This file is indexed.

/usr/lib/python2.7/dist-packages/photutils/aperture/core.py is in python-photutils 0.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
import abc
import copy
import warnings
from collections import OrderedDict

import six
import numpy as np
from astropy.coordinates import SkyCoord
from astropy.io import fits
from astropy.nddata import support_nddata
from astropy.table import QTable
import astropy.units as u
from astropy.utils.exceptions import AstropyUserWarning
from astropy.utils.misc import InheritDocstrings
from astropy.wcs import WCS
from astropy.wcs.utils import (skycoord_to_pixel, pixel_to_skycoord,
                               wcs_to_celestial_frame)

from ..utils import get_version_info
from ..utils.wcs_helpers import pixel_scale_angle_at_skycoord


__all__ = ['Aperture', 'SkyAperture', 'PixelAperture', 'aperture_photometry']


class _ABCMetaAndInheritDocstrings(InheritDocstrings, abc.ABCMeta):
    pass


@six.add_metaclass(_ABCMetaAndInheritDocstrings)
class Aperture(object):
    """
    Abstract base class for all apertures.
    """

    def __len__(self):
        if isinstance(self, SkyAperture) and self.positions.isscalar:
            return 1
        return len(self.positions)

    def _positions_str(self, prefix=None):
        if isinstance(self, PixelAperture):
            return np.array2string(self.positions, separator=', ',
                                   prefix=prefix)
        elif isinstance(self, SkyAperture):
            return repr(self.positions)
        else:
            raise TypeError('Aperture must be a subclass of PixelAperture '
                            'or SkyAperture')

    def __repr__(self):
        prefix = '<{0}('.format(self.__class__.__name__)
        params = [self._positions_str(prefix)]
        for param in self._params:
            params.append('{0}={1}'.format(param, getattr(self, param)))
        params = ', '.join(params)

        return '{0}{1})>'.format(prefix, params)

    def __str__(self):
        prefix = 'positions'
        cls_info = [
            ('Aperture', self.__class__.__name__),
            (prefix, self._positions_str(prefix + ': '))]
        if self._params is not None:
            for param in self._params:
                cls_info.append((param, getattr(self, param)))
        fmt = ['{0}: {1}'.format(key, val) for key, val in cls_info]

        return '\n'.join(fmt)


class PixelAperture(Aperture):
    """
    Abstract base class for apertures defined in pixel coordinates.
    """

    @staticmethod
    def _sanitize_positions(positions):
        if isinstance(positions, u.Quantity):
            if positions.unit is u.pixel:
                positions = np.atleast_2d(positions.value)
            else:
                raise u.UnitsError('positions should be in pixel units')
        elif isinstance(positions, (list, tuple, np.ndarray)):
            positions = np.atleast_2d(positions)
            if positions.shape[1] != 2:
                if positions.shape[0] == 2:
                    positions = np.transpose(positions)
                else:
                    raise TypeError('List or array of (x, y) pixel '
                                    'coordinates is expected, got "{0}".'
                                    .format(positions))
        elif isinstance(positions, zip):
            # This is needed for zip to work seamlessly in Python 3
            positions = np.atleast_2d(list(positions))
        else:
            raise TypeError('List or array of (x, y) pixel coordinates '
                            'is expected, got "{0}".'.format(positions))

        if positions.ndim > 2:
            raise ValueError('{0}D position array is not supported. Only 2D '
                             'arrays are supported.'.format(positions.ndim))

        return positions

    @staticmethod
    def _translate_mask_mode(mode, subpixels, rectangle=False):
        if mode not in ('center', 'subpixel', 'exact'):
            raise ValueError('Invalid mask mode: {0}'.format(mode))

        if rectangle and mode == 'exact':
            warnings.warn('The "exact" method is not yet implemented for '
                          'rectangular apertures -- using "subpixel" method '
                          'with "subpixels=32"', AstropyUserWarning)
            mode = 'subpixel'
            subpixels = 32

        if mode == 'subpixels':
            if not isinstance(subpixels, int) or subpixels <= 0:
                raise ValueError('subpixels must be a strictly positive '
                                 'integer'.format(subpixels))

        if mode == 'center':
            use_exact = 0
            subpixels = 1
        elif mode == 'subpixel':
            use_exact = 0
        elif mode == 'exact':
            use_exact = 1
            subpixels = 1

        return use_exact, subpixels

    @abc.abstractproperty
    def bounding_boxes(self):
        """
        A list of minimal bounding boxes (`~photutils.BoundingBox`), one
        for each position, for the aperture.
        """

        raise NotImplementedError('Needs to be implemented in a '
                                  'PixelAperture subclass.')

    @property
    def _centered_edges(self):
        """
        A list of ``(xmin, xmax, ymin, ymax)`` tuples, one for each
        position, of the pixel edges after recentering the aperture at
        the origin.

        These pixel edges are used by the low-level `photutils.geometry`
        functions.
        """

        edges = []
        for position, bbox in zip(self.positions, self.bounding_boxes):
            xmin = bbox.ixmin - 0.5 - position[0]
            xmax = bbox.ixmax - 0.5 - position[0]
            ymin = bbox.iymin - 0.5 - position[1]
            ymax = bbox.iymax - 0.5 - position[1]
            edges.append((xmin, xmax, ymin, ymax))

        return edges

    def area(self):
        """
        Return the exact area of the aperture shape.

        Returns
        -------
        area : float
            The aperture area.
        """

        raise NotImplementedError('Needs to be implemented in a '
                                  'PixelAperture subclass.')

    def mask_area(self, method='exact', subpixels=5):
        """
        Return the area of the aperture(s) mask.

        For ``method`` other than ``'exact'``, this area will be less
        than the exact analytical area (e.g. the ``area`` method).  Note
        that for these methods, the values can also differ because of
        fractional pixel positions.

        Parameters
        ----------
        method : {'exact', 'center', 'subpixel'}, optional
            The method used to determine the overlap of the aperture on
            the pixel grid.  Not all options are available for all
            aperture types.  Note that the more precise methods are
            generally slower.  The following methods are available:

                * ``'exact'`` (default):
                  The the exact fractional overlap of the aperture and
                  each pixel is calculated.  The returned mask will
                  contain values between 0 and 1.

                * ``'center'``:
                  A pixel is considered to be entirely in or out of the
                  aperture depending on whether its center is in or out
                  of the aperture.  The returned mask will contain
                  values only of 0 (out) and 1 (in).

                * ``'subpixel'``:
                  A pixel is divided into subpixels (see the
                  ``subpixels`` keyword), each of which are considered
                  to be entirely in or out of the aperture depending on
                  whether its center is in or out of the aperture.  If
                  ``subpixels=1``, this method is equivalent to
                  ``'center'``.  The returned mask will contain values
                  between 0 and 1.

        subpixels : int, optional
            For the ``'subpixel'`` method, resample pixels by this factor
            in each dimension.  That is, each pixel is divided into
            ``subpixels ** 2`` subpixels.

        Returns
        -------
        area : float
            A list of the mask area of the aperture(s).
        """

        mask = self.to_mask(method=method, subpixels=subpixels)
        return [np.sum(m.data) for m in mask]

    @abc.abstractmethod
    def to_mask(self, method='exact', subpixels=5):
        """
        Return a list of `~photutils.ApertureMask` objects, one for each
        aperture position.

        Parameters
        ----------
        method : {'exact', 'center', 'subpixel'}, optional
            The method used to determine the overlap of the aperture on
            the pixel grid.  Not all options are available for all
            aperture types.  Note that the more precise methods are
            generally slower.  The following methods are available:

                * ``'exact'`` (default):
                  The the exact fractional overlap of the aperture and
                  each pixel is calculated.  The returned mask will
                  contain values between 0 and 1.

                * ``'center'``:
                  A pixel is considered to be entirely in or out of the
                  aperture depending on whether its center is in or out
                  of the aperture.  The returned mask will contain
                  values only of 0 (out) and 1 (in).

                * ``'subpixel'``:
                  A pixel is divided into subpixels (see the
                  ``subpixels`` keyword), each of which are considered
                  to be entirely in or out of the aperture depending on
                  whether its center is in or out of the aperture.  If
                  ``subpixels=1``, this method is equivalent to
                  ``'center'``.  The returned mask will contain values
                  between 0 and 1.

        subpixels : int, optional
            For the ``'subpixel'`` method, resample pixels by this factor
            in each dimension.  That is, each pixel is divided into
            ``subpixels ** 2`` subpixels.

        Returns
        -------
        mask : list of `~photutils.ApertureMask`
            A list of aperture mask objects.
        """

        raise NotImplementedError('Needs to be implemented in a '
                                  'PixelAperture subclass.')

    @staticmethod
    def _prepare_photometry_output(_list, unit=None):
        if len(_list) == 0:   # if error is not input
            return _list

        if unit is not None:
            unit = u.Unit(unit, parse_strict='warn')
            if isinstance(unit, u.UnrecognizedUnit):
                warnings.warn('The input unit is not parseable as a valid '
                              'unit.', AstropyUserWarning)
                unit = None

        if isinstance(_list[0], u.Quantity):
            # list of Quantity -> Quantity array
            output = u.Quantity(_list)

            if unit is not None:
                if output.unit != unit:
                    warnings.warn('The input unit does not agree with the '
                                  'data and/or error unit.',
                                  AstropyUserWarning)
        else:
            if unit is not None:
                output = u.Quantity(_list, unit=unit)
            else:
                output = np.array(_list)

        return output

    def do_photometry(self, data, error=None, mask=None, method='exact',
                      subpixels=5, unit=None):
        """
        Perform aperture photometry on the input data.

        Parameters
        ----------
        data : array_like or `~astropy.units.Quantity` instance
            The 2D array on which to perform photometry.  ``data``
            should be background subtracted.

        error : array_like or `~astropy.units.Quantity`, optional
            The pixel-wise Gaussian 1-sigma errors of the input
            ``data``.  ``error`` is assumed to include *all* sources of
            error, including the Poisson error of the sources (see
            `~photutils.utils.calc_total_error`) .  ``error`` must have
            the same shape as the input ``data``.

        mask : array_like (bool), optional
            A boolean mask with the same shape as ``data`` where a
            `True` value indicates the corresponding element of ``data``
            is masked.  Masked data are excluded from all calculations.

        method : {'exact', 'center', 'subpixel'}, optional
            The method used to determine the overlap of the aperture on
            the pixel grid.  Not all options are available for all
            aperture types.  Note that the more precise methods are
            generally slower.  The following methods are available:

                * ``'exact'`` (default):
                  The the exact fractional overlap of the aperture and
                  each pixel is calculated.  The returned mask will
                  contain values between 0 and 1.

                * ``'center'``:
                  A pixel is considered to be entirely in or out of the
                  aperture depending on whether its center is in or out
                  of the aperture.  The returned mask will contain
                  values only of 0 (out) and 1 (in).

                * ``'subpixel'``
                  A pixel is divided into subpixels (see the
                  ``subpixels`` keyword), each of which are considered
                  to be entirely in or out of the aperture depending on
                  whether its center is in or out of the aperture.  If
                  ``subpixels=1``, this method is equivalent to
                  ``'center'``.  The returned mask will contain values
                  between 0 and 1.

        subpixels : int, optional
            For the ``'subpixel'`` method, resample pixels by this factor
            in each dimension.  That is, each pixel is divided into
            ``subpixels ** 2`` subpixels.

        unit : `~astropy.units.UnitBase` object or str, optional
            An object that represents the unit associated with the input
            ``data`` and ``error`` arrays.  Must be a
            `~astropy.units.UnitBase` object or a string parseable by
            the :mod:`~astropy.units` package.  If ``data`` or ``error``
            already have a different unit, the input ``unit`` will not
            be used and a warning will be raised.

        Returns
        -------
        aperture_sums : `~numpy.ndarray` or `~astropy.units.Quantity`
            The sums within each aperture.

        aperture_sum_errs : `~numpy.ndarray` or `~astropy.units.Quantity`
            The errors on the sums within each aperture.
        """

        data = np.asanyarray(data)

        if mask is not None:
            mask = np.asanyarray(mask)

            data = copy.deepcopy(data)    # do not modify input data
            data[mask] = 0

            if error is not None:
                # do not modify input data
                error = copy.deepcopy(np.asanyarray(error))
                error[mask] = 0.

        aperture_sums = []
        aperture_sum_errs = []
        for mask in self.to_mask(method=method, subpixels=subpixels):
            data_cutout = mask.cutout(data)

            if data_cutout is None:
                aperture_sums.append(np.nan)
            else:
                aperture_sums.append(np.sum(data_cutout * mask.data))

            if error is not None:
                error_cutout = mask.cutout(error)

                if error_cutout is None:
                    aperture_sum_errs.append(np.nan)
                else:
                    aperture_var = np.sum(error_cutout ** 2 * mask.data)
                    aperture_sum_errs.append(np.sqrt(aperture_var))

        # handle Quantity objects and input units
        aperture_sums = self._prepare_photometry_output(aperture_sums,
                                                        unit=unit)
        aperture_sum_errs = self._prepare_photometry_output(aperture_sum_errs,
                                                            unit=unit)

        return aperture_sums, aperture_sum_errs

    @staticmethod
    def _make_annulus_path(patch_inner, patch_outer):
        """
        Define a matplotlib annulus path from two patches.

        This preserves the cubic Bezier curves (CURVE4) of the aperture
        paths.
        """

        import matplotlib.path as mpath

        path_inner = patch_inner.get_path()
        transform_inner = patch_inner.get_transform()
        path_inner = transform_inner.transform_path(path_inner)

        path_outer = patch_outer.get_path()
        transform_outer = patch_outer.get_transform()
        path_outer = transform_outer.transform_path(path_outer)

        verts_inner = path_inner.vertices[:-1][::-1]
        verts_inner = np.concatenate((verts_inner, [verts_inner[-1]]))

        verts = np.vstack((path_outer.vertices, verts_inner))
        codes = np.hstack((path_outer.codes, path_inner.codes))

        return mpath.Path(verts, codes)

    def _prepare_plot(self, origin=(0, 0), indices=None, ax=None,
                      fill=False, **kwargs):
        """
        Prepare to plot the aperture(s) on a matplotlib
        `~matplotlib.axes.Axes` instance.

        Parameters
        ----------
        origin : array_like, optional
            The ``(x, y)`` position of the origin of the displayed
            image.

        indices : int or array of int, optional
            The indices of the aperture(s) to plot.

        ax : `matplotlib.axes.Axes` instance, optional
            If `None`, then the current `~matplotlib.axes.Axes` instance
            is used.

        fill : bool, optional
            Set whether to fill the aperture patch.  The default is
            `False`.

        kwargs
            Any keyword arguments accepted by `matplotlib.patches.Patch`.

        Returns
        -------
        plot_positions : `~numpy.ndarray`
            The positions of the apertures to plot, after any
            ``indices`` slicing and ``origin`` shift.

        ax : `matplotlib.axes.Axes` instance, optional
            The `~matplotlib.axes.Axes` on which to plot.

        kwargs
            Any keyword arguments accepted by `matplotlib.patches.Patch`.
        """

        import matplotlib.pyplot as plt

        if ax is None:
            ax = plt.gca()

        # This is necessary because the `matplotlib.patches.Patch` default
        # is ``fill=True``.  Here we make the default ``fill=False``.
        kwargs['fill'] = fill

        plot_positions = copy.deepcopy(self.positions)
        if indices is not None:
            plot_positions = plot_positions[np.atleast_1d(indices)]

        plot_positions[:, 0] -= origin[0]
        plot_positions[:, 1] -= origin[1]

        return plot_positions, ax, kwargs

    @abc.abstractmethod
    def plot(self, origin=(0, 0), indices=None, ax=None, fill=False,
             **kwargs):
        """
        Plot the aperture(s) on a matplotlib `~matplotlib.axes.Axes`
        instance.

        Parameters
        ----------
        origin : array_like, optional
            The ``(x, y)`` position of the origin of the displayed
            image.

        indices : int or array of int, optional
            The indices of the aperture(s) to plot.

        ax : `matplotlib.axes.Axes` instance, optional
            If `None`, then the current `~matplotlib.axes.Axes` instance
            is used.

        fill : bool, optional
            Set whether to fill the aperture patch.  The default is
            `False`.

        kwargs
            Any keyword arguments accepted by `matplotlib.patches.Patch`.
        """

        raise NotImplementedError('Needs to be implemented in a '
                                  'PixelAperture subclass.')

    def _to_sky_params(self, wcs, mode='all'):
        """
        Convert the pixel aperture parameters to those for a sky
        aperture.

        Parameters
        ----------
        wcs : `~astropy.wcs.WCS`
            The world coordinate system (WCS) transformation to use.

        mode : {'all', 'wcs'}, optional
            Whether to do the transformation including distortions
            (``'all'``; default) or only including only the core WCS
            transformation (``'wcs'``).

        Returns
        -------
        sky_params : dict
            A dictionary of parameters for an equivalent sky aperture.
        """

        sky_params = {}
        x, y = np.transpose(self.positions)
        sky_params['positions'] = pixel_to_skycoord(x, y, wcs, mode=mode)

        # The aperture object must have a single value for each shape
        # parameter so we must use a single pixel scale for all positions.
        # Here, we define the scale at the WCS CRVAL position.
        crval = SkyCoord([wcs.wcs.crval], frame=wcs_to_celestial_frame(wcs),
                         unit=wcs.wcs.cunit)
        scale, angle = pixel_scale_angle_at_skycoord(crval, wcs)

        params = self._params[:]
        theta_key = 'theta'
        if theta_key in self._params:
            sky_params[theta_key] = (self.theta * u.rad) - angle.to(u.rad)
            params.remove(theta_key)

        param_vals = [getattr(self, param) for param in params]
        for param, param_val in zip(params, param_vals):
            sky_params[param] = (param_val * u.pix * scale).to(u.arcsec)

        return sky_params

    @abc.abstractmethod
    def to_sky(self, wcs, mode='all'):
        """
        Convert the aperture to a `SkyAperture` object defined in
        celestial coordinates.

        Parameters
        ----------
        wcs : `~astropy.wcs.WCS` object
            The world coordinate system (WCS) transformation to use.

        mode : {'all', 'wcs'}, optional
            Whether to do the transformation including distortions
            (``'all'``; default) or including only the core WCS
            transformation (``'wcs'``).

        Returns
        -------
        aperture : `SkyAperture` object
            A `SkyAperture` object.
        """

        raise NotImplementedError('Needs to be implemented in a '
                                  'PixelAperture subclass.')


class SkyAperture(Aperture):
    """
    Abstract base class for all apertures defined in celestial
    coordinates.
    """

    def _to_pixel_params(self, wcs, mode='all'):
        """
        Convert the sky aperture parameters to those for a pixel
        aperture.

        Parameters
        ----------
        wcs : `~astropy.wcs.WCS`
            The world coordinate system (WCS) transformation to use.

        mode : {'all', 'wcs'}, optional
            Whether to do the transformation including distortions
            (``'all'``; default) or only including only the core WCS
            transformation (``'wcs'``).

        Returns
        -------
        pixel_params : dict
            A dictionary of parameters for an equivalent pixel aperture.
        """

        pixel_params = {}
        x, y = skycoord_to_pixel(self.positions, wcs, mode=mode)
        pixel_params['positions'] = np.array([x, y]).transpose()

        # The aperture object must have a single value for each shape
        # parameter so we must use a single pixel scale for all positions.
        # Here, we define the scale at the WCS CRVAL position.
        crval = SkyCoord([wcs.wcs.crval], frame=wcs_to_celestial_frame(wcs),
                         unit=wcs.wcs.cunit)
        scale, angle = pixel_scale_angle_at_skycoord(crval, wcs)

        params = self._params[:]
        theta_key = 'theta'
        if theta_key in self._params:
            pixel_params[theta_key] = (self.theta + angle).to(u.radian).value
            params.remove(theta_key)

        param_vals = [getattr(self, param) for param in params]
        if param_vals[0].unit.physical_type == 'angle':
            for param, param_val in zip(params, param_vals):
                pixel_params[param] = (param_val / scale).to(u.pixel).value
        else:    # pixels
            for param, param_val in zip(params, param_vals):
                pixel_params[param] = param_val.value

        return pixel_params

    @abc.abstractmethod
    def to_pixel(self, wcs, mode='all'):
        """
        Convert the aperture to a `PixelAperture` object defined in
        pixel coordinates.

        Parameters
        ----------
        wcs : `~astropy.wcs.WCS` object
            The world coordinate system (WCS) transformation to use.

        mode : {'all', 'wcs'}, optional
            Whether to do the transformation including distortions
            (``'all'``; default) or including only the core WCS
            transformation (``'wcs'``).

        Returns
        -------
        aperture : `PixelAperture` object
            A `PixelAperture` object.
        """

        raise NotImplementedError('Needs to be implemented in a '
                                  'SkyAperture subclass.')


def _prepare_photometry_input(data, error, mask, wcs, unit):
    """
    Parse the inputs to `aperture_photometry`.

    `aperture_photometry` accepts a wide range of inputs, e.g. ``data``
    could be a numpy array, a Quantity array, or a fits HDU.  This
    requires some parsing and validation to ensure that all inputs are
    complete and consistent.  For example, the data could carry a unit
    and the wcs itself, so we need to check that it is consistent with
    the unit and wcs given as input parameters.
    """

    if isinstance(data, fits.HDUList):
        for i in range(len(data)):
            if data[i].data is not None:
                warnings.warn("Input data is a HDUList object, photometry is "
                              "run only for the {0} HDU."
                              .format(i), AstropyUserWarning)
                data = data[i]
                break

    if isinstance(data, (fits.PrimaryHDU, fits.ImageHDU)):
        header = data.header
        data = data.data

        if 'BUNIT' in header:
            bunit = u.Unit(header['BUNIT'], parse_strict='warn')
            if isinstance(bunit, u.UnrecognizedUnit):
                warnings.warn('The BUNIT in the header of the input data is '
                              'not parseable as a valid unit.',
                              AstropyUserWarning)
            else:
                data = u.Quantity(data, unit=bunit)

    if wcs is None:
        try:
            wcs = WCS(header)
        except Exception:
            # A valid WCS was not found in the header.  Let the calling
            # application raise an exception if it needs a WCS.
            pass

    data = np.asanyarray(data)
    if data.ndim != 2:
        raise ValueError('data must be a 2D array.')

    if unit is not None:
        unit = u.Unit(unit, parse_strict='warn')
        if isinstance(unit, u.UnrecognizedUnit):
            warnings.warn('The input unit is not parseable as a valid '
                          'unit.', AstropyUserWarning)
            unit = None

    if isinstance(data, u.Quantity):
        if unit is not None and data.unit != unit:
            warnings.warn('The input unit does not agree with the data '
                          'unit.', AstropyUserWarning)
    else:
        if unit is not None:
            data = u.Quantity(data, unit=unit)

    if error is not None:
        if isinstance(error, u.Quantity):
            if unit is not None and error.unit != unit:
                warnings.warn('The input unit does not agree with the error '
                              'unit.', AstropyUserWarning)

            if np.isscalar(error.value):
                error = u.Quantity(np.broadcast_arrays(error, data),
                                   unit=error.unit)[0]
        else:
            if np.isscalar(error):
                error = np.broadcast_arrays(error, data)[0]

            if unit is not None:
                error = u.Quantity(error, unit=unit)

            error = np.asanyarray(error)

        if error.shape != data.shape:
            raise ValueError('error and data must have the same shape.')

    if mask is not None:
        mask = np.asanyarray(mask)
        if mask.shape != data.shape:
            raise ValueError('mask and data must have the same shape.')

    return data, error, mask, wcs


@support_nddata
def aperture_photometry(data, apertures, error=None, mask=None,
                        method='exact', subpixels=5, unit=None, wcs=None):
    """
    Perform aperture photometry on the input data by summing the flux
    within the given aperture(s).

    Parameters
    ----------
    data : array_like, `~astropy.units.Quantity`, `~astropy.io.fits.ImageHDU`, or `~astropy.io.fits.HDUList`
        The 2D array on which to perform photometry. ``data`` should be
        background-subtracted.  Units can be used during the photometry,
        either provided with the data (i.e. a `~astropy.units.Quantity`
        array) or the ``unit`` keyword.  If ``data`` is an
        `~astropy.io.fits.ImageHDU` or `~astropy.io.fits.HDUList`, the
        unit is determined from the ``'BUNIT'`` header keyword.

    apertures : `~photutils.Aperture`
        The aperture(s) to use for the photometry.

    error : array_like or `~astropy.units.Quantity`, optional
        The pixel-wise Gaussian 1-sigma errors of the input ``data``.
        ``error`` is assumed to include *all* sources of error,
        including the Poisson error of the sources (see
        `~photutils.utils.calc_total_error`) .  ``error`` must have the
        same shape as the input ``data``.

    mask : array_like (bool), optional
        A boolean mask with the same shape as ``data`` where a `True`
        value indicates the corresponding element of ``data`` is masked.
        Masked data are excluded from all calculations.

    method : {'exact', 'center', 'subpixel'}, optional
        The method used to determine the overlap of the aperture on the
        pixel grid.  Not all options are available for all aperture
        types.  Note that the more precise methods are generally slower.
        The following methods are available:

            * ``'exact'`` (default):
                The the exact fractional overlap of the aperture and
                each pixel is calculated.  The returned mask will
                contain values between 0 and 1.

            * ``'center'``:
                A pixel is considered to be entirely in or out of the
                aperture depending on whether its center is in or out of
                the aperture.  The returned mask will contain values
                only of 0 (out) and 1 (in).

            * ``'subpixel'``:
                A pixel is divided into subpixels (see the ``subpixels``
                keyword), each of which are considered to be entirely in
                or out of the aperture depending on whether its center
                is in or out of the aperture.  If ``subpixels=1``, this
                method is equivalent to ``'center'``.  The returned mask
                will contain values between 0 and 1.

    subpixels : int, optional
        For the ``'subpixel'`` method, resample pixels by this factor in
        each dimension.  That is, each pixel is divided into ``subpixels
        ** 2`` subpixels.

    unit : `~astropy.units.UnitBase` object or str, optional
        An object that represents the unit associated with the input
        ``data`` and ``error`` arrays.  Must be a
        `~astropy.units.UnitBase` object or a string parseable by the
        :mod:`~astropy.units` package.  If ``data`` or ``error`` already
        have a different unit, the input ``unit`` will not be used and a
        warning will be raised.  If ``data`` is an
        `~astropy.io.fits.ImageHDU` or `~astropy.io.fits.HDUList`,
        ``unit`` will override the ``'BUNIT'`` header keyword.

    wcs : `~astropy.wcs.WCS`, optional
        The WCS transformation to use if the input ``apertures`` is a
        `SkyAperture` object.  If ``data`` is an
        `~astropy.io.fits.ImageHDU` or `~astropy.io.fits.HDUList`,
        ``wcs`` overrides any WCS transformation present in the header.

    Returns
    -------
    table : `~astropy.table.QTable`
        A table of the photometry with the following columns:

            * ``'id'``:
              The source ID.

            * ``'xcenter'``, ``'ycenter'``:
              The ``x`` and ``y`` pixel coordinates of the input
              aperture center(s).

            * ``'celestial_center'``:
              The celestial coordinates of the input aperture center(s).
              Returned only if the input ``apertures`` is a
              `SkyAperture` object.

            * ``'aperture_sum'``:
              The sum of the values within the aperture.

            * ``'aperture_sum_err'``:
              The corresponding uncertainty in the ``'aperture_sum'``
              values.  Returned only if the input ``error`` is not
              `None`.

        The table metadata includes the Astropy and Photutils version
        numbers and the `aperture_photometry` calling arguments.

    Notes
    -----
    This function is decorated with `~astropy.nddata.support_nddata` and
    thus supports `~astropy.nddata.NDData` objects as input.
    """

    data, error, mask, wcs = _prepare_photometry_input(data, error, mask,
                                                       wcs, unit)

    if method == 'subpixel':
        if (int(subpixels) != subpixels) or (subpixels <= 0):
            raise ValueError('subpixels must be a positive integer.')

    apertures = np.atleast_1d(apertures)

    # convert sky to pixel apertures
    skyaper = False
    if isinstance(apertures[0], SkyAperture):
        if wcs is None:
            raise ValueError('A WCS transform must be defined by the input '
                             'data or the wcs keyword when using a '
                             'SkyAperture object.')

        skyaper = True
        skycoord_pos = apertures[0].positions

        pix_aper = [aper.to_pixel(wcs) for aper in apertures]
        apertures = pix_aper

    # do comparison in pixels to avoid comparing SkyCoord objects
    positions = apertures[0].positions
    for aper in apertures[1:]:
        if not np.array_equal(aper.positions, positions):
            raise ValueError('Input apertures must all have identical '
                             'positions.')

    meta = OrderedDict()
    meta['name'] = 'Aperture photometry results'
    meta['version'] = get_version_info()
    calling_args = ("method='{0}', subpixels={1}".format(method, subpixels))
    meta['aperture_photometry_args'] = calling_args

    tbl = QTable(meta=meta)
    tbl['id'] = np.arange(len(apertures[0]), dtype=int) + 1

    xypos_pixel = np.transpose(apertures[0].positions) * u.pixel
    tbl['xcenter'] = xypos_pixel[0]
    tbl['ycenter'] = xypos_pixel[1]

    if skyaper:
        if skycoord_pos.isscalar:
            tbl['celestial_center'] = (skycoord_pos,)
        else:
            tbl['celestial_center'] = skycoord_pos

    for i, aper in enumerate(apertures):
        aper_sum, aper_sum_err = aper.do_photometry(data, error=error,
                                                    mask=mask, method=method,
                                                    subpixels=subpixels)

        sum_key = 'aperture_sum'
        sum_err_key = 'aperture_sum_err'
        if len(apertures) > 1:
            sum_key += '_{}'.format(i)
            sum_err_key += '_{}'.format(i)

        tbl[sum_key] = aper_sum
        if error is not None:
            tbl[sum_err_key] = aper_sum_err

    return tbl