, n_X} \\\\
       b_{2,1} & b_{2,2} & a_{2,i} & \\cdots & b_{2, n_X} \\\\
       \\vdots  & \\vdots  & \\vdots  & \\ddots  & \\vdots \\\\
       b_{n,1} & b_{1,2} & a_{n,i} & \\cdots & b_{n, n_X}
       \\end{array}
       \\right), \\ D^{i,j} = \\left(
       \\begin{array}{ccccccc}
       b_{1,1} & b_{1,2} & a_{1,i} & \\cdots & a_{1,j} & \\cdots & b_{1, n_X} \\\\
       b_{2,1} & b_{2,2} & a_{2,i} & \\cdots & a_{2,j} & \\cdots & b_{2, n_X} \\\\
       \\vdots  & \\vdots  & \\vdots  & \\vdots & \\vdots  & \\ddots & \\vdots \\\\
       b_{n,1} & b_{n,2} & a_{n,i} & \\cdots & a_{n,j} & \\cdots & b_{n, n_X} \\\\
       \\end{array}
       \\right)

    It follows that :math:`V_{i}` and :math:`V_{i,j}` terms are defined as follow:

    .. math::

       \\begin{array}{ccc}
        V_i & = & \\frac{1}{n} \\sum_{k=1}^{n} G(A_k) G(C_k) - V_i - V_j - G_0^2 \\\\
        V_{i,j} & = & \\frac{1}{n} \\sum_{k=1}^{n} G(A_k) G(D_k) - G_0^2 \\\\
        G_0 & = & \\frac{1}{n} \\sum_{k=1}^{n} G(A_k)
       \\end{array}

    The implemented second order indices use this formula.

    The major methods (`Saltelli`, `Jansen`, `Mauntz-Kucherenko`, `Martinez`) use the :math:`E^i` matrix to compute the indices (first order and total order). This matrix is defined as follows:

    .. math::

       E^i = \\left(
       \\begin{array}{ccccc}
       a_{1,1} & a_{1,2} & b_{1,i} & \\cdots & a_{1, n_X} \\\\
       a_{2,1} & a_{2,2} & b_{2,i} & \\cdots & a_{2, n_X} \\\\
       \\vdots  & \\vdots  & \\vdots  & \\ddots  & \\vdots \\\\
       a_{n,1} & a_{1,2} & b_{n,i} & \\cdots & a_{n, n_X}
       \\end{array}
       \\right)

    The formulas for the evaluation of the indices are given in each class documentation:
      - :class:`~openturns.SaltelliSensitivityAlgorithm` for the `Saltelli` method,
      - :class:`~openturns.JansenSensitivityAlgorithm` for the `Jansen` method,
      - :class:`~openturns.MauntzKucherenkoSensitivityAlgorithm` for the `Mauntz-Kucherenko` method,
      - :class:`~openturns.MartinezSensitivityAlgorithm` for the `Martinez` method

    For multivariate outputs, aggregate indices can be computed thanks to the `getAggregatedFirstOrderIndices` and `getAggregatedTotalOrderIndices`. Such indices write as follow:


    .. math::

       \\begin{array}{ccc}
        S_i & = & \\frac{ \\sum_{k=1}^{q} V_{i}^{(k)} }{ \\sum_{k=1}^{q} \\Var{Y_k} }  \\\\
        S_{i,j} & = & \\frac{ \\sum_{k=1}^{q} V_{i,j}^{(k)} }{ \\sum_{k=1}^{q} \\Var{Y_k} }  \\\\
        ST_i & = & \\frac{ \\sum_{k=1}^{q} VT_{i}^{(k)} }{ \\sum_{k=1}^{q} \\Var{Y_k} }
       \\end{array}

    Aggregated second order indices have not been implemented.

    |

    Note finally that evaluation of intervals for indices might be done for first and total order thanks to
    the `getFirstOrderIndicesInterval` and `getTotalOrderIndicesInterval` methods. Default bootstrap size 
    and confidence level values are parametrized thanks to the resource map keys `SobolIndicesAlgorithm-BootstrapSize`
    and `SobolIndicesAlgorithm-BootstrapConfidenceLevel`. Appropriate setters
    might be called to change their values.

    Also note that for numerical stability reasons the ouputs are centered before indices estimation:

    .. math::

        Y_k = Y_k - \\Eset(Y_k)

    """

    __swig_setmethods__ = {}
    for _s in [openturns.common.PersistentObject]:
        __swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, SobolIndicesAlgorithmImplementation, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.common.PersistentObject]:
        __swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
    __getattr__ = lambda self, name: _swig_getattr(self, SobolIndicesAlgorithmImplementation, name)

    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _uncertainty.SobolIndicesAlgorithmImplementation_getClassName(self)


    def getFirstOrderIndices(self, marginalIndex=0):
        """
        Get first order Sobol indices.

        Parameters
        ----------
        i : int, optional
            Index of the marginal of the function, equals to :math:`0` by default.

        Returns
        -------
        indices : :class:`~openturns.Point`
            Sequence containing first order Sobol indices.
        """
        return _uncertainty.SobolIndicesAlgorithmImplementation_getFirstOrderIndices(self, marginalIndex)


    def getFirstOrderIndicesInterval(self):
        """
        Get interval for the merged first order Sobol indices.

        Returns
        -------
        interval : :class:`~openturns.Interval`
            Interval for first order Sobol indices for each component.
        """
        return _uncertainty.SobolIndicesAlgorithmImplementation_getFirstOrderIndicesInterval(self)


    def getSecondOrderIndices(self, marginalIndex=0):
        """
        Get second order Sobol indices.

        Parameters
        ----------
        i : int, optional
            Index of the marginal of the function, equals to :math:`0` by default.

        Returns
        -------
        indices : :class:`~openturns.SymmetricMatrix`
            Tensor containing second order Sobol indices.
        """
        return _uncertainty.SobolIndicesAlgorithmImplementation_getSecondOrderIndices(self, marginalIndex)


    def getTotalOrderIndices(self, marginalIndex=0):
        """
        Get total order Sobol indices.

        Parameters
        ----------
        i : int, optional
            Index of the marginal of the function, equals to :math:`0` by default.

        Returns
        -------
        indices : :class:`~openturns.Point`
            Sequence containing total order Sobol indices.
        """
        return _uncertainty.SobolIndicesAlgorithmImplementation_getTotalOrderIndices(self, marginalIndex)


    def getTotalOrderIndicesInterval(self):
        """
        Get interval for the merged total order Sobol indices.

        Returns
        -------
        interval : :class:`~openturns.Interval`
            Interval for total order Sobol indices for each component.
        """
        return _uncertainty.SobolIndicesAlgorithmImplementation_getTotalOrderIndicesInterval(self)


    def getAggregatedFirstOrderIndices(self):
        """
        Get the evaluation of merged first order Sobol indices.

        Returns
        -------
        indices : :class:`~openturns.Point`
            Sequence containing merged first order Sobol indices.
        """
        return _uncertainty.SobolIndicesAlgorithmImplementation_getAggregatedFirstOrderIndices(self)


    def getAggregatedTotalOrderIndices(self):
        """
        Get the evaluation of merged total order Sobol indices.

        Returns
        -------
        indices : :class:`~openturns.Point`
            Sequence containing merged total order Sobol indices.
        """
        return _uncertainty.SobolIndicesAlgorithmImplementation_getAggregatedTotalOrderIndices(self)


    def getBootstrapSize(self):
        """
        Get the number of bootstrap sampling size.

        Returns
        -------
        bootstrapSize : int
            Number of bootsrap sampling
        """
        return _uncertainty.SobolIndicesAlgorithmImplementation_getBootstrapSize(self)


    def setBootstrapSize(self, bootstrapSize):
        """
        Set the number of bootstrap sampling size.

        Default value is 0.

        Parameters
        ----------
        bootstrapSize : int
            Number of bootsrap sampling
        """
        return _uncertainty.SobolIndicesAlgorithmImplementation_setBootstrapSize(self, bootstrapSize)


    def getBootstrapConfidenceLevel(self):
        """
        Get the confidence interval level for bootstrap sampling.

        Returns
        -------
        confidenceLevel : float
            Confidence level for boostrap sampling
        """
        return _uncertainty.SobolIndicesAlgorithmImplementation_getBootstrapConfidenceLevel(self)


    def setBootstrapConfidenceLevel(self, confidenceLevel):
        """
        Set the confidence interval level for bootstrap sampling.

        Parameters
        ----------
        confidenceLevel : float
            Confidence level for boostrap sampling
        """
        return _uncertainty.SobolIndicesAlgorithmImplementation_setBootstrapConfidenceLevel(self, confidenceLevel)


    def __repr__(self):
        return _uncertainty.SobolIndicesAlgorithmImplementation___repr__(self)

    def __str__(self, *args):
        return _uncertainty.SobolIndicesAlgorithmImplementation___str__(self, *args)

    def Generate(*args):
        """
        Generate the input design of experiment.

        Usage:

          SobolIndicesAlgorithmImplementation.Generate(*distribution, N, computeSecondOrder*)

          SobolIndicesAlgorithmImplementation.Generate(*experiment, computeSecondOrder*)

        Parameters
        ----------
        distribution : :class:`~openturns.Distribution`
            Input probabilistic model.
            Should have independent copula
        experiment : :class:`~openturns.WeightedExperiment`
            Experiment for the generation of two independent samples.
        N : int
            Size of samples to generate
        computeSecondOrder : bool
            If True, design that will be generated contains elements for the evaluation
            of second order indices.

        Returns
        -------
        inputDesign : :class:`~openturns.Sample`
            Full input design.

        Notes
        -----
        Sensitivity algorithms rely on the definition of specific designs. The method generates design for the Saltelli method. Such designs could be used for both the Jansen, Martinez and MauntzKucherenko methods.
        This precomputes such input designs using distribution or experiment by generating two independent samples and mixing columns of these ones to define the huge sample (design).
        If computeSecondOrder is disabled, result design is of size :math:`N*(p+2)` where p is the input dimension.
        If computeSecondOrder is enabled, design's size is :math:`N*(2p+2)`.

        Model's answer could be evaluated outside the platform.

        Examples
        --------
        >>> import openturns as ot
        >>> ot.RandomGenerator.SetSeed(0)
        >>> formula = ['sin(_pi*X1)+7*sin(_pi*X2)*sin(_pi*X2)+' + \\
        ...    '0.1*((_pi*X3)*(_pi*X3)*(_pi*X3)*(_pi*X3))*sin(_pi*X1)']
        >>> model = ot.SymbolicFunction(['X1', 'X2', 'X3'], formula)
        >>> distribution = ot.ComposedDistribution([ot.Uniform(-1.0, 1.0)] * 3, \\
        ...                                         ot.IndependentCopula(3))
        >>> size = 100
        >>> design = ot.SobolIndicesAlgorithmImplementation.Generate(distribution, size, True)

        """
        return _uncertainty.SobolIndicesAlgorithmImplementation_Generate(*args)

    Generate = staticmethod(Generate)

    def DrawImportanceFactors(*args):
        """
        Draw the importance factors.

        :Available usages:
            DrawImportanceFactors(*importanceFactors, title='Importance Factors'*)

            DrawImportanceFactors(*values, names, title='Importance Factors'*)

        Parameters
        ----------
        importanceFactors : :class:`~openturns.PointWithDescription`
            Sequence containing the importance factors with a description for each
            component. The descriptions are used to build labels for the created Pie.
            If they are not mentioned, default labels will be used.
        values : sequence of float
            Importance factors.
        names : sequence of str
            Variables' names used to build labels for the created Pie.
        title : str
            Title of the graph.

        Returns
        -------
        Graph : :class:`~openturns.Graph`
            A graph containing a :class:`~openturns.Pie` of the importance factors of
            the variables.
        """
        return _uncertainty.SobolIndicesAlgorithmImplementation_DrawImportanceFactors(*args)

    DrawImportanceFactors = staticmethod(DrawImportanceFactors)

    def draw(self, *args):
        """
        Draw sensitivity indices.

        Usage:
          draw()

          draw(*marginalIndex*)

        With the first usage, draw the aggregated first and total order indices.
        With the second usage, draw the first and total order indices of a specific marginal in case of vectorial output

        Parameters
        ----------
        marginalIndex: int
            marginal of interest (case of second usage)

        Returns
        -------
        Graph : :class:`~openturns.Graph`
            A graph containing the aggregated first and total order indices.

        Notes
        -----
        If number of bootstrap sampling is not 0, and confidence level associated > 0,
        the graph includes confidence interval plots in the first usage.
        """
        return _uncertainty.SobolIndicesAlgorithmImplementation_draw(self, *args)


    def __init__(self, *args):
        this = _uncertainty.new_SobolIndicesAlgorithmImplementation(*args)
        try:
            self.this.append(this)
        except __builtin__.Exception:
            self.this = this
    __swig_destroy__ = _uncertainty.delete_SobolIndicesAlgorithmImplementation
    __del__ = lambda self: None
SobolIndicesAlgorithmImplementation_swigregister = _uncertainty.SobolIndicesAlgorithmImplementation_swigregister
SobolIndicesAlgorithmImplementation_swigregister(SobolIndicesAlgorithmImplementation)

def SobolIndicesAlgorithmImplementation_Generate(*args):
    """
    Generate the input design of experiment.

    Usage:

      SobolIndicesAlgorithmImplementation.Generate(*distribution, N, computeSecondOrder*)

      SobolIndicesAlgorithmImplementation.Generate(*experiment, computeSecondOrder*)

    Parameters
    ----------
    distribution : :class:`~openturns.Distribution`
        Input probabilistic model.
        Should have independent copula
    experiment : :class:`~openturns.WeightedExperiment`
        Experiment for the generation of two independent samples.
    N : int
        Size of samples to generate
    computeSecondOrder : bool
        If True, design that will be generated contains elements for the evaluation
        of second order indices.

    Returns
    -------
    inputDesign : :class:`~openturns.Sample`
        Full input design.

    Notes
    -----
    Sensitivity algorithms rely on the definition of specific designs. The method generates design for the Saltelli method. Such designs could be used for both the Jansen, Martinez and MauntzKucherenko methods.
    This precomputes such input designs using distribution or experiment by generating two independent samples and mixing columns of these ones to define the huge sample (design).
    If computeSecondOrder is disabled, result design is of size :math:`N*(p+2)` where p is the input dimension.
    If computeSecondOrder is enabled, design's size is :math:`N*(2p+2)`.

    Model's answer could be evaluated outside the platform.

    Examples
    --------
    >>> import openturns as ot
    >>> ot.RandomGenerator.SetSeed(0)
    >>> formula = ['sin(_pi*X1)+7*sin(_pi*X2)*sin(_pi*X2)+' + \\
    ...    '0.1*((_pi*X3)*(_pi*X3)*(_pi*X3)*(_pi*X3))*sin(_pi*X1)']
    >>> model = ot.SymbolicFunction(['X1', 'X2', 'X3'], formula)
    >>> distribution = ot.ComposedDistribution([ot.Uniform(-1.0, 1.0)] * 3, \\
    ...                                         ot.IndependentCopula(3))
    >>> size = 100
    >>> design = ot.SobolIndicesAlgorithmImplementation.Generate(distribution, size, True)

    """
    return _uncertainty.SobolIndicesAlgorithmImplementation_Generate(*args)

def SobolIndicesAlgorithmImplementation_DrawImportanceFactors(*args):
    """
    Draw the importance factors.

    :Available usages:
        DrawImportanceFactors(*importanceFactors, title='Importance Factors'*)

        DrawImportanceFactors(*values, names, title='Importance Factors'*)

    Parameters
    ----------
    importanceFactors : :class:`~openturns.PointWithDescription`
        Sequence containing the importance factors with a description for each
        component. The descriptions are used to build labels for the created Pie.
        If they are not mentioned, default labels will be used.
    values : sequence of float
        Importance factors.
    names : sequence of str
        Variables' names used to build labels for the created Pie.
    title : str
        Title of the graph.

    Returns
    -------
    Graph : :class:`~openturns.Graph`
        A graph containing a :class:`~openturns.Pie` of the importance factors of
        the variables.
    """
    return _uncertainty.SobolIndicesAlgorithmImplementation_DrawImportanceFactors(*args)

class SobolIndicesAlgorithmImplementationTypedInterfaceObject(openturns.common.InterfaceObject):
    __swig_setmethods__ = {}
    for _s in [openturns.common.InterfaceObject]:
        __swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, SobolIndicesAlgorithmImplementationTypedInterfaceObject, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.common.InterfaceObject]:
        __swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
    __getattr__ = lambda self, name: _swig_getattr(self, SobolIndicesAlgorithmImplementationTypedInterfaceObject, name)
    __repr__ = _swig_repr

    def __init__(self, *args):
        this = _uncertainty.new_SobolIndicesAlgorithmImplementationTypedInterfaceObject(*args)
        try:
            self.this.append(this)
        except __builtin__.Exception:
            self.this = this

    def getImplementation(self, *args):
        """
        Accessor to the underlying implementation.

        Returns
        -------
        impl : Implementation
            The implementation class.
        """
        return _uncertainty.SobolIndicesAlgorithmImplementationTypedInterfaceObject_getImplementation(self, *args)


    def setName(self, name):
        """
        Accessor to the object's name.

        Parameters
        ----------
        name : str
            The name of the object.
        """
        return _uncertainty.SobolIndicesAlgorithmImplementationTypedInterfaceObject_setName(self, name)


    def getName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        name : str
            The name of the object.
        """
        return _uncertainty.SobolIndicesAlgorithmImplementationTypedInterfaceObject_getName(self)


    def __eq__(self, other):
        return _uncertainty.SobolIndicesAlgorithmImplementationTypedInterfaceObject___eq__(self, other)
    __swig_destroy__ = _uncertainty.delete_SobolIndicesAlgorithmImplementationTypedInterfaceObject
    __del__ = lambda self: None
SobolIndicesAlgorithmImplementationTypedInterfaceObject_swigregister = _uncertainty.SobolIndicesAlgorithmImplementationTypedInterfaceObject_swigregister
SobolIndicesAlgorithmImplementationTypedInterfaceObject_swigregister(SobolIndicesAlgorithmImplementationTypedInterfaceObject)

class SobolIndicesAlgorithm(SobolIndicesAlgorithmImplementationTypedInterfaceObject):
    """

    Sensitivity analysis.

    Notes
    -----
    This method is concerned with analyzing the influence the random vector
    :math:`\\vect{X} = \\left( X^1, \\ldots, X^{n_X} \\right)` has on a random variable
    :math:`Y^k` which is being studied for uncertainty.

    Here we attempt to evaluate the part of variance of :math:`Y^k` due to the different components :math:`X^i`.

    We denote G the physical model such as :math:`\\vect{Y}=G(\\vect{X})`. Let us consider first the case where :math:`\\vect{Y}` is of dimension 1.

    The objective here is to develop the variability of the random variable :math:`\\vect{Y}` as function of :math:`\\vect{X} = \\left( X^1, \\ldots, X^{n_X} \\right)`. Using the Hoeffding decomposition, we got:

    .. math::

       \\Var{\\vect{Y}} = \\sum_{i=1}^{n_X} V_i + \\sum_{i<j} V_{i,j} + \\sum_{i<k<j} V_{i,j,k} + \\cdots + V_{1,2,..,n_X}

    where :

    :math:`V_i = \\Var{\\Expect{ Y \\vert X_i}}` and :math:`V_{i,j} = \\Var{\\Expect{ Y \\vert X_i, X_j}} - V_i - V_j`. Using the previous decomposition, it follows that sensitivity indices are defined as follow:


    .. math::

       \\begin{array}{ccc}
        S_i & = & \\frac{V_i}{\\Var{\\vect{Y}}} \\\\
        S_{i,j} & = & \\frac{V_{i,j}}{\\Var{\\vect{Y}}}
       \\end{array}

    :math:`(S_i)` are the first order sensitivity indices and measure the impact of :math:`X_i` in the variance :math:`\\Var{\\vect{Y}}`,
    :math:`(S_{i,j})` are the second order sensitivity indices and measure the impact of the interaction of :math:`X_i` and :math:`X_j` in the variance :math:`\\Var{\\vect{Y}}`.

    When :math:`n_X >> 1`, we use total sensitivity indices :math:`ST_i`, which is defined as the sum of all indices that count the i-th variable:

    .. math::

        ST_i =  1 - \\frac{V_{-i}}{\\Var{\\vect{Y}}} = \\frac{VT_i}{\\Var{\\vect{Y}}}, \\forall\\ i\\in(1,2,...,n_X)

    where :math:`V_{-i}` is the part of variance of :math:`\\Var{\\vect{Y}}` that do not countain the i-th variable.

    |

    In practice, to estimate these quantities, Sobol proposes to use numerical methods that rely on the two independent realizations of the random vector :math:`\\vect{X}`.
    If we consider `A` and `B` two independent samples (of size `n`) of the previous random vector:

    .. math::

       A = \\left(
       \\begin{array}{cccc}
       a_{1,1} & a_{1,2} & \\cdots & a_{1, n_X} \\\\
       a_{2,1} & a_{2,2} & \\cdots & a_{2, n_X} \\\\
       \\vdots  & \\vdots  & \\ddots  & \\vdots \\\\
       a_{n,1} & a_{1,2} & \\cdots & a_{n, n_X}
       \\end{array}
       \\right), \\  B = \\left(
       \\begin{array}{cccc}
       b_{1,1} & b_{1,2} & \\cdots & b_{1, n_X} \\\\
       b_{2,1} & b_{2,2} & \\cdots & b_{2, n_X} \\\\
       \\vdots  & \\vdots  & \\vdots  & \\vdots \\\\
       b_{n,1} & b_{1,2} & \\cdots & b_{n, n_X}
       \\end{array}
       \\right)


    Each line is a realization of the random vector. The purpose is to mix these two samples to get an estimate of the sensitivities.

    `Sobol` method require respectively :math:`C^i` and :math:`D^{i,j}` sample designs for the evaluation of first order (respectively second order) sensitivity indices. These are defined as hereafter:

    .. math::

       C^i = \\left(
       \\begin{array}{ccccc}
       b_{1,1} & b_{1,2} & a_{1,i} & \\cdots & b_{1, n_X} \\\\
       b_{2,1} & b_{2,2} & a_{2,i} & \\cdots & b_{2, n_X} \\\\
       \\vdots  & \\vdots  & \\vdots  & \\ddots  & \\vdots \\\\
       b_{n,1} & b_{1,2} & a_{n,i} & \\cdots & b_{n, n_X}
       \\end{array}
       \\right), \\ D^{i,j} = \\left(
       \\begin{array}{ccccccc}
       b_{1,1} & b_{1,2} & a_{1,i} & \\cdots & a_{1,j} & \\cdots & b_{1, n_X} \\\\
       b_{2,1} & b_{2,2} & a_{2,i} & \\cdots & a_{2,j} & \\cdots & b_{2, n_X} \\\\
       \\vdots  & \\vdots  & \\vdots  & \\vdots & \\vdots  & \\ddots & \\vdots \\\\
       b_{n,1} & b_{n,2} & a_{n,i} & \\cdots & a_{n,j} & \\cdots & b_{n, n_X} \\\\
       \\end{array}
       \\right)

    It follows that :math:`V_{i}` and :math:`V_{i,j}` terms are defined as follow:

    .. math::

       \\begin{array}{ccc}
        V_i & = & \\frac{1}{n} \\sum_{k=1}^{n} G(A_k) G(C_k) - V_i - V_j - G_0^2 \\\\
        V_{i,j} & = & \\frac{1}{n} \\sum_{k=1}^{n} G(A_k) G(D_k) - G_0^2 \\\\
        G_0 & = & \\frac{1}{n} \\sum_{k=1}^{n} G(A_k)
       \\end{array}

    The implemented second order indices use this formula.

    The major methods (`Saltelli`, `Jansen`, `Mauntz-Kucherenko`, `Martinez`) use the :math:`E^i` matrix to compute the indices (first order and total order). This matrix is defined as follows:

    .. math::

       E^i = \\left(
       \\begin{array}{ccccc}
       a_{1,1} & a_{1,2} & b_{1,i} & \\cdots & a_{1, n_X} \\\\
       a_{2,1} & a_{2,2} & b_{2,i} & \\cdots & a_{2, n_X} \\\\
       \\vdots  & \\vdots  & \\vdots  & \\ddots  & \\vdots \\\\
       a_{n,1} & a_{1,2} & b_{n,i} & \\cdots & a_{n, n_X}
       \\end{array}
       \\right)

    The formulas for the evaluation of the indices are given in each class documentation:
      - :class:`~openturns.SaltelliSensitivityAlgorithm` for the `Saltelli` method,
      - :class:`~openturns.JansenSensitivityAlgorithm` for the `Jansen` method,
      - :class:`~openturns.MauntzKucherenkoSensitivityAlgorithm` for the `Mauntz-Kucherenko` method,
      - :class:`~openturns.MartinezSensitivityAlgorithm` for the `Martinez` method

    For multivariate outputs, aggregate indices can be computed thanks to the `getAggregatedFirstOrderIndices` and `getAggregatedTotalOrderIndices`. Such indices write as follow:


    .. math::

       \\begin{array}{ccc}
        S_i & = & \\frac{ \\sum_{k=1}^{q} V_{i}^{(k)} }{ \\sum_{k=1}^{q} \\Var{Y_k} }  \\\\
        S_{i,j} & = & \\frac{ \\sum_{k=1}^{q} V_{i,j}^{(k)} }{ \\sum_{k=1}^{q} \\Var{Y_k} }  \\\\
        ST_i & = & \\frac{ \\sum_{k=1}^{q} VT_{i}^{(k)} }{ \\sum_{k=1}^{q} \\Var{Y_k} }
       \\end{array}

    Aggregated second order indices have not been implemented.

    |

    Note finally that evaluation of intervals for indices might be done for first and total order thanks to
    the `getFirstOrderIndicesInterval` and `getTotalOrderIndicesInterval` methods. Default bootstrap size 
    and confidence level values are parametrized thanks to the resource map keys `SobolIndicesAlgorithm-BootstrapSize`
    and `SobolIndicesAlgorithm-BootstrapConfidenceLevel`. Appropriate setters
    might be called to change their values.

    Also note that for numerical stability reasons the ouputs are centered before indices estimation:

    .. math::

        Y_k = Y_k - \\Eset(Y_k)

    """

    __swig_setmethods__ = {}
    for _s in [SobolIndicesAlgorithmImplementationTypedInterfaceObject]:
        __swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, SobolIndicesAlgorithm, name, value)
    __swig_getmethods__ = {}
    for _s in [SobolIndicesAlgorithmImplementationTypedInterfaceObject]:
        __swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
    __getattr__ = lambda self, name: _swig_getattr(self, SobolIndicesAlgorithm, name)

    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _uncertainty.SobolIndicesAlgorithm_getClassName(self)


    def getFirstOrderIndices(self, marginalIndex=0):
        """
        Get first order Sobol indices.

        Parameters
        ----------
        i : int, optional
            Index of the marginal of the function, equals to :math:`0` by default.

        Returns
        -------
        indices : :class:`~openturns.Point`
            Sequence containing first order Sobol indices.
        """
        return _uncertainty.SobolIndicesAlgorithm_getFirstOrderIndices(self, marginalIndex)


    def getFirstOrderIndicesInterval(self):
        """
        Get interval for the merged first order Sobol indices.

        Returns
        -------
        interval : :class:`~openturns.Interval`
            Interval for first order Sobol indices for each component.
        """
        return _uncertainty.SobolIndicesAlgorithm_getFirstOrderIndicesInterval(self)


    def getSecondOrderIndices(self, marginalIndex=0):
        """
        Get second order Sobol indices.

        Parameters
        ----------
        i : int, optional
            Index of the marginal of the function, equals to :math:`0` by default.

        Returns
        -------
        indices : :class:`~openturns.SymmetricMatrix`
            Tensor containing second order Sobol indices.
        """
        return _uncertainty.SobolIndicesAlgorithm_getSecondOrderIndices(self, marginalIndex)


    def getTotalOrderIndices(self, marginalIndex=0):
        """
        Get total order Sobol indices.

        Parameters
        ----------
        i : int, optional
            Index of the marginal of the function, equals to :math:`0` by default.

        Returns
        -------
        indices : :class:`~openturns.Point`
            Sequence containing total order Sobol indices.
        """
        return _uncertainty.SobolIndicesAlgorithm_getTotalOrderIndices(self, marginalIndex)


    def getTotalOrderIndicesInterval(self):
        """
        Get interval for the merged total order Sobol indices.

        Returns
        -------
        interval : :class:`~openturns.Interval`
            Interval for total order Sobol indices for each component.
        """
        return _uncertainty.SobolIndicesAlgorithm_getTotalOrderIndicesInterval(self)


    def getAggregatedFirstOrderIndices(self):
        """
        Get the evaluation of merged first order Sobol indices.

        Returns
        -------
        indices : :class:`~openturns.Point`
            Sequence containing merged first order Sobol indices.
        """
        return _uncertainty.SobolIndicesAlgorithm_getAggregatedFirstOrderIndices(self)


    def getAggregatedTotalOrderIndices(self):
        """
        Get the evaluation of merged total order Sobol indices.

        Returns
        -------
        indices : :class:`~openturns.Point`
            Sequence containing merged total order Sobol indices.
        """
        return _uncertainty.SobolIndicesAlgorithm_getAggregatedTotalOrderIndices(self)


    def getBootstrapSize(self):
        """
        Get the number of bootstrap sampling size.

        Returns
        -------
        bootstrapSize : int
            Number of bootsrap sampling
        """
        return _uncertainty.SobolIndicesAlgorithm_getBootstrapSize(self)


    def setBootstrapSize(self, bootstrapSize):
        """
        Set the number of bootstrap sampling size.

        Default value is 0.

        Parameters
        ----------
        bootstrapSize : int
            Number of bootsrap sampling
        """
        return _uncertainty.SobolIndicesAlgorithm_setBootstrapSize(self, bootstrapSize)


    def getBootstrapConfidenceLevel(self):
        """
        Get the confidence interval level for bootstrap sampling.

        Returns
        -------
        confidenceLevel : float
            Confidence level for boostrap sampling
        """
        return _uncertainty.SobolIndicesAlgorithm_getBootstrapConfidenceLevel(self)


    def setBootstrapConfidenceLevel(self, confidenceLevel):
        """
        Set the confidence interval level for bootstrap sampling.

        Parameters
        ----------
        confidenceLevel : float
            Confidence level for boostrap sampling
        """
        return _uncertainty.SobolIndicesAlgorithm_setBootstrapConfidenceLevel(self, confidenceLevel)


    def draw(self, *args):
        """
        Draw sensitivity indices.

        Usage:
          draw()

          draw(*marginalIndex*)

        With the first usage, draw the aggregated first and total order indices.
        With the second usage, draw the first and total order indices of a specific marginal in case of vectorial output

        Parameters
        ----------
        marginalIndex: int
            marginal of interest (case of second usage)

        Returns
        -------
        Graph : :class:`~openturns.Graph`
            A graph containing the aggregated first and total order indices.

        Notes
        -----
        If number of bootstrap sampling is not 0, and confidence level associated > 0,
        the graph includes confidence interval plots in the first usage.
        """
        return _uncertainty.SobolIndicesAlgorithm_draw(self, *args)


    def __repr__(self):
        return _uncertainty.SobolIndicesAlgorithm___repr__(self)

    def __str__(self, *args):
        return _uncertainty.SobolIndicesAlgorithm___str__(self, *args)

    def __init__(self, *args):
        this = _uncertainty.new_SobolIndicesAlgorithm(*args)
        try:
            self.this.append(this)
        except __builtin__.Exception:
            self.this = this
    __swig_destroy__ = _uncertainty.delete_SobolIndicesAlgorithm
    __del__ = lambda self: None
SobolIndicesAlgorithm_swigregister = _uncertainty.SobolIndicesAlgorithm_swigregister
SobolIndicesAlgorithm_swigregister(SobolIndicesAlgorithm)

class MartinezSensitivityAlgorithm(SobolIndicesAlgorithmImplementation):
    """
    Sensitivity analysis using Martinez method

    Available constructors:
        MartinezSensitivityAlgorithm(*inputDesign, outputDesign, N, computeSecondOrder*)

        MartinezSensitivityAlgorithm(*distribution, N, model, computeSecondOrder*)

        MartinezSensitivityAlgorithm(*experiment, model, computeSecondOrder*)

    Parameters
    ----------
    inputDesign : :class:`~openturns.Sample`
        Design for the evaluation of sensitivity indices, obtained
        thanks to the SobolIndicesAlgorithmImplementation.Generate method
    outputDesign : :class:`~openturns.Sample`
        Design for the evaluation of sensitivity indices, obtained as the evaluation
        of a Function (model) on the previous inputDesign
    distribution : :class:`~openturns.Distribution`
        Input probabilistic model.
        Should have independent copula
    experiment : :class:`~openturns.WeightedExperiment`
        Experiment for the generation of two independent samples.
    N : int
        Size of samples to generate
    computeSecondOrder : bool
        If True, design that will be generated contains elements for the evaluation
        of second order indices.

    Notes
    -----
    This class is concerned with analyzing the influence the random vector
    :math:`\\vect{X} = \\left( X^1, \\ldots, X^{n_X} \\right)` has on a random variable
    :math:`Y^k` which is being studied for uncertainty, by using the [Martinez2011]_
    method for the evaluation of both first and total order indices.

    These last ones are respectively given as follows:

    .. math::

       \\begin{array}{ccc}
       \\hat{S_i} & = & \\rho_n(G(B), G(E^i)) \\\\
       \\hat{ST_i} & = & 1 - \\rho_n(G(A), G(E^i)) \\\\
       \\end{array}

    where :math:`\\rho_n` is the empirical correlation defined by:

    .. math::

       \\rho_n(X, Y) = \\frac{\\Cov{X,Y}}{\\sqrt{\\Var{X} \\Var{Y}}}

    The class provides also the evaluation of asymptotic confidence interval for first
    and total order indices, relying on the Fisher transformation.

    This could be performed for gaussian output data. The
    `MartinezSensitivityAlgorithm-UseAsmpytoticInterval` resource map key should
    be fixed to True in that case.

    See also
    --------
    SobolIndicesAlgorithm

    Examples
    --------
    >>> import openturns as ot
    >>> ot.RandomGenerator.SetSeed(0)
    >>> formula = ['sin(_pi*X1)+7*sin(_pi*X2)*sin(_pi*X2)+' + \\
    ...    '0.1*((_pi*X3)*(_pi*X3)*(_pi*X3)*(_pi*X3))*sin(_pi*X1)']
    >>> model = ot.SymbolicFunction(['X1', 'X2', 'X3'], formula)
    >>> distribution = ot.ComposedDistribution([ot.Uniform(-1.0, 1.0)] * 3, \\
    ...                                         ot.IndependentCopula(3))
    >>> # Define designs to pre-compute
    >>> size = 100
    >>> inputDesign = ot.SobolIndicesAlgorithmImplementation.Generate(distribution, size, True)
    >>> outputDesign = model(inputDesign)
    >>> # sensitivity analysis algorithm
    >>> sensitivityAnalysis = ot.MartinezSensitivityAlgorithm(inputDesign, outputDesign, size)
    >>> print(sensitivityAnalysis.getFirstOrderIndices())
    [0.30449,0.448506,-0.0711394]
    """

    __swig_setmethods__ = {}
    for _s in [SobolIndicesAlgorithmImplementation]:
        __swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, MartinezSensitivityAlgorithm, name, value)
    __swig_getmethods__ = {}
    for _s in [SobolIndicesAlgorithmImplementation]:
        __swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
    __getattr__ = lambda self, name: _swig_getattr(self, MartinezSensitivityAlgorithm, name)

    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _uncertainty.MartinezSensitivityAlgorithm_getClassName(self)


    def __repr__(self):
        return _uncertainty.MartinezSensitivityAlgorithm___repr__(self)

    def getFirstOrderIndicesInterval(self):
        """
        Get interval for the merged first order Sobol indices.

        Returns
        -------
        interval : :class:`~openturns.Interval`
            Interval for first order Sobol indices for each component.
        """
        return _uncertainty.MartinezSensitivityAlgorithm_getFirstOrderIndicesInterval(self)


    def getTotalOrderIndicesInterval(self):
        """
        Get interval for the merged total order Sobol indices.

        Returns
        -------
        interval : :class:`~openturns.Interval`
            Interval for total order Sobol indices for each component.
        """
        return _uncertainty.MartinezSensitivityAlgorithm_getTotalOrderIndicesInterval(self)


    def __init__(self, *args):
        this = _uncertainty.new_MartinezSensitivityAlgorithm(*args)
        try:
            self.this.append(this)
        except __builtin__.Exception:
            self.this = this
    __swig_destroy__ = _uncertainty.delete_MartinezSensitivityAlgorithm
    __del__ = lambda self: None
MartinezSensitivityAlgorithm_swigregister = _uncertainty.MartinezSensitivityAlgorithm_swigregister
MartinezSensitivityAlgorithm_swigregister(MartinezSensitivityAlgorithm)

class SaltelliSensitivityAlgorithm(SobolIndicesAlgorithmImplementation):
    """
    Sensitivity analysis using Saltelli method.

    Available constructors:
        SaltelliSensitivityAlgorithm(*inputDesign, outputDesign, N, computeSecondOrder*)

        SaltelliSensitivityAlgorithm(*distribution, N, model, computeSecondOrder*)

        SaltelliSensitivityAlgorithm(*experiment, model, computeSecondOrder*)

    Parameters
    ----------
    inputDesign : :class:`~openturns.Sample`
        Design for the evaluation of sensitivity indices, obtained
        thanks to the SobolIndicesAlgorithmImplementation.Generate method
    outputDesign : :class:`~openturns.Sample`
        Design for the evaluation of sensitivity indices, obtained as the evaluation
        of a Function (model) on the previous inputDesign
    distribution : :class:`~openturns.Distribution`
        Input probabilistic model.
        Should have independent copula
    experiment : :class:`~openturns.WeightedExperiment`
        Experiment for the generation of two independent samples.
    N : int
        Size of samples to generate
    computeSecondOrder : bool
        If True, design that will be generated contains elements for the evaluation
        of second order indices.

    Notes
    -----
    This class is concerned with analyzing the influence the random vector
    :math:`\\vect{X} = \\left( X^1, \\ldots, X^{n_X} \\right)` has on a random variable
    :math:`Y^k` which is being studied for uncertainty, by using the [Saltelli2002]_
    method for the evaluation of both first and total order indices.

    These last ones are respectively given as follows:

    .. math::

       \\begin{array}{ccc}
       \\hat{V_i} & = & \\frac{1}{n}\\sum_{k=1}^{n} G(B_k)  G(E_k) - G_0^2 \\\\
       \\hat{V_{-i}} & = & \\frac{1}{n}\\sum_{k=1}^{n} G(A_k)  G(E_k) - G_0^2
       \\end{array}

    See also
    --------
    SobolIndicesAlgorithm

    Examples
    --------
    >>> import openturns as ot
    >>> ot.RandomGenerator.SetSeed(0)
    >>> formula = ['sin(_pi*X1)+7*sin(_pi*X2)*sin(_pi*X2)+' + \\
    ...    '0.1*((_pi*X3)*(_pi*X3)*(_pi*X3)*(_pi*X3))*sin(_pi*X1)']
    >>> model = ot.SymbolicFunction(['X1', 'X2', 'X3'], formula)
    >>> distribution = ot.ComposedDistribution([ot.Uniform(-1.0, 1.0)] * 3, \\
    ...                                         ot.IndependentCopula(3))
    >>> # Define designs to pre-compute
    >>> size = 100
    >>> inputDesign = ot.SobolIndicesAlgorithmImplementation.Generate(distribution, size, True)
    >>> outputDesign = model(inputDesign)
    >>> # sensitivity analysis algorithm
    >>> sensitivityAnalysis = ot.SaltelliSensitivityAlgorithm(inputDesign, outputDesign, size)
    >>> print(sensitivityAnalysis.getFirstOrderIndices())
    [0.182857,0.357745,-0.128457]
    """

    __swig_setmethods__ = {}
    for _s in [SobolIndicesAlgorithmImplementation]:
        __swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, SaltelliSensitivityAlgorithm, name, value)
    __swig_getmethods__ = {}
    for _s in [SobolIndicesAlgorithmImplementation]:
        __swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
    __getattr__ = lambda self, name: _swig_getattr(self, SaltelliSensitivityAlgorithm, name)

    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _uncertainty.SaltelliSensitivityAlgorithm_getClassName(self)


    def __repr__(self):
        return _uncertainty.SaltelliSensitivityAlgorithm___repr__(self)

    def __init__(self, *args):
        this = _uncertainty.new_SaltelliSensitivityAlgorithm(*args)
        try:
            self.this.append(this)
        except __builtin__.Exception:
            self.this = this
    __swig_destroy__ = _uncertainty.delete_SaltelliSensitivityAlgorithm
    __del__ = lambda self: None
SaltelliSensitivityAlgorithm_swigregister = _uncertainty.SaltelliSensitivityAlgorithm_swigregister
SaltelliSensitivityAlgorithm_swigregister(SaltelliSensitivityAlgorithm)

class JansenSensitivityAlgorithm(SobolIndicesAlgorithmImplementation):
    """
    Sensitivity analysis using Jansen method.

    Available constructors:
        JansenSensitivityAlgorithm(*inputDesign, outputDesign, N, computeSecondOrder*)

        JansenSensitivityAlgorithm(*distribution, N, model, computeSecondOrder*)

        JansenSensitivityAlgorithm(*experiment, model, computeSecondOrder*)

    Parameters
    ----------
    inputDesign : :class:`~openturns.Sample`
        Design for the evaluation of sensitivity indices, obtained
        thanks to the SobolIndicesAlgorithmImplementation.Generate method
    outputDesign : :class:`~openturns.Sample`
        Design for the evaluation of sensitivity indices, obtained as the evaluation
        of a Function (model) on the previous inputDesign
    distribution : :class:`~openturns.Distribution`
        Input probabilistic model.
        Should have independent copula
    experiment : :class:`~openturns.WeightedExperiment`
        Experiment for the generation of two independent samples.
    N : int
        Size of samples to generate
    computeSecondOrder : bool
        If True, design that will be generated contains elements for the evaluation
        of second order indices.

    Notes
    -----
    This class is concerned with analyzing the influence the random vector
    :math:`\\vect{X} = \\left( X^1, \\ldots, X^{n_X} \\right)` has on a random variable
    :math:`Y^k` which is being studied for uncertainty, by using the [Jansen1999]_
    method for the evaluation of both first and total order indices.

    These last ones are respectively given as follows:

    .. math::

       \\begin{array}{ccc}
       \\hat{V_i} & = & \\frac{1}{n} \\sum_{k=1}^{n} \\left(G(A_k)^2 - G_0^2\\right) - \\frac{1}{2n} \\sum_{k=1}^{n} \\left( G(E_k) - G(B_k) \\right)^2 \\\\
       \\hat{VT_{i}} & = & \\frac{1}{n} \\sum_{k=1}^{n} \\left( G(A_k) -  G(E_k) \\right)^2
       \\end{array}

    See also
    --------
    SobolIndicesAlgorithm

    Examples
    --------
    >>> import openturns as ot
    >>> ot.RandomGenerator.SetSeed(0)
    >>> formula = ['sin(_pi*X1)+7*sin(_pi*X2)*sin(_pi*X2)+' + \\
    ...    '0.1*((_pi*X3)*(_pi*X3)*(_pi*X3)*(_pi*X3))*sin(_pi*X1)']
    >>> model = ot.SymbolicFunction(['X1', 'X2', 'X3'], formula)
    >>> distribution = ot.ComposedDistribution([ot.Uniform(-1.0, 1.0)] * 3, \\
    ...                                         ot.IndependentCopula(3))
    >>> # Define designs to pre-compute
    >>> size = 100
    >>> inputDesign = ot.SobolIndicesAlgorithmImplementation.Generate(distribution, size, True)
    >>> outputDesign = model(inputDesign)
    >>> # sensitivity analysis algorithm
    >>> sensitivityAnalysis = ot.JansenSensitivityAlgorithm(inputDesign, outputDesign, size)
    >>> print(sensitivityAnalysis.getFirstOrderIndices())
    [0.403551,0.487879,0.140996]
    """

    __swig_setmethods__ = {}
    for _s in [SobolIndicesAlgorithmImplementation]:
        __swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, JansenSensitivityAlgorithm, name, value)
    __swig_getmethods__ = {}
    for _s in [SobolIndicesAlgorithmImplementation]:
        __swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
    __getattr__ = lambda self, name: _swig_getattr(self, JansenSensitivityAlgorithm, name)

    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _uncertainty.JansenSensitivityAlgorithm_getClassName(self)


    def __repr__(self):
        return _uncertainty.JansenSensitivityAlgorithm___repr__(self)

    def __init__(self, *args):
        this = _uncertainty.new_JansenSensitivityAlgorithm(*args)
        try:
            self.this.append(this)
        except __builtin__.Exception:
            self.this = this
    __swig_destroy__ = _uncertainty.delete_JansenSensitivityAlgorithm
    __del__ = lambda self: None
JansenSensitivityAlgorithm_swigregister = _uncertainty.JansenSensitivityAlgorithm_swigregister
JansenSensitivityAlgorithm_swigregister(JansenSensitivityAlgorithm)

class MauntzKucherenkoSensitivityAlgorithm(SobolIndicesAlgorithmImplementation):
    """
    Sensitivity analysis using MauntzKucherenko method.

    Available constructors:
        MauntzKucherenkoSensitivityAlgorithm(*inputDesign, outputDesign, N, computeSecondOrder*)

        MauntzKucherenkoSensitivityAlgorithm(*distribution, N, model, computeSecondOrder*)

        MauntzKucherenkoSensitivityAlgorithm(*experiment, model, computeSecondOrder*)

    Parameters
    ----------
    inputDesign : :class:`~openturns.Sample`
        Design for the evaluation of sensitivity indices, obtained
        thanks to the SobolIndicesAlgorithmImplementation.Generate method
    outputDesign : :class:`~openturns.Sample`
        Design for the evaluation of sensitivity indices, obtained as the evaluation
        of a Function (model) on the previous inputDesign
    distribution : :class:`~openturns.Distribution`
        Input probabilistic model.
        Should have independent copula
    experiment : :class:`~openturns.WeightedExperiment`
        Experiment for the generation of two independent samples.
    N : int
        Size of samples to generate
    computeSecondOrder : bool
        If True, design that will be generated contains elements for the evaluation
        of second order indices.

    Notes
    -----
    This class is concerned with analyzing the influence the random vector
    :math:`\\vect{X} = \\left( X^1, \\ldots, X^{n_X} \\right)` has on a random variable
    :math:`Y^k` which is being studied for uncertainty, by using the [Sobol2007]_
    method for the evaluation of both first and total order indices.

    These last ones are respectively given as follows:

    .. math::

       \\begin{array}{ccc}
       \\hat{V_i} & = & \\frac{1}{n} \\sum_{k=1}^{n} G(B_k) \\left( G(E_k) - G(A_k) \\right) \\\\
       \\hat{VT_{i}} & = & \\frac{1}{n} \\sum_{k=1}^{n} G(A_k) \\left( G(A_k) -  G(E_k) \\right)
       \\end{array}

    See also
    --------
    SobolIndicesAlgorithm

    Examples
    --------
    >>> import openturns as ot
    >>> ot.RandomGenerator.SetSeed(0)
    >>> formula = ['sin(_pi*X1)+7*sin(_pi*X2)*sin(_pi*X2)+' + \\
    ...    '0.1*((_pi*X3)*(_pi*X3)*(_pi*X3)*(_pi*X3))*sin(_pi*X1)']
    >>> model = ot.SymbolicFunction(['X1', 'X2', 'X3'], formula)
    >>> distribution = ot.ComposedDistribution([ot.Uniform(-1.0, 1.0)] * 3, \\
    ...                                         ot.IndependentCopula(3))
    >>> # Define designs to pre-compute
    >>> size = 100
    >>> inputDesign = ot.SobolIndicesAlgorithmImplementation.Generate(distribution, size, True)
    >>> outputDesign = model(inputDesign)
    >>> # sensitivity analysis algorithm
    >>> sensitivityAnalysis = ot.MauntzKucherenkoSensitivityAlgorithm(inputDesign, outputDesign, size)
    >>> print(sensitivityAnalysis.getFirstOrderIndices())
    [0.182219,0.357106,-0.129096]
    """

    __swig_setmethods__ = {}
    for _s in [SobolIndicesAlgorithmImplementation]:
        __swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, MauntzKucherenkoSensitivityAlgorithm, name, value)
    __swig_getmethods__ = {}
    for _s in [SobolIndicesAlgorithmImplementation]:
        __swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
    __getattr__ = lambda self, name: _swig_getattr(self, MauntzKucherenkoSensitivityAlgorithm, name)

    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _uncertainty.MauntzKucherenkoSensitivityAlgorithm_getClassName(self)


    def __repr__(self):
        return _uncertainty.MauntzKucherenkoSensitivityAlgorithm___repr__(self)

    def __init__(self, *args):
        this = _uncertainty.new_MauntzKucherenkoSensitivityAlgorithm(*args)
        try:
            self.this.append(this)
        except __builtin__.Exception:
            self.this = this
    __swig_destroy__ = _uncertainty.delete_MauntzKucherenkoSensitivityAlgorithm
    __del__ = lambda self: None
MauntzKucherenkoSensitivityAlgorithm_swigregister = _uncertainty.MauntzKucherenkoSensitivityAlgorithm_swigregister
MauntzKucherenkoSensitivityAlgorithm_swigregister(MauntzKucherenkoSensitivityAlgorithm)

import openturns.transformation
import openturns.analytical
import openturns.simulation
import openturns.stattests
import openturns.model_process
# This file is compatible with both classic and new-style classes.