This file is indexed.

/usr/lib/python2.7/dist-packages/PySPH-1.0a4.dev0-py2.7-linux-x86_64.egg/pysph/examples/solid_mech/rings.py is in python-pysph 0~20160514.git91867dc-4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""Colliding Elastic Balls. (10 minutes)
"""

import numpy

# SPH equations
from pysph.sph.equation import Group
from pysph.sph.basic_equations import IsothermalEOS, ContinuityEquation, MonaghanArtificialViscosity,\
     XSPHCorrection, VelocityGradient2D
from pysph.sph.solid_mech.basic import MomentumEquationWithStress2D, HookesDeviatoricStressRate2D,\
    MonaghanArtificialStress

from pysph.base.utils import get_particle_array
from pysph.base.kernels import CubicSpline
from pysph.solver.application import Application
from pysph.solver.solver import Solver
from pysph.sph.integrator import PECIntegrator
from pysph.sph.integrator_step import SolidMechStep

def get_K(G, nu):
    ''' Get the bulk modulus from shear modulus and Poisson ratio '''
    return 2.0*G*(1+nu)/(3*(1-2*nu))

def add_properties(pa, *props):
    for prop in props:
        pa.add_property(name=prop)


# constants
E = 1e7
nu = 0.3975
G = E/(2.0*(1+nu))
K = get_K(G, nu)
rho0 = 1.0
c0 = numpy.sqrt(K/rho0)

dx = 0.0005
hdx = 1.5

# geometry
ri = 0.03
ro = 0.04

class Rings(Application):
    def create_particles(self):
        #x,y = numpy.mgrid[-1.05:1.05+1e-4:dx, -0.105:0.105+1e-4:dx]
        spacing = 0.041 # spacing = 2*5cm

        x,y = numpy.mgrid[-ro:ro:dx, -ro:ro:dx]
        x = x.ravel()
        y = y.ravel()

        d = (x*x+y*y)
        keep = numpy.flatnonzero((ri*ri<=d) * (d<ro*ro))
        x = x[keep]
        y = y[keep]

        x = numpy.concatenate([x-spacing,x+spacing])
        y = numpy.concatenate([y,y])

        print('Ellastic Collision with %d particles'%(x.size))
        print("Shear modulus G = %g, Young's modulus = %g, Poisson's ratio =%g"%(G,E,nu))

        #print bdry, numpy.flatnonzero(bdry)
        m = numpy.ones_like(x)*dx*dx
        h = numpy.ones_like(x)*hdx*dx
        rho = numpy.ones_like(x)
        z = numpy.zeros_like(x)

        p = 0.5*1.0*100*100*(1 - (x**2 + y**2))

        cs = numpy.ones_like(x) * 10000.0

        # u is set later
        v = z
        u_f = 0.059

        p *= 0
        h *= 1

        # create the particle array
        pa = get_particle_array(
            name="solid", x=x+spacing, y=y, m=m, rho=rho, h=h,
            p=p, cs=cs, u=z, v=v)

        pa.cs[:] = c0
        pa.u = pa.cs*u_f*(2*(x<0)-1)

        # add requisite properties

        # sound speed etc.
        add_properties(pa, 'cs', 'e' )

        # velocity gradient properties
        add_properties(pa, 'v00', 'v01', 'v10', 'v11')

        # artificial stress properties
        add_properties(pa, 'r00', 'r01', 'r02', 'r11', 'r12', 'r22')

        # deviatoric stress components
        add_properties(pa, 's00', 's01', 's02', 's11', 's12', 's22')

        # deviatoric stress accelerations
        add_properties(pa, 'as00', 'as01', 'as02', 'as11', 'as12', 'as22')

        # deviatoric stress initial values
        add_properties(pa, 's000', 's010', 's020', 's110', 's120', 's220')

        # standard acceleration variables
        add_properties(pa, 'arho', 'au', 'av', 'aw', 'ax', 'ay', 'az', 'ae')

        # initial values
        add_properties(pa, 'rho0', 'u0', 'v0', 'w0', 'x0', 'y0', 'z0', 'e0')

        # load balancing properties
        pa.set_lb_props( list(pa.properties.keys()) )

        return [pa,]

    def create_solver(self):
        kernel = CubicSpline(dim=2)
        self.wdeltap = kernel.kernel(rij=dx, h=hdx*dx)

        integrator = PECIntegrator(solid=SolidMechStep())

        solver = Solver(kernel=kernel, dim=2, integrator=integrator)

        dt = 1e-8
        tf = 5e-5
        solver.set_time_step(dt)
        solver.set_final_time(tf)
        solver.set_print_freq(500)
        return solver

    def create_equations(self):
        equations = [

            # Properties computed set from the current state
            Group(
                equations=[
                    # p
                    IsothermalEOS(dest='solid', sources=None,
                                  rho0=rho0, c0=c0, p0=0.0),

                    # vi,j : requires properties v00, v01, v10, v11
                    VelocityGradient2D(dest='solid', sources=['solid',]),

                    # rij : requires properties r00, r01, r02, r11, r12, r22,
                    #                           s00, s01, s02, s11, s12, s22
                    MonaghanArtificialStress(
                     dest='solid', sources=None, eps=0.3),
                    ],
                ),

            # Acceleration variables are now computed
            Group(
                equations=[

                    # arho
                    ContinuityEquation(dest='solid', sources=['solid',]),

                    # au, av
                    MomentumEquationWithStress2D(
                        dest='solid', sources=['solid',], n=4, wdeltap=self.wdeltap),

                    # au, av
                    MonaghanArtificialViscosity(
                        dest='solid', sources=['solid',], alpha=1.0, beta=1.0),

                    # a_s00, a_s01, a_s11
                    HookesDeviatoricStressRate2D(
                        dest='solid', sources=None, shear_mod=G),

                    # ax, ay, az
                    XSPHCorrection(
                        dest='solid', sources=['solid',], eps=0.5),

                    ]

                ) # End Acceleration Group

        ] # End Group list
        return equations


if __name__ == '__main__':
    app = Rings()
    app.run()