/usr/lib/python2.7/dist-packages/biggles/geometry.py is in python-pybiggles 1.6.6-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | #
# $Id: geometry.py,v 1.25 2007/04/19 15:51:46 mrnolta Exp $
#
# Copyright (C) 2000-2001 Mike Nolta <mrnolta@users.sourceforge.net>
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public
# License along with this program; if not, write to the
# Free Software Foundation, Inc., 59 Temple Place - Suite 330,
# Boston, MA 02111-1307, USA.
#
import math, numpy
# pt_* functions --------------------------------------------------------------
def pt_add( u, v ):
return u[0] + v[0], u[1] + v[1]
def pt_sub( u, v ):
return u[0] - v[0], u[1] - v[1]
def pt_mul( a, u ):
return a * u[0], a * u[1]
def pt_rot( u, angle ):
c, s = math.cos(angle), math.sin(angle)
return c*u[0] - s*u[1], s*u[0] + c*u[1]
def pt_len( u ):
return math.hypot( u[0], u[1] )
def pt_angle( u ):
return math.atan2( u[1], u[0] )
def pt_unit( u ):
r = pt_len(u)
return u[0]/r, u[1]/r
def pt_min( a, b ):
if a is None: return b
if b is None: return a
return min(a[0],b[0]), min(a[1],b[1])
def pt_max( a, b ):
if a is None: return b
if b is None: return a
x = max( a[0], b[0] )
if x is None:
x = min( a[0], b[0] )
y = max( a[1], b[1] )
if y is None:
y = min( a[1], b[1] )
return x, y
# BoundingBox -----------------------------------------------------------------
class BoundingBox:
def __init__( self, *args ):
if len(args) > 0:
self.p0 = reduce( pt_min, args )
self.p1 = reduce( pt_max, args )
else:
self.p0 = None
self.p1 = None
def __str__( self ):
return "(%s,%s)" % (str(self.p0), str(self.p1))
def copy( self ):
return BoundingBox( self.p0, self.p1 )
def is_null( self ):
return self.p0 is None or self.p1 is None
def width( self ):
if self.is_null():
return None
else:
return abs( self.p0[0] - self.p1[0] )
def height( self ):
if self.is_null():
return None
else:
return abs( self.p0[1] - self.p1[1] )
def diagonal( self ):
if self.is_null():
return None
else:
return math.hypot( self.width(), self.height() )
def aspect_ratio( self ):
if self.is_null():
return None
else:
return self.height()/self.width()
def xrange( self ):
if self.is_null():
return None
else:
return self.p0[0], self.p1[0]
def yrange( self ):
if self.is_null():
return None
else:
return self.p0[1], self.p1[1]
def lowerleft( self ):
if self.is_null():
return None
else:
return self.p0
def upperleft( self ):
if self.is_null():
return None
else:
return self.p0[0], self.p1[1]
def upperright( self ):
if self.is_null():
return None
else:
return self.p1
def lowerright( self ):
if self.is_null():
return None
else:
return self.p1[0], self.p0[1]
def center( self ):
x = self.xrange()
y = self.yrange()
return (x[0]+x[1])/2., (y[0]+y[1])/2.
def union( self, other ):
self.p0 = pt_min( self.p0, other.p0 )
self.p1 = pt_max( self.p1, other.p1 )
def deform( self, dt, db, dl, dr ):
self.p0 = pt_sub( self.p0, (dl,db) )
self.p1 = pt_add( self.p1, (dr,dt) )
def shift( self, dp ):
self.p0 = pt_add( self.p0, dp )
self.p1 = pt_add( self.p1, dp )
def expand( self, factor ):
dp = pt_mul( factor/2., (self.width(), self.height()) )
self.p0 = pt_sub( self.p0, dp )
self.p1 = pt_add( self.p1, dp )
def rotate( self, angle, p ):
a = pt_add(pt_rot(pt_sub( self.lowerleft(), p), angle), p)
b = pt_add(pt_rot(pt_sub(self.lowerright(), p), angle), p)
c = pt_add(pt_rot(pt_sub( self.upperleft(), p), angle), p)
d = pt_add(pt_rot(pt_sub(self.upperright(), p), angle), p)
self.p0 = pt_min( a, pt_min( b, pt_min( c, d ) ) )
self.p1 = pt_max( a, pt_max( b, pt_max( c, d ) ) )
def make_aspect_ratio( self, ratio ):
if ratio < self.aspect_ratio():
dh = self.height() - ratio * self.width()
self.p0 = self.p0[0], self.p0[1] + dh/2
self.p1 = self.p1[0], self.p1[1] - dh/2
else:
dw = self.width() - self.height() / ratio
self.p0 = self.p0[0] + dw/2, self.p0[1]
self.p1 = self.p1[0] - dw/2, self.p1[1]
def contains( self, q ):
if self.p0[0] <= q[0] and \
q[0] <= self.p1[0] and \
self.p0[1] <= q[1] and \
q[1] <= self.p1[1]:
return 1
else:
return 0
# AffineTransform -------------------------------------------------------------
def _matrix_multipy( A, B ):
C00 = A[0][0] * B[0][0] + A[0][1] * B[1][0]
C01 = A[0][0] * B[0][1] + A[0][1] * B[1][1]
C10 = A[1][0] * B[0][0] + A[1][1] * B[1][0]
C11 = A[1][0] * B[0][1] + A[1][1] * B[1][1]
return (C00, C01), (C10, C11)
class AffineTransform:
def __init__( self ):
self.t = 0., 0.
self.m = (1., 0.), (0., 1.)
def __call__( self, x, y ):
p = self.t[0] + self.m[0][0] * x + self.m[0][1] * y
q = self.t[1] + self.m[1][0] * x + self.m[1][1] * y
return p, q
def call_vec( self, x, y ):
x_ = numpy.asarray( x )
y_ = numpy.asarray( y )
p = self.t[0] + self.m[0][0] * x_ + self.m[0][1] * y_
q = self.t[1] + self.m[1][0] * x_ + self.m[1][1] * y_
return p, q
def compose( self, other ):
self.t = self( other.t[0], other.t[1] )
self.m = _matrix_multiply( self.m, other.m )
class RectilinearMap( AffineTransform ):
def __init__( self, src, dest ):
AffineTransform.__init__( self )
sx = dest.width() / src.width()
sy = dest.height() / src.height()
p, q = dest.lowerleft(), src.lowerleft()
tx = p[0] - sx * q[0]
ty = p[1] - sy * q[1]
self.t = tx, ty
self.m = ( sx, 0. ), ( 0., sy )
|