This file is indexed.

/usr/lib/python2.7/dist-packages/PySPH-1.0a4.dev0-py2.7-linux-x86_64.egg/pysph/examples/cavity.py is in python-pysph 0~20160514.git91867dc-4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
"""Lid driven cavity using the Transport Velocity formulation. (10 minutes)
"""

import os

# PySPH imports
from pysph.base.utils import get_particle_array
from pysph.solver.application import Application

from pysph.sph.scheme import TVFScheme

# numpy
import numpy as np

# domain and reference values
L = 1.0; Umax = 1.0
c0 = 10 * Umax
rho0 = 1.0
p0 = c0*c0*rho0

# Numerical setup
hdx = 1.0


class LidDrivenCavity(Application):
    def add_user_options(self, group):
        group.add_argument(
            "--nx", action="store", type=int, dest="nx", default=50,
            help="Number of points along x direction."
        )
        group.add_argument(
            "--re", action="store", type=float, dest="re", default=100,
            help="Reynolds number (defaults to 100)."
        )
        self.n_avg = 5
        group.add_argument(
            "--n-vel-avg", action="store", type=int, dest="n_avg",
            default=None,
            help="Average velocities over these many saved timesteps."
        )

    def consume_user_options(self):
        nx = self.options.nx
        if self.options.n_avg is not None:
            self.n_avg = self.options.n_avg
        self.dx = L/nx
        self.re = self.options.re
        h0 = hdx * self.dx
        self.nu = Umax*L/self.re
        dt_cfl = 0.25 * h0/( c0 + Umax )
        dt_viscous = 0.125 * h0**2/self.nu
        dt_force = 1.0
        self.tf = 10.0
        self.dt = min(dt_cfl, dt_viscous, dt_force)

    def configure_scheme(self):
        h0 = hdx * self.dx
        self.scheme.configure(h0=h0, nu=self.nu)
        self.scheme.configure_solver(tf=self.tf, dt=self.dt, pfreq=500)

    def create_scheme(self):
        s = TVFScheme(
            ['fluid'], ['solid'], dim=2, rho0=rho0, c0=c0, nu=None,
            p0=p0, pb=p0, h0=hdx
        )
        return s

    def create_particles(self):
        dx = self.dx
        ghost_extent = 5 * dx
        # create all the particles
        _x = np.arange( -ghost_extent - dx/2, L + ghost_extent + dx/2, dx )
        x, y = np.meshgrid(_x, _x); x = x.ravel(); y = y.ravel()

        # sort out the fluid and the solid
        indices = []
        for i in range(x.size):
            if ( (x[i] > 0.0) and (x[i] < L) ):
                if ( (y[i] > 0.0) and (y[i] < L) ):
                    indices.append(i)

        # create the arrays
        solid = get_particle_array(name='solid', x=x, y=y)

        # remove the fluid particles from the solid
        fluid = solid.extract_particles(indices); fluid.set_name('fluid')
        solid.remove_particles(indices)

        print("Lid driven cavity :: Re = %d, nfluid = %d, nsolid=%d, dt = %g"%(
            self.re, fluid.get_number_of_particles(),
            solid.get_number_of_particles(), self.dt))

        # add requisite properties to the arrays:
        self.scheme.setup_properties([fluid, solid])

        # setup the particle properties
        volume = dx * dx

        # mass is set to get the reference density of rho0
        fluid.m[:] = volume * rho0
        solid.m[:] = volume * rho0
        # Set a reference rho also, some schemes will overwrite this with a
        # summation density.
        fluid.rho[:] = rho0
        solid.rho[:] = rho0

        # volume is set as dx^2
        fluid.V[:] = 1./volume
        solid.V[:] = 1./volume

        # smoothing lengths
        fluid.h[:] = hdx * dx
        solid.h[:] = hdx * dx

        # imposed horizontal velocity on the lid
        solid.u[:] = 0.0
        solid.v[:] = 0.0
        for i in range(solid.get_number_of_particles()):
            if solid.y[i] > L:
                solid.u[i] = Umax

        return [fluid, solid]

    def post_process(self, info_fname):
        try:
            import matplotlib
            matplotlib.use('Agg')
            from matplotlib import pyplot as plt
        except ImportError:
            print("Post processing requires matplotlib.")
            return
        if self.rank > 0:
            return
        info = self.read_info(info_fname)
        if len(self.output_files) == 0:
            return
        t, ke = self._plot_ke_history()
        x, ui, vi, ui_c, vi_c = self._plot_velocity()
        res = os.path.join(self.output_dir, "results.npz")
        np.savez(res, t=t, ke=ke, x=x, u=ui, v=vi, u_c=ui_c, v_c=vi_c)

    def _plot_ke_history(self):
        from pysph.tools.pprocess import get_ke_history
        from matplotlib import pyplot as plt
        t, ke = get_ke_history(self.output_files, 'fluid')
        plt.clf()
        plt.plot(t, ke)
        plt.xlabel('t'); plt.ylabel('Kinetic energy')
        fig = os.path.join(self.output_dir, "ke_history.png")
        plt.savefig(fig, dpi=300)
        return t, ke

    def _plot_velocity(self):
        from pysph.tools.interpolator import Interpolator
        from pysph.solver.utils import load
        from pysph.examples.ghia_cavity_data import get_u_vs_y, get_v_vs_x
        # interpolated velocities
        _x = np.linspace(0,1,101)
        xx, yy = np.meshgrid(_x, _x)

        # take the last solution data
        fname = self.output_files[-1]
        data = load(fname)
        tf = data['solver_data']['t']
        interp = Interpolator(list(data['arrays'].values()), x=xx, y=yy)
        ui = np.zeros_like(xx)
        vi = np.zeros_like(xx)
        # Average out the velocities over the last n_avg timesteps
        for fname in self.output_files[-self.n_avg:]:
            data = load(fname)
            tf = data['solver_data']['t']
            interp.update_particle_arrays(list(data['arrays'].values()))
            _u = interp.interpolate('u')
            _v = interp.interpolate('v')
            _u.shape = 101,101
            _v.shape = 101,101
            ui += _u
            vi += _v

        ui /= self.n_avg
        vi /= self.n_avg

        # velocity magnitude
        self.vmag = vmag = np.sqrt( ui**2 + vi**2 )
        import matplotlib.pyplot as plt

        f = plt.figure()

        plt.streamplot(
            xx, yy, ui, vi, density=(2, 2), #linewidth=5*vmag/vmag.max(),
            color=vmag
        )
        plt.xlim(0, 1); plt.ylim(0, 1)
        plt.colorbar()
        plt.xlabel('$x$'); plt.ylabel('$y$')
        plt.title('Streamlines at %s seconds'%tf)
        fig = os.path.join(self.output_dir, 'streamplot.png')
        plt.savefig(fig, dpi=300)

        f = plt.figure()

        ui_c = ui[:, 50]
        vi_c = vi[50]

        s1 = plt.subplot(211)
        s1.plot(ui_c, _x, label='Computed')

        y, data = get_u_vs_y()
        if self.re in data:
            s1.plot(data[self.re], y, 'o', fillstyle='none',
                    label='Ghia et al.')
        s1.set_xlabel(r'$v_x$')
        s1.set_ylabel(r'$y$')
        s1.legend()

        s2 = plt.subplot(212)
        s2.plot(_x, vi_c, label='Computed')
        x, data = get_v_vs_x()
        if self.re in data:
            s2.plot(x, data[self.re], 'o', fillstyle='none',
                    label='Ghia et al.')
        s2.set_xlabel(r'$x$')
        s2.set_ylabel(r'$v_y$')
        s2.legend()

        fig = os.path.join(self.output_dir, 'centerline.png')
        plt.savefig(fig, dpi=300)
        return _x, ui, vi, ui_c, vi_c

if __name__ == '__main__':
    app = LidDrivenCavity()
    app.run()
    app.post_process(app.info_filename)