This file is indexed.

/usr/lib/python2.7/dist-packages/photutils/psf/tests/test_misc.py is in python-photutils 0.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Miscellaneous tests for psf functionality that doesn't have another obvious
place to go
"""

from __future__ import division
import numpy as np
from numpy.testing import assert_allclose
import pytest
from astropy.table import Table
from .. import IntegratedGaussianPRF, prepare_psf_model, get_grouped_psf_model

try:
    import scipy    # noqa
    HAS_SCIPY = True
except ImportError:
    HAS_SCIPY = False


widths = [0.001, 0.01, 0.1, 1]
sigmas = [0.5, 1., 2., 10., 12.34]


@pytest.mark.skipif('not HAS_SCIPY')
@pytest.mark.parametrize('width', widths)
def test_subpixel_gauss_psf(width):
    """
    Test subpixel accuracy of Gaussian PSF by checking the sum of pixels.
    """
    gauss_psf = IntegratedGaussianPRF(width)
    y, x = np.mgrid[-10:11, -10:11]
    assert_allclose(gauss_psf(x, y).sum(), 1)


@pytest.mark.skipif('not HAS_SCIPY')
@pytest.mark.parametrize('sigma', sigmas)
def test_gaussian_psf_integral(sigma):
    """
    Test if Gaussian PSF integrates to unity on larger scales.
    """
    psf = IntegratedGaussianPRF(sigma=sigma)
    y, x = np.mgrid[-100:101, -100:101]
    assert_allclose(psf(y, x).sum(), 1)


@pytest.fixture(scope="module")
def moffimg():
    """
    This fixture requires scipy so don't call it from non-scipy tests
    """
    from scipy import integrate
    from astropy.modeling.models import Moffat2D

    mof = Moffat2D(alpha=4.8)

    # this is the analytic value needed to get a total flux of 1
    mof.amplitude = (mof.alpha-1)/(np.pi*mof.gamma**2)

    # first make sure it really is normalized
    assert (1 - integrate.dblquad(mof, -10, 10,
                                  lambda x: -10, lambda x: 10)[0]) < 1e-6

    # now create an "image" of the PSF
    xg, yg = np.meshgrid(*([np.linspace(-2, 2, 100)]*2))

    return mof, (xg, yg, mof(xg, yg))


@pytest.mark.skipif('not HAS_SCIPY')
def test_moffat_fitting(moffimg):
    """
    Test that the Moffat to be fit in test_psf_adapter is behaving correctly
    """
    from astropy.modeling.fitting import LevMarLSQFitter
    from astropy.modeling.models import Moffat2D

    mof, (xg, yg, img) = moffimg

    # a closeish-but-wrong "guessed Moffat"
    guess_moffat = Moffat2D(x_0=.1, y_0=-.05, gamma=1.05,
                            amplitude=mof.amplitude*1.06, alpha=4.75)

    f = LevMarLSQFitter()

    fit_mof = f(guess_moffat, xg, yg, img)
    assert_allclose(fit_mof.parameters, mof.parameters, rtol=.01, atol=.0005)


# we set the tolerances in flux to be 2-3% because the shape paraameters of
# the guessed version are known to be wrong.
@pytest.mark.parametrize("prepkwargs,tols", [
                         (dict(xname='x_0', yname='y_0', fluxname=None,
                               renormalize_psf=True), (1e-3, .02)),
                         (dict(xname=None, yname=None, fluxname=None,
                               renormalize_psf=True), (1e-3, .02)),
                         (dict(xname=None, yname=None, fluxname=None,
                               renormalize_psf=False), (1e-3, .03)),
                         (dict(xname='x_0', yname='y_0', fluxname='amplitude',
                               renormalize_psf=False), (1e-3, None)),
                         ])
@pytest.mark.skipif('not HAS_SCIPY')
def test_psf_adapter(moffimg, prepkwargs, tols):
    """
    Test that the PSF adapter behaves as expected for fitting (don't worry
    about full-on psf photometry for now)
    """

    from astropy.modeling.fitting import LevMarLSQFitter
    from astropy.modeling.models import Moffat2D

    mof, (xg, yg, img) = moffimg
    f = LevMarLSQFitter()

    # a close-but-wrong "guessed Moffat"
    guess_moffat = Moffat2D(x_0=.1, y_0=-.05, gamma=1.01,
                            amplitude=mof.amplitude*1.01, alpha=4.79)
    if prepkwargs['renormalize_psf']:
        # definitely very wrong, so this ensures the re-normalization
        # stuff works
        guess_moffat.amplitude = 5.

    if prepkwargs['xname'] is None:
        guess_moffat.x_0 = 0
    if prepkwargs['yname'] is None:
        guess_moffat.y_0 = 0

    psfmod = prepare_psf_model(guess_moffat, **prepkwargs)
    xytol, fluxtol = tols

    fit_psfmod = f(psfmod, xg, yg, img)

    if xytol is not None:
        assert np.abs(getattr(fit_psfmod, fit_psfmod.xname)) < xytol
        assert np.abs(getattr(fit_psfmod, fit_psfmod.yname)) < xytol
    if fluxtol is not None:
        assert np.abs(1 - getattr(fit_psfmod, fit_psfmod.fluxname)) < fluxtol

    # ensure the amplitude and shape parameters did *not* change
    assert fit_psfmod.psfmodel.gamma == guess_moffat.gamma
    assert fit_psfmod.psfmodel.alpha == guess_moffat.alpha
    if prepkwargs['fluxname'] is None:
        assert fit_psfmod.psfmodel.amplitude == guess_moffat.amplitude


@pytest.mark.skipif('not HAS_SCIPY')
def test_get_grouped_psf_model():
    igp = IntegratedGaussianPRF(sigma=1.2)
    tab = Table(names=['x_0', 'y_0', 'flux_0'],
                data=[[1, 2], [3, 4], [0.5, 1]])
    pars_to_set = {'x_0': 'x_0', 'y_0': 'y_0', 'flux_0': 'flux'}

    gpsf = get_grouped_psf_model(igp, tab, pars_to_set)

    assert gpsf.x_0_0 == 1
    assert gpsf.y_0_1 == 4
    assert gpsf.flux_0 == 0.5
    assert gpsf.flux_1 == 1
    assert gpsf.sigma_0 == gpsf.sigma_1 == 1.2