This file is indexed.

/usr/lib/python2.7/dist-packages/PySPH-1.0a4.dev0-py2.7-linux-x86_64.egg/pysph/base/c_kernels.pyx is in python-pysph 0~20160514.git91867dc-4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
#cython: embedsignature=True


from libc.math cimport *
import numpy as np



cdef class CubicSpline:
    cdef public long dim
    cdef public double radius_scale
    cdef public double fac
    def __init__(self, **kwargs):
        for key, value in kwargs.iteritems():
            setattr(self, key, value)

    cdef inline double get_deltap(self):
        return 2./3

    cpdef double py_get_deltap(self):
        return self.get_deltap()

    cdef inline void gradient(self, double* xij, double rij, double h, double* grad):
        cdef double tmp
        cdef double val
        cdef double h1
        cdef double q
        cdef double fac
        cdef double tmp2
        h1 = 1./h
        q = rij*h1

        # get the kernel normalizing factor
        if self.dim == 1:
            fac = self.fac * h1
        elif self.dim == 2:
            fac = self.fac * h1 * h1
        elif self.dim == 3:
            fac = self.fac * h1 * h1 * h1

        # compute the gradient.
        tmp2 = 2. - q
        if (rij > 1e-12):
            if (q > 2.0):
                val = 0.0
            elif ( q > 1.0 ):
                val = -0.75 * tmp2*tmp2 * h1/rij
            else:
                val = -3.0*q * (1 - 0.75*q) * h1/rij
        else:
            val = 0.0

        tmp = val * fac
        grad[0] = tmp * xij[0]
        grad[1] = tmp * xij[1]
        grad[2] = tmp * xij[2]

    cpdef py_gradient(self, double[:] xij, double rij, double h, double[:] grad):
        self.gradient(&xij[0], rij, h, &grad[0])

    cdef inline double gradient_h(self, double* xij, double rij, double h):
        cdef double h1
        cdef double q
        cdef double w
        cdef double fac
        cdef double dw
        cdef double tmp2
        h1 = 1./h; q = rij * h1
        
        # get the kernel normalizing factor
        if self.dim == 1:
            fac = self.fac * h1
        elif self.dim == 2:
            fac = self.fac * h1 * h1
        elif self.dim == 3:
            fac = self.fac * h1 * h1 * h1

        # kernel and gradient evaluated at q
        tmp2 = 2. - q
        if ( q > 2.0 ):
            w = 0.0
            dw = 0.0
            
        elif ( q > 1.0 ):
            w = 0.25 * tmp2 * tmp2 * tmp2
            dw = -0.75 * tmp2 * tmp2
        else:
            w = 1 - 1.5 * q * q * (1 - 0.5 * q)
            dw = -3.0*q * (1 - 0.75*q)

        return -fac * h1 * ( dw*q + w*self.dim )

    cpdef double py_gradient_h(self, double[:] xij, double rij, double h):
        return self.gradient_h(&xij[0], rij, h)

    cdef inline double kernel(self, double* xij, double rij, double h):
        cdef double q
        cdef double fac
        cdef double h1
        cdef double val
        cdef double tmp2
        h1 = 1./h
        q = rij*h1

        # get the kernel normalizing factor
        if self.dim == 1:
            fac = self.fac * h1
        elif self.dim == 2:
            fac = self.fac * h1 * h1
        elif self.dim == 3:
            fac = self.fac * h1 * h1 * h1
        
        tmp2 = 2. - q
        if ( q > 2.0 ):
            val = 0.0

        elif ( q > 1.0 ):
            val = 0.25 * tmp2 * tmp2 * tmp2
        else:
            val = 1 - 1.5 * q * q * (1 - 0.5 * q)

        return val * fac

    cpdef double py_kernel(self, double[:] xij, double rij, double h):
        return self.kernel(&xij[0], rij, h)



cdef class CubicSplineWrapper:
    """Reasonably high-performance convenience wrapper for Kernels.
    """

    cdef public CubicSpline kern
    cdef double[3] xij, grad
    cdef public double radius_scale
    cdef public double fac

    def __init__(self, kern):
        self.kern = kern
        self.radius_scale = kern.radius_scale
        self.fac = kern.fac

    cpdef double kernel(self, double xi, double yi, double zi, double xj, double yj, double zj, double h):
        cdef double* xij = self.xij
        xij[0] = xi-xj
        xij[1] = yi-yj
        xij[2] = zi-zj
        cdef double rij = sqrt(xij[0]*xij[0] + xij[1]*xij[1] +xij[2]*xij[2])
        return self.kern.kernel(xij, rij, h)

    cpdef gradient(self, double xi, double yi, double zi, double xj, double yj, double zj, double h):
        cdef double* xij = self.xij
        xij[0] = xi-xj
        xij[1] = yi-yj
        xij[2] = zi-zj
        cdef double rij = sqrt(xij[0]*xij[0] + xij[1]*xij[1] +xij[2]*xij[2])
        cdef double* grad = self.grad
        self.kern.gradient(xij, rij, h, grad)
        return grad[0], grad[1], grad[2]



cdef class WendlandQuintic:
    cdef public long dim
    cdef public double radius_scale
    cdef public double fac
    def __init__(self, **kwargs):
        for key, value in kwargs.iteritems():
            setattr(self, key, value)

    cdef inline double get_deltap(self):
        return 0.5

    cpdef double py_get_deltap(self):
        return self.get_deltap()

    cdef inline void gradient(self, double* xij, double rij, double h, double* grad):
        cdef double tmp
        cdef double q
        cdef double h1
        cdef double val
        cdef double fac
        h1 = 1./h
        q = rij*h1
        
        # get the kernel normalizing factor
        if self.dim == 1:
            fac = self.fac * h1
        elif self.dim == 2:
            fac = self.fac * h1 * h1
        elif self.dim == 3:
            fac = self.fac * h1 * h1 * h1

        # compute the gradient
        val = 0.0
        tmp = 1.0 - 0.5*q
        if ( q < 2.0 ):
            if (rij > 1e-12):
                val = -5.0 * q * tmp * tmp * tmp * h1/rij

        tmp = val * fac
        grad[0] = tmp * xij[0]
        grad[1] = tmp * xij[1]
        grad[2] = tmp * xij[2]

    cpdef py_gradient(self, double[:] xij, double rij, double h, double[:] grad):
        self.gradient(&xij[0], rij, h, &grad[0])

    cdef inline double gradient_h(self, double* xij, double rij, double h):
        cdef double tmp
        cdef double h1
        cdef double q
        cdef double w
        cdef double fac
        cdef double dw
        h1 = 1./h; q = rij*h1

        # get the kernel normalizing factor
        if self.dim == 1:
            fac = self.fac * h1
        elif self.dim == 2:
            fac = self.fac * h1 * h1
        elif self.dim == 3:
            fac = self.fac * h1 * h1 * h1

        # compute the kernel and gradient at q
        w = 0.0; dw = 0.0
        tmp = 1.0 - 0.5*q
        if ( q < 2.0 ):
            w = tmp * tmp * tmp * tmp * (2.0*q + 1.0)
            dw = -5.0 * q * tmp * tmp * tmp

        return -fac * h1 * ( dw*q + w*self.dim )

    cpdef double py_gradient_h(self, double[:] xij, double rij, double h):
        return self.gradient_h(&xij[0], rij, h)

    cdef inline double kernel(self, double* xij, double rij, double h):
        cdef double q
        cdef double fac
        cdef double h1
        cdef double val
        cdef double tmp
        h1 = 1.0/h
        q = rij*h1

        # get the kernel normalizing factor
        if self.dim == 1:
            fac = self.fac * h1
        elif self.dim == 2:
            fac = self.fac * h1 * h1
        elif self.dim == 3:
            fac = self.fac * h1 * h1 * h1

        val = 0.0

        tmp = 1. - 0.5 * q
        if ( q < 2.0 ):
            val = tmp * tmp * tmp * tmp * (2.0*q + 1.0)

        return val * fac

    cpdef double py_kernel(self, double[:] xij, double rij, double h):
        return self.kernel(&xij[0], rij, h)



cdef class WendlandQuinticWrapper:
    """Reasonably high-performance convenience wrapper for Kernels.
    """

    cdef public WendlandQuintic kern
    cdef double[3] xij, grad
    cdef public double radius_scale
    cdef public double fac

    def __init__(self, kern):
        self.kern = kern
        self.radius_scale = kern.radius_scale
        self.fac = kern.fac

    cpdef double kernel(self, double xi, double yi, double zi, double xj, double yj, double zj, double h):
        cdef double* xij = self.xij
        xij[0] = xi-xj
        xij[1] = yi-yj
        xij[2] = zi-zj
        cdef double rij = sqrt(xij[0]*xij[0] + xij[1]*xij[1] +xij[2]*xij[2])
        return self.kern.kernel(xij, rij, h)

    cpdef gradient(self, double xi, double yi, double zi, double xj, double yj, double zj, double h):
        cdef double* xij = self.xij
        xij[0] = xi-xj
        xij[1] = yi-yj
        xij[2] = zi-zj
        cdef double rij = sqrt(xij[0]*xij[0] + xij[1]*xij[1] +xij[2]*xij[2])
        cdef double* grad = self.grad
        self.kern.gradient(xij, rij, h, grad)
        return grad[0], grad[1], grad[2]



cdef class Gaussian:
    cdef public long dim
    cdef public double radius_scale
    cdef public double fac
    def __init__(self, **kwargs):
        for key, value in kwargs.iteritems():
            setattr(self, key, value)

    cdef inline double get_deltap(self):
        # The inflection point is at q=1/sqrt(2)
        # the deltap values for some standard kernels
        # have been tabulated in sec 3.2 of
        # http://cfd.mace.manchester.ac.uk/sph/SPH_PhDs/2008/crespo_thesis.pdf
        return 0.70710678118654746

    cpdef double py_get_deltap(self):
        return self.get_deltap()

    cdef inline void gradient(self, double* xij, double rij, double h, double* grad):
        cdef double tmp
        cdef double q
        cdef double h1
        cdef double val
        cdef double fac
        h1 = 1./h
        q = rij*h1

        # get the kernel normalizing factor
        if self.dim == 1:
            fac = self.fac * h1
        elif self.dim == 2:
            fac = self.fac * h1 * h1
        elif self.dim == 3:
            fac = self.fac * h1 * h1 * h1

        # compute the gradient
        val = 0.0
        if (q < 3.0):
            if (rij > 1e-12):
                val = -2.0* q * exp(-q*q) * h1/rij

        tmp = val * fac
        grad[0] = tmp * xij[0]
        grad[1] = tmp * xij[1]
        grad[2] = tmp * xij[2]

    cpdef py_gradient(self, double[:] xij, double rij, double h, double[:] grad):
        self.gradient(&xij[0], rij, h, &grad[0])

    cdef inline double gradient_h(self, double* xij, double rij, double h):
        cdef double q
        cdef double fac
        cdef double h1
        cdef double w
        cdef double dw
        h1 = 1./h; q= rij*h1
        
        # get the kernel normalizing factor
        if self.dim == 1:
            fac = self.fac * h1
        elif self.dim == 2:
            fac = self.fac * h1 * h1
        elif self.dim == 3:
            fac = self.fac * h1 * h1 * h1

        # kernel and gradient evaluated at q
        w = 0.0; dw = 0.0
        if ( q < 3.0 ):
            w = exp(-q*q)
            dw = -2.0 * q * w
            
        return -fac * h1 * ( dw*q + w*self.dim )

    cpdef double py_gradient_h(self, double[:] xij, double rij, double h):
        return self.gradient_h(&xij[0], rij, h)

    cdef inline double kernel(self, double* xij, double rij, double h):
        cdef double q
        cdef double fac
        cdef double h1
        cdef double val
        h1 = 1./h
        q = rij*h1

        # get the kernel normalizing factor
        if self.dim == 1:
            fac = self.fac * h1
        elif self.dim == 2:
            fac = self.fac * h1 * h1
        elif self.dim == 3:
            fac = self.fac * h1 * h1 * h1
        
        val = 0.0
        if ( q < 3.0 ):
            val = exp(-q*q) * fac

        return val

    cpdef double py_kernel(self, double[:] xij, double rij, double h):
        return self.kernel(&xij[0], rij, h)



cdef class GaussianWrapper:
    """Reasonably high-performance convenience wrapper for Kernels.
    """

    cdef public Gaussian kern
    cdef double[3] xij, grad
    cdef public double radius_scale
    cdef public double fac

    def __init__(self, kern):
        self.kern = kern
        self.radius_scale = kern.radius_scale
        self.fac = kern.fac

    cpdef double kernel(self, double xi, double yi, double zi, double xj, double yj, double zj, double h):
        cdef double* xij = self.xij
        xij[0] = xi-xj
        xij[1] = yi-yj
        xij[2] = zi-zj
        cdef double rij = sqrt(xij[0]*xij[0] + xij[1]*xij[1] +xij[2]*xij[2])
        return self.kern.kernel(xij, rij, h)

    cpdef gradient(self, double xi, double yi, double zi, double xj, double yj, double zj, double h):
        cdef double* xij = self.xij
        xij[0] = xi-xj
        xij[1] = yi-yj
        xij[2] = zi-zj
        cdef double rij = sqrt(xij[0]*xij[0] + xij[1]*xij[1] +xij[2]*xij[2])
        cdef double* grad = self.grad
        self.kern.gradient(xij, rij, h, grad)
        return grad[0], grad[1], grad[2]



cdef class QuinticSpline:
    cdef public long dim
    cdef public double radius_scale
    cdef public double fac
    def __init__(self, **kwargs):
        for key, value in kwargs.iteritems():
            setattr(self, key, value)

    cdef inline double get_deltap(self):
        # The inflection points for the polynomial are obtained as
        # http://www.wolframalpha.com/input/?i=%28%283-x%29%5E5+-+6*%282-x%29%5E5+%2B+15*%281-x%29%5E5%29%27%27
        # the only permissible value is taken
        return 0.759298480738450

    cpdef double py_get_deltap(self):
        return self.get_deltap()

    cdef inline void gradient(self, double* xij, double rij, double h, double* grad):
        cdef double tmp
        cdef double val
        cdef double h1
        cdef double q
        cdef double fac
        cdef double tmp1
        cdef double tmp3
        cdef double tmp2
        h1 = 1./h
        q = rij*h1

        # get the kernel normalizing factor
        if self.dim == 1:
            fac = self.fac * h1
        elif self.dim == 2:
            fac = self.fac * h1 * h1
        elif self.dim == 3:
            fac = self.fac * h1 * h1 * h1

        tmp3 = 3. - q
        tmp2 = 2. - q
        tmp1 = 1. - q
        
        # compute the gradient
        if (rij > 1e-12):
            if ( q > 3.0 ):
                val = 0.0

            elif ( q > 2.0 ):
                val = -5.0 * tmp3 * tmp3 * tmp3 * tmp3
                val *= h1/rij

            elif ( q > 1.0 ):
                val = -5.0 * tmp3 * tmp3 * tmp3 * tmp3
                val += 30.0 * tmp2 * tmp2 * tmp2 * tmp2
                val *= h1/rij
            else:
                val = -5.0 * tmp3 * tmp3 * tmp3 * tmp3
                val += 30.0 * tmp2 * tmp2 * tmp2 * tmp2
                val -= 75.0 * tmp1 * tmp1 * tmp1 * tmp1
                val *= h1/rij
        else:
            val = 0.0

        tmp = val * fac
        grad[0] = tmp * xij[0]
        grad[1] = tmp * xij[1]
        grad[2] = tmp * xij[2]

    cpdef py_gradient(self, double[:] xij, double rij, double h, double[:] grad):
        self.gradient(&xij[0], rij, h, &grad[0])

    cdef inline double gradient_h(self, double* xij, double rij, double h):
        cdef double h1
        cdef double q
        cdef double w
        cdef double fac
        cdef double dw
        cdef double tmp1
        cdef double tmp3
        cdef double tmp2
        h1 = 1./h; q = rij*h1

        # get the kernel normalizing factor
        if self.dim == 1:
            fac = self.fac * h1
        elif self.dim == 2:
            fac = self.fac * h1 * h1
        elif self.dim == 3:
            fac = self.fac * h1 * h1 * h1

        tmp3 = 3. - q
        tmp2 = 2. - q
        tmp1 = 1. - q
        
        # compute the kernel & gradient at q
        if ( q > 3.0 ):
            w = 0.0
            dw = 0.0

        elif ( q > 2.0 ):
            w = tmp3 * tmp3 * tmp3 * tmp3 * tmp3
            dw = -5.0 * tmp3 * tmp3 * tmp3 * tmp3

        elif ( q > 1.0 ):
            w = tmp3 * tmp3 * tmp3 * tmp3 * tmp3
            w -= 6.0 * tmp2 * tmp2 * tmp2 * tmp2 * tmp2

            dw = -5.0 * tmp3 * tmp3 * tmp3 * tmp3
            dw += 30.0 * tmp2 * tmp2 * tmp2 * tmp2
        else:
            w = tmp3 * tmp3 * tmp3 * tmp3 * tmp3
            w -= 6.0 * tmp2 * tmp2 * tmp2 * tmp2 * tmp2
            w += 15. * tmp1 * tmp1 * tmp1 * tmp1 * tmp1

            dw = -5.0 * tmp3 * tmp3 * tmp3 * tmp3
            dw += 30.0 * tmp2 * tmp2 * tmp2 * tmp2
            dw -= 75.0 * tmp1 * tmp1 * tmp1 * tmp1

        return -fac * h1 * ( dw*q + w*self.dim )

    cpdef double py_gradient_h(self, double[:] xij, double rij, double h):
        return self.gradient_h(&xij[0], rij, h)

    cdef inline double kernel(self, double* xij, double rij, double h):
        cdef double val
        cdef double h1
        cdef double q
        cdef double fac
        cdef double tmp1
        cdef double tmp3
        cdef double tmp2
        h1 = 1./h
        q = rij*h1

        # get the kernel normalizing factor
        if self.dim == 1:
            fac = self.fac * h1
        elif self.dim == 2:
            fac = self.fac * h1 * h1
        elif self.dim == 3:
            fac = self.fac * h1 * h1 * h1

        tmp3 = 3. - q
        tmp2 = 2. - q
        tmp1 = 1. - q
        if ( q > 3.0 ):
            val = 0.0

        elif ( q > 2.0 ):
            val = tmp3 * tmp3 * tmp3 * tmp3 * tmp3

        elif ( q > 1.0 ):
            val = tmp3 * tmp3 * tmp3 * tmp3 * tmp3
            val -= 6.0 * tmp2 * tmp2 * tmp2 * tmp2 * tmp2

        else:
            val = tmp3 * tmp3 * tmp3 * tmp3 * tmp3
            val -= 6.0 * tmp2 * tmp2 * tmp2 * tmp2 * tmp2
            val += 15. * tmp1 * tmp1 * tmp1 * tmp1 * tmp1

        return val * fac

    cpdef double py_kernel(self, double[:] xij, double rij, double h):
        return self.kernel(&xij[0], rij, h)



cdef class QuinticSplineWrapper:
    """Reasonably high-performance convenience wrapper for Kernels.
    """

    cdef public QuinticSpline kern
    cdef double[3] xij, grad
    cdef public double radius_scale
    cdef public double fac

    def __init__(self, kern):
        self.kern = kern
        self.radius_scale = kern.radius_scale
        self.fac = kern.fac

    cpdef double kernel(self, double xi, double yi, double zi, double xj, double yj, double zj, double h):
        cdef double* xij = self.xij
        xij[0] = xi-xj
        xij[1] = yi-yj
        xij[2] = zi-zj
        cdef double rij = sqrt(xij[0]*xij[0] + xij[1]*xij[1] +xij[2]*xij[2])
        return self.kern.kernel(xij, rij, h)

    cpdef gradient(self, double xi, double yi, double zi, double xj, double yj, double zj, double h):
        cdef double* xij = self.xij
        xij[0] = xi-xj
        xij[1] = yi-yj
        xij[2] = zi-zj
        cdef double rij = sqrt(xij[0]*xij[0] + xij[1]*xij[1] +xij[2]*xij[2])
        cdef double* grad = self.grad
        self.kern.gradient(xij, rij, h, grad)
        return grad[0], grad[1], grad[2]