This file is indexed.

/usr/lib/python2.7/dist-packages/PySPH-1.0a4.dev0-py2.7-linux-x86_64.egg/pysph/examples/lattice_cylinders.py is in python-pysph 0~20160514.git91867dc-4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
"""Incompressible flow past a periodic lattice of cylinders. (30 minutes)
"""

import os
# numpy
import numpy as np

# PySPH imports
from pysph.base.nnps import DomainManager
from pysph.base.utils import get_particle_array
from pysph.solver.application import Application

from pysph.sph.scheme import TVFScheme


# domain and reference values
L = 0.1; Umax = 5e-5
c0 = 10 * Umax; rho0 = 1000.0
p0 = c0*c0*rho0
a = 0.02; H = L
fx = 1.5e-7

# Reynolds number and kinematic viscosity
Re = 1.0; nu = a*Umax/Re

# Numerical setup
nx = 100; dx = L/nx
ghost_extent = 5 * 1.5 * dx
hdx = 1.0

# adaptive time steps
h0 = hdx * dx
dt_cfl = 0.25 * h0/( c0 + Umax )
dt_viscous = 0.125 * h0**2/nu
dt_force = 0.25 * np.sqrt(h0/abs(fx))

tf = 1000.0
dt = min(dt_cfl, dt_viscous, dt_force)

class LatticeCylinders(Application):
    def create_domain(self):
        # domain for periodicity
        domain = DomainManager(
            xmin=0, xmax=L, ymin=0, ymax=H, periodic_in_x=True,
            periodic_in_y=True
        )
        return domain

    def create_particles(self):
        # create all the particles
        _x = np.arange( dx/2, L, dx )
        _y = np.arange( dx/2, H, dx)
        x, y = np.meshgrid(_x, _y); x = x.ravel(); y = y.ravel()

        # sort out the fluid and the solid
        indices = []
        cx = 0.5 * L; cy = 0.5 * H
        for i in range(x.size):
            xi = x[i]; yi = y[i]
            if ( np.sqrt( (xi-cx)**2 + (yi-cy)**2 ) > a ):
                    #if ( (yi > 0) and (yi < H) ):
                indices.append(i)

        # create the arrays
        solid = get_particle_array(name='solid', x=x, y=y)

        # remove the fluid particles from the solid
        fluid = solid.extract_particles(indices); fluid.set_name('fluid')
        solid.remove_particles(indices)

        print("Periodic cylinders :: Re = %g, nfluid = %d, nsolid=%d, dt = %g"%(
            Re, fluid.get_number_of_particles(),
            solid.get_number_of_particles(), dt))

        self.scheme.setup_properties([fluid, solid])

        # setup the particle properties
        volume = dx * dx

        # mass is set to get the reference density of rho0
        fluid.m[:] = volume * rho0
        solid.m[:] = volume * rho0
        solid.rho[:] = rho0

        # reference pressures and densities
        fluid.rho[:] = rho0

        # volume is set as dx^2
        fluid.V[:] = 1./volume
        solid.V[:] = 1./volume

        # smoothing lengths
        fluid.h[:] = hdx * dx
        solid.h[:] = hdx * dx

        # return the particle list
        return [fluid, solid]

    def create_scheme(self):
        s = TVFScheme(
            ['fluid'], ['solid'], dim=2, rho0=rho0, c0=c0, nu=nu,
            p0=p0, pb=p0, h0=dx*hdx, gx=fx
        )
        s.configure_solver(tf=tf, dt=dt)
        return s

    def post_process(self, info_fname):
        info = self.read_info(info_fname)
        if len(self.output_files) == 0 or self.rank > 0:
            return

        y, ui_lby2, ui_l, xx, yy, vmag = self._plot_velocity()
        res = os.path.join(self.output_dir, "results.npz")
        np.savez(res, y=y, ui_l=ui_l, ui_lby2=ui_lby2, xx=xx, yy=yy, vmag=vmag)

    def _plot_velocity(self):
        from pysph.tools.interpolator import Interpolator
        from pysph.solver.utils import load

        # Find the u profile for comparison.
        y = np.linspace(0.0, H, 100)
        x = np.ones_like(y)*L/2
        fname = self.output_files[-1]
        data = load(fname)
        dm = self.create_domain()
        interp = Interpolator(list(data['arrays'].values()), x=x, y=y,
                              domain_manager=dm)
        ui_lby2 = interp.interpolate('u')
        x = np.ones_like(y)*L
        interp.set_interpolation_points(x=x, y=y)
        ui_l = interp.interpolate('u')

        import matplotlib
        matplotlib.use('Agg')

        from matplotlib import pyplot as plt
        y /= H
        y -= 0.5
        f = plt.figure()
        plt.plot(y, ui_lby2, 'k-', label='x=L/2')
        plt.plot(y, ui_l, 'k-', label='x=L')
        plt.xlabel('y/H'); plt.ylabel('u')
        plt.legend()
        fig = os.path.join(self.output_dir, 'u_profile.png')
        plt.savefig(fig, dpi=300)
        plt.close()

        # Plot the contours of vmag.
        xx, yy = np.mgrid[0:L:100j,0:H:100j]
        interp.set_interpolation_points(x=xx, y=yy)
        u = interp.interpolate('u')
        v = interp.interpolate('v')
        xx /= L
        yy /= H
        vmag = np.sqrt(u*u + v*v)
        f = plt.figure()
        plt.contourf(xx, yy, vmag)
        plt.xlabel('x/L'); plt.ylabel('y/H')
        plt.colorbar()
        fig = os.path.join(self.output_dir, 'vmag_contour.png')
        plt.savefig(fig, dpi=300)
        plt.close()

        return y, ui_lby2, ui_l, xx, yy, vmag


if __name__ == '__main__':
    app = LatticeCylinders()
    app.run()
    app.post_process(app.info_filename)