This file is indexed.

/usr/lib/python2.7/dist-packages/PySPH-1.0a4.dev0-py2.7-linux-x86_64.egg/pysph/examples/hydrostatic_tank.py is in python-pysph 0~20160514.git91867dc-4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
"""Hydrostatic tank example. (2 minutes)

This example is from (Section 6.0) of Adami et. al. JCP 231, 7057-7075.

This is a good problem to test the implementation of the wall boundary
condition. Physically, a column of fluid is left in an open tank and
allowed to settle to equilibrium. Upon settling, a linear pressure
field (p = rho*g*h) should be established according to elementary
fluid mechanics.

Different boundary formulations can be used to check for this behaviour:

 - Adami et al. "A generalized wall boundary condition for smoothed
   particle hydrodynamics", 2012, JCP, 231, pp 7057--7075 (REF1)

 - Monaghan and Kajtar, "SPH particle boundary forces for arbitrary
   boundaries", 2009, 180, pp 1811--1820 (REF2)

 - Gesteria et al. "State-of-the-art of classical SPH for free-surface
   flows", 2010, JHR, pp 6--27 (REF3)

Of these, the first and third are ghost particle methods while the
second is the classical Monaghan style, repulsive particle approach.

For the fluid dynamics, we use the multi-phase formulation presented
in REF1.

"""

import os.path

import numpy as np

# PyZoltan imports
from pyzoltan.core.carray import LongArray

# PySPH imports
from pysph.base.utils import get_particle_array_wcsph as gpa
from pysph.base.kernels import Gaussian, WendlandQuintic, CubicSpline, QuinticSpline
from pysph.solver.solver import Solver
from pysph.solver.application import Application
from pysph.sph.integrator import PECIntegrator
from pysph.sph.integrator_step import WCSPHStep

# the eqations
from pysph.sph.equation import Group

# Equations for REF1
from pysph.sph.wc.transport_velocity import VolumeFromMassDensity,\
    ContinuityEquation,\
    MomentumEquationPressureGradient, \
    MomentumEquationArtificialViscosity,\
    SolidWallPressureBC

# Monaghan type repulsive boundary forces used in REF(2)
from pysph.sph.boundary_equations import MonaghanBoundaryForce,\
    MonaghanKajtarBoundaryForce

# Equations for the standard WCSPH formulation and dynamic boundary
# conditions defined in REF3
from pysph.sph.wc.basic import TaitEOS, TaitEOSHGCorrection, MomentumEquation
from pysph.sph.basic_equations import XSPHCorrection, \
    MonaghanArtificialViscosity

# domain and reference values
Lx = 2.0; Ly = 1.0; H = 0.9
gy = -1.0
Vmax = np.sqrt(abs(gy) * H)
c0 = 10 * Vmax; rho0 = 1000.0
p0 = c0*c0*rho0
gamma = 1.0

# Reynolds number and kinematic viscosity
Re = 100; nu = Vmax * Ly/Re

# Numerical setup
nx = 100; dx = Lx/nx
ghost_extent = 5.5 * dx
hdx = 1.2

# adaptive time steps
h0 = hdx * dx
dt_cfl = 0.25 * h0/( c0 + Vmax )
dt_viscous = 0.125 * h0**2/nu
dt_force = 0.25 * np.sqrt(h0/abs(gy))

tdamp = 1.0
tf = 2.0
dt = 0.75 * min(dt_cfl, dt_viscous, dt_force)
output_at_times = np.arange(0.25, 2.1, 0.25)


def damping_factor(t, tdamp):
    if t < tdamp:
        return 0.5 * ( np.sin((-0.5 + t/tdamp)*np.pi)+ 1.0 )
    else:
        return 1.0


class HydrostaticTank(Application):
    def add_user_options(self, group):
        group.add_argument(
            '--bc-type', action='store', type=int,
            dest='bc_type', default=1,
            help="Specify the implementation type one of (1, 2, 3)"
        )

    def create_particles(self):
        # create all the particles
        _x = np.arange( -ghost_extent, Lx + ghost_extent, dx )
        _y = np.arange( -ghost_extent, Ly, dx )
        x, y = np.meshgrid(_x, _y); x = x.ravel(); y = y.ravel()

        # sort out the fluid and the solid
        indices = []
        for i in range(x.size):
            if ( (x[i] > 0.0) and (x[i] < Lx) ):
                if ( (y[i] > 0.0) and (y[i] < H) ):
                    indices.append(i)

        # create the arrays
        solid = gpa(name='solid', x=x, y=y)

        # remove the fluid particles from the solid
        fluid = solid.extract_particles(indices); fluid.set_name('fluid')
        solid.remove_particles(indices)

        # remove the lid to generate an open tank
        indices = []
        for i in range(solid.get_number_of_particles()):
            if solid.y[i] > 0.9:
                if (0 < solid.x[i] < Lx):
                    indices.append(i)
        solid.remove_particles(indices)

        print("Hydrostatic tank :: nfluid = %d, nsolid=%d, dt = %g"%(
            fluid.get_number_of_particles(),
            solid.get_number_of_particles(), dt))

        ###### ADD PARTICLE PROPS FOR MULTI-PHASE SPH ######

        # particle volume
        fluid.add_property('V')
        solid.add_property('V' )

        # kernel sum term for boundary particles
        solid.add_property('wij')

        # advection velocities and accelerations
        for name in ('auhat', 'avhat', 'awhat'):
            fluid.add_property(name)

        ##### INITIALIZE PARTICLE PROPS #####
        fluid.rho[:] = rho0
        solid.rho[:] = rho0

        fluid.rho0[:] = rho0
        solid.rho0[:] = rho0

        # mass is set to get the reference density of rho0
        volume = dx * dx

        # volume is set as dx^2
        fluid.V[:] = 1./volume
        solid.V[:] = 1./volume

        fluid.m[:] = volume * rho0
        solid.m[:] = volume * rho0

        # smoothing lengths
        fluid.h[:] = hdx * dx
        solid.h[:] = hdx * dx

        # return the particle list
        return [fluid, solid]

    def create_solver(self):
        # Create the kernel
        #kernel = Gaussian(dim=2)
        kernel = QuinticSpline(dim=2)

        integrator = PECIntegrator(fluid=WCSPHStep())

        # Create a solver.
        solver = Solver(kernel=kernel, dim=2, integrator=integrator,
                        tf=tf, dt=dt, output_at_times=output_at_times)
        return solver

    def create_equations(self):
        # Formulation for REF1
        equations1 = [
            # For the multi-phase formulation, we require an estimate of the
            # particle volume. This can be either defined from the particle
            # number density or simply as the ratio of mass to density.
            Group(equations=[
                    VolumeFromMassDensity(dest='fluid', sources=None)
                    ], ),

            # Equation of state is typically the Tait EOS with a suitable
            # exponent gamma
            Group(equations=[
                    TaitEOS(dest='fluid', sources=None, rho0=rho0, c0=c0, gamma=gamma),
                    ], ),

            # The boundary conditions are imposed by extrapolating the fluid
            # pressure, taking into considering the bounday acceleration
            Group(equations=[
                    SolidWallPressureBC(dest='solid', sources=['fluid'], b=1.0, gy=gy,
                                        rho0=rho0, p0=p0),
                    ], ),

            # Main acceleration block
            Group(equations=[

                    # Continuity equation
                    ContinuityEquation(dest='fluid', sources=['fluid','solid']),

                    # Pressure gradient with acceleration damping.
                    MomentumEquationPressureGradient(
                        dest='fluid', sources=['fluid', 'solid'], pb=0.0, gy=gy,
                        tdamp=tdamp),

                    # artificial viscosity for stability
                    MomentumEquationArtificialViscosity(
                        dest='fluid', sources=['fluid', 'solid'], alpha=0.24, c0=c0),

                    # Position step with XSPH
                    XSPHCorrection(dest='fluid', sources=['fluid'], eps=0.0)

                    ]),
            ]

        # Formulation for REF2. Note that for this formulation to work, the
        # boundary particles need to have a spacing different from the fluid
        # particles (usually determined by a factor beta). In the current
        # implementation, the value is taken as 1.0 which will mostly be
        # ineffective.
        equations2 = [
            # For the multi-phase formulation, we require an estimate of the
            # particle volume. This can be either defined from the particle
            # number density or simply as the ratio of mass to density.
            Group(equations=[
                    VolumeFromMassDensity(dest='fluid', sources=None)
                    ], ),

            # Equation of state is typically the Tait EOS with a suitable
            # exponent gamma
            Group(equations=[
                    TaitEOS(dest='fluid', sources=None, rho0=rho0, c0=c0, gamma=gamma),
                    ], ),

            # Main acceleration block
            Group(equations=[

                    # The boundary conditions are imposed as a force or
                    # accelerations on the fluid particles. Note that the
                    # no-penetration condition is to be satisfied with this
                    # equation. The subsequent equations therefore do not have
                    # solid as the source. Note the difference between the
                    # ghost-fluid formulations. K should be 0.01*co**2
                    # according to REF2. We take it much smaller here on
                    # account of the multiple layers of boundary particles
                    MonaghanKajtarBoundaryForce(dest='fluid', sources=['solid'],
                                                K=0.02, beta=1.0, h=hdx*dx),

                    # Continuity equation
                    ContinuityEquation(dest='fluid', sources=['fluid',]),

                    # Pressure gradient with acceleration damping.
                    MomentumEquationPressureGradient(
                        dest='fluid', sources=['fluid'], pb=0.0, gy=gy,
                        tdamp=tdamp),

                    # artificial viscosity for stability
                    MomentumEquationArtificialViscosity(
                        dest='fluid', sources=['fluid'], alpha=0.25, c0=c0),

                    # Position step with XSPH
                    XSPHCorrection(dest='fluid', sources=['fluid'], eps=0.0)

                    ]),
            ]

        # Formulation for REF3
        equations3 = [
            # For the multi-phase formulation, we require an estimate of the
            # particle volume. This can be either defined from the particle
            # number density or simply as the ratio of mass to density.
            Group(equations=[
                    VolumeFromMassDensity(dest='fluid', sources=None)
                    ], ),

            # Equation of state is typically the Tait EOS with a suitable
            # exponent gamma. The solid phase is treated just as a fluid and
            # the pressure and density operations is updated for this as well.
            Group(equations=[
                    TaitEOS(dest='fluid', sources=None, rho0=rho0, c0=c0, gamma=gamma),
                    TaitEOS(dest='solid', sources=None, rho0=rho0, c0=c0, gamma=gamma),
                    ], ),

            # Main acceleration block. The boundary conditions are imposed by
            # peforming the continuity equation and gradient of pressure
            # calculation on the solid phase, taking contributions from the
            # fluid phase
            Group(equations=[

                    # Continuity equation
                    ContinuityEquation(dest='fluid', sources=['fluid','solid']),
                    ContinuityEquation(dest='solid', sources=['fluid']),

                    # Pressure gradient with acceleration damping.
                    MomentumEquationPressureGradient(
                        dest='fluid', sources=['fluid', 'solid'], pb=0.0, gy=gy,
                        tdamp=tdamp),

                    # artificial viscosity for stability
                    MomentumEquationArtificialViscosity(
                        dest='fluid', sources=['fluid', 'solid'], alpha=0.25, c0=c0),

                    # Position step with XSPH
                    XSPHCorrection(dest='fluid', sources=['fluid'], eps=0.5)

                    ]),
            ]

        if self.options.bc_type == 1:
            return equations1
        elif self.options.bc_type == 2:
            return equations2
        elif self.options.bc_type == 3:
            return equations3

    def post_process(self, info_fname):
        self.read_info(info_fname)
        if len(self.output_files) == 0:
            return

        from pysph.tools.interpolator import Interpolator
        from pysph.solver.utils import iter_output
        files = self.output_files
        y = np.linspace(0, 0.9, 20)
        x = np.ones_like(y)
        interp = None
        t, p, p_ex = [], [], []
        for sd, arrays in iter_output(files):
            fluid, solid = arrays['fluid'], arrays['solid']
            if interp is None:
                interp = Interpolator([fluid, solid], x=x, y=y)
            else:
                interp.update_particle_arrays([fluid, solid])
            t.append(sd['t'])
            p.append(interp.interpolate('p'))
            g = 1.0*damping_factor(t[-1], tdamp)
            p_ex.append(abs(rho0*H*g))

        t, p, p_ex = list(map(np.asarray, (t, p, p_ex)))
        res = os.path.join(self.output_dir, 'results.npz')
        np.savez(res, t=t, p=p, p_ex=p_ex, y=y)

        import matplotlib
        matplotlib.use('Agg')

        pmax = abs(0.9*rho0*gy)

        from matplotlib import pyplot as plt
        plt.plot(t, p[:,0]/pmax, 'o-')
        plt.xlabel(r'$t$'); plt.ylabel(r'$p$')
        fig = os.path.join(self.output_dir, 'p_bottom.png')
        plt.savefig(fig, dpi=300)

        plt.clf()
        output_at = np.arange(0.25, 2.1, 0.25)
        count = 0
        for i in range(len(t)):
            if abs(t[i] - output_at[count]) < 1e-8:
                plt.plot(y, p[i]/pmax, 'o', label='t=%.2f'%t[i])
                plt.plot(y, p_ex[i]*(H-y)/(H*pmax), 'k-')
                count += 1
        plt.xlabel('$y$'); plt.ylabel('$p$')
        plt.legend()
        fig = os.path.join(self.output_dir, 'p_vs_y.png')
        plt.savefig(fig, dpi=300)


if __name__ == '__main__':
    app = HydrostaticTank()
    app.run()
    app.post_process(app.info_filename)