This file is indexed.

/usr/lib/python2.7/dist-packages/PySPH-1.0a4.dev0-py2.7-linux-x86_64.egg/pysph/examples/couette.py is in python-pysph 0~20160514.git91867dc-4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
"""Couette flow using the transport velocity formulation (30 seconds).
"""

import os
import numpy as np

# PySPH imports
from pysph.base.nnps import DomainManager
from pysph.base.utils import get_particle_array
from pysph.solver.utils import load
from pysph.solver.application import Application

from pysph.sph.scheme import TVFScheme

# domain and reference values
Re = 0.0125
d = 0.5; Ly = 2*d; Lx = 0.4*Ly
rho0 = 1.0; nu = 0.01

# upper wall velocity based on the Reynolds number and channel width
Vmax = nu*Re/(2*d)
print(Vmax)
c0 = 10*Vmax; p0 = c0*c0*rho0

# Numerical setup
dx = 0.05
ghost_extent = 5 * dx
hdx = 1.0

# adaptive time steps
h0 = hdx * dx
dt_cfl = 0.25 * h0/( c0 + Vmax )
dt_viscous = 0.125 * h0**2/nu
dt_force = 1.0

tf = 100.0
dt = min(dt_cfl, dt_viscous, dt_force)

class CouetteFlow(Application):
    def create_domain(self):
        return DomainManager(xmin=0, xmax=Lx, periodic_in_x=True)

    def create_particles(self):
        _x = np.arange( dx/2, Lx, dx )

        # create the fluid particles
        _y = np.arange( dx/2, Ly, dx )

        x, y = np.meshgrid(_x, _y); fx = x.ravel(); fy = y.ravel()

        # create the channel particles at the top
        _y = np.arange(Ly+dx/2, Ly+dx/2+ghost_extent, dx)
        x, y = np.meshgrid(_x, _y); tx = x.ravel(); ty = y.ravel()

        # create the channel particles at the bottom
        _y = np.arange(-dx/2, -dx/2-ghost_extent, -dx)
        x, y = np.meshgrid(_x, _y); bx = x.ravel(); by = y.ravel()

        # concatenate the top and bottom arrays
        cx = np.concatenate( (tx, bx) )
        cy = np.concatenate( (ty, by) )

        # create the arrays
        channel = get_particle_array(
            name='channel', x=cx, y=cy, rho=rho0*np.ones_like(cx)
        )
        fluid = get_particle_array(
            name='fluid', x=fx, y=fy, rho=rho0*np.ones_like(fx)
        )

        print("Couette flow :: Re = %g, nfluid = %d, nchannel=%d, dt = %g"%(
            Re, fluid.get_number_of_particles(),
            channel.get_number_of_particles(), dt))

        self.scheme.setup_properties([fluid, channel])

        # setup the particle properties
        volume = dx * dx

        # mass is set to get the reference density of rho0
        fluid.m[:] = volume * rho0
        channel.m[:] = volume * rho0

        # volume is set as dx^2
        fluid.V[:] = 1./volume
        channel.V[:] = 1./volume

        # smoothing lengths
        fluid.h[:] = hdx * dx
        channel.h[:] = hdx * dx

        # channel velocity on upper portion
        indices = np.where(channel.y > d)[0]
        channel.u[indices] = Vmax

        # return the particle list
        return [fluid, channel]

    def create_scheme(self):
        s = TVFScheme(
            ['fluid'], ['channel'], dim=2, rho0=rho0, c0=c0, nu=nu,
            p0=p0, pb=p0, h0=dx*hdx
        )
        s.configure_solver(tf=tf, dt=dt)
        return s

    def post_process(self, info_fname):
        info = self.read_info(info_fname)
        if len(self.output_files) == 0:
            return

        import matplotlib
        matplotlib.use('Agg')

        y_ex, u_ex, y, u = self._plot_u_vs_y()
        t, ke = self._plot_ke_history()
        res = os.path.join(self.output_dir, "results.npz")
        np.savez(res, t=t, ke=ke, y_ex=y_ex, u_ex=u_ex, y=y, u=u)

    def _plot_ke_history(self):
        from pysph.tools.pprocess import get_ke_history
        from matplotlib import pyplot as plt
        t, ke = get_ke_history(self.output_files, 'fluid')
        plt.clf()
        plt.plot(t, ke)
        plt.xlabel('t'); plt.ylabel('Kinetic energy')
        fig = os.path.join(self.output_dir, "ke_history.png")
        plt.savefig(fig, dpi=300)
        return t, ke

    def _plot_u_vs_y(self):
        files = self.output_files
        # take the last solution data
        fname = files[-1]
        data = load(fname)
        tf = data['solver_data']['t']
        fluid = data['arrays']['fluid']
        yp = fluid.y.copy()
        up = fluid.u.copy()

        # exact parabolic profile for the u-velocity
        ye = np.linspace(0, 1, 101)
        ue = Vmax*ye/Ly
        from matplotlib import pyplot as plt
        plt.clf()
        plt.plot(ye, ue, label="exact")
        plt.plot(yp, up, 'ko', fillstyle='none', label="computed")
        plt.xlabel('y'); plt.ylabel('u')
        plt.legend()
        plt.title('Velocity profile at %s'%tf)
        fig = os.path.join(self.output_dir, "comparison.png")
        plt.savefig(fig, dpi=300)
        return ye, ue, yp, up


if __name__ == '__main__':
    app = CouetteFlow()
    app.run()
    app.post_process(app.info_filename)