This file is indexed.

/usr/lib/python2.7/dist-packages/PySPH-1.0a4.dev0-py2.7-linux-x86_64.egg/pysph/examples/taylor_green.py is in python-pysph 0~20160514.git91867dc-4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
"""Taylor Green vortex flow (5 minutes).
"""

import numpy as np
import os

# PySPH imports
from pysph.base.nnps import DomainManager
from pysph.base.utils import get_particle_array
from pysph.base.kernels import QuinticSpline
from pysph.solver.application import Application

from pysph.sph.equation import Equation
from pysph.sph.scheme import TVFScheme, WCSPHScheme, SchemeChooser


# domain and constants
L = 1.0; U = 1.0
rho0 = 1.0; c0 = 10 * U
p0 = c0**2 * rho0


def exact_solution(U, b, t, x, y):
    pi = np.pi; sin = np.sin; cos = np.cos
    factor = U * np.exp(b*t)

    u = -cos( 2 * pi * x ) * sin( 2 * pi * y)
    v = sin( 2 * pi * x ) * cos( 2 * pi * y)
    p = -0.25*(cos(4*pi*x) + cos(4*pi*y))

    return factor * u, factor * v, factor*factor*p


class ComputeAveragePressure(Equation):
    """Simple function to compute the average pressure at each particle.

    This is used for the Basa, Quinlan and Lastiwka correction from their 2009
    paper.  This equation should be in a separate group and computed before the
    Momentum equation.
    """
    def initialize(self, d_idx, d_pavg, d_nnbr):
        d_pavg[d_idx] = 0.0
        d_nnbr[d_idx] = 0.0

    def loop(self, d_idx, d_pavg, s_idx, s_p, d_nnbr):
        d_pavg[d_idx] += s_p[s_idx]
        d_nnbr[d_idx] += 1.0

    def post_loop(self, d_idx, d_pavg, d_nnbr):
        if d_nnbr[d_idx] > 0:
            d_pavg[d_idx] /= d_nnbr[d_idx]



class TaylorGreen(Application):
    def add_user_options(self, group):
        group.add_argument(
            "--init", action="store", type=str, default=None,
            help="Initialize particle positions from given file."
        )
        group.add_argument(
            "--perturb", action="store", type=float, dest="perturb", default=0,
            help="Random perturbation of initial particles as a fraction "\
                "of dx (setting it to zero disables it, the default)."
        )
        group.add_argument(
            "--nx", action="store", type=int, dest="nx", default=50,
            help="Number of points along x direction. (default 50)"
        )
        group.add_argument(
            "--re", action="store", type=float, dest="re", default=100,
            help="Reynolds number (defaults to 100)."
        )
        group.add_argument(
            "--hdx", action="store", type=float, dest="hdx", default=1.0,
            help="Ratio h/dx."
        )
        group.add_argument(
            "--pb-factor", action="store", type=float, dest="pb_factor",
            default=1.0,
            help="Use fraction of the background pressure (default: 1.0)."
        )

    def consume_user_options(self):
        nx = self.options.nx
        re = self.options.re

        self.nu = nu = U*L/re

        self.dx = dx = L/nx
        self.volume = dx*dx
        self.hdx = self.options.hdx

        h0 = self.hdx * self.dx
        dt_cfl = 0.25 * h0/( c0 + U )
        dt_viscous = 0.125 * h0**2/nu
        dt_force = 0.25 * 1.0

        self.tf = 5.0
        self.dt = min(dt_cfl, dt_viscous, dt_force)

    def configure_scheme(self):
        scheme = self.scheme
        h0 = self.hdx * self.dx
        if self.options.scheme == 'tvf':
            scheme.configure(pb=self.options.pb_factor*p0, nu=self.nu, h0=h0)
        elif self.options.scheme == 'wcsph':
            scheme.configure(hdx=self.hdx, nu=self.nu, h0=h0)
        kernel = QuinticSpline(dim=2)
        scheme.configure_solver(kernel=kernel, tf=self.tf, dt=self.dt)

    def create_scheme(self):
        h0 = None
        hdx = None
        wcsph = WCSPHScheme(
            ['fluid'], [], dim=2, rho0=rho0, c0=c0, h0=h0,
            hdx=hdx, nu=None, gamma=7.0, alpha=0.1, beta=0.0
        )
        tvf = TVFScheme(
            ['fluid'], [], dim=2, rho0=rho0, c0=c0, nu=None,
            p0=p0, pb=None, h0=h0
        )
        s = SchemeChooser(default='tvf', wcsph=wcsph, tvf=tvf)
        return s

    def create_domain(self):
        return DomainManager(
            xmin=0, xmax=L, ymin=0, ymax=L, periodic_in_x=True,
            periodic_in_y=True
        )

    def create_particles(self):
        # create the particles
        dx = self.dx
        _x = np.arange( dx/2, L, dx )
        x, y = np.meshgrid(_x, _x); x = x.ravel(); y = y.ravel()
        if self.options.init is not None:
            fname = self.options.init
            from pysph.solver.utils import load
            data = load(fname)
            _f = data['arrays']['fluid']
            x, y = _f.x.copy(), _f.y.copy()

        if self.options.perturb > 0:
            np.random.seed(1)
            factor = dx*self.options.perturb
            x += np.random.random(x.shape)*factor
            y += np.random.random(x.shape)*factor
        h = np.ones_like(x) * dx

        # create the arrays

        fluid = get_particle_array(name='fluid', x=x, y=y, h=h)

        self.scheme.setup_properties([fluid])

        # add the requisite arrays
        fluid.add_property('color')
        fluid.add_output_arrays(['color'])

        print("Taylor green vortex problem :: nfluid = %d, dt = %g"%(
            fluid.get_number_of_particles(), self.dt))

        # setup the particle properties
        pi = np.pi; cos = np.cos; sin=np.sin

        # color
        fluid.color[:] = cos(2*pi*x) * cos(4*pi*y)

        # velocities
        fluid.u[:] = -U * cos(2*pi*x) * sin(2*pi*y)
        fluid.v[:] = +U * sin(2*pi*x) * cos(2*pi*y)
        fluid.p[:] = -U*U*(np.cos(4*np.pi*x) + np.cos(4*np.pi*y))*0.25

        # mass is set to get the reference density of each phase
        fluid.rho[:] = rho0
        fluid.m[:] = self.volume * fluid.rho

        # volume is set as dx^2
        if self.options.scheme == 'tvf':
            fluid.V[:] = 1./self.volume

        # smoothing lengths
        fluid.h[:] = self.hdx * dx

        # return the particle list
        return [fluid]


    #####  The following are all related to post-processing.  #####
    def _get_post_process_props(self, array):
        """Return x, y, m, u, v, p.
        """
        if 'pavg' not in array.properties and \
           'pavg' not in array.output_property_arrays:
            self._add_extra_props(array)
            sph_eval = self._get_sph_evaluator(array)
            sph_eval.update_particle_arrays([array])
            sph_eval.evaluate()

        x, y, m, u, v, p, pavg = array.get(
            'x', 'y', 'm', 'u', 'v', 'p', 'pavg'
        )
        return x, y, m, u, v, p - pavg

    def _add_extra_props(self, array):
        extra = ['pavg', 'nnbr']
        for prop in extra:
            if not prop in array.properties:
                array.add_property(prop)
        array.add_output_arrays(extra)

    def _get_sph_evaluator(self, array):
        if not hasattr(self, '_sph_eval'):
            from pysph.tools.sph_evaluator import SPHEvaluator
            equations = [
                ComputeAveragePressure(dest='fluid', sources=['fluid'])
            ]
            dm = self.create_domain()
            sph_eval = SPHEvaluator(
                arrays=[array], equations=equations, dim=2,
                kernel=QuinticSpline(dim=2), domain_manager=dm
            )
            self._sph_eval = sph_eval
        return self._sph_eval

    def post_process(self, info_fname):
        info = self.read_info(info_fname)
        if len(self.output_files) == 0:
            return

        from pysph.solver.utils import iter_output
        decay_rate = -8.0 * np.pi**2/self.options.re

        files = self.output_files
        t, ke, ke_ex, decay, linf, l1, p_l1 = [], [], [], [], [], [], []
        for sd, array in iter_output(files, 'fluid'):
            _t = sd['t']
            t.append(_t)
            x, y, m, u, v, p = self._get_post_process_props(array)
            u_e, v_e, p_e = exact_solution(U, decay_rate, _t, x, y)
            vmag2 = u**2 + v**2
            vmag = np.sqrt(vmag2)
            ke.append(0.5*np.sum(m*vmag2))
            vmag2_e = u_e**2 + v_e**2
            vmag_e = np.sqrt(vmag2_e)
            ke_ex.append(0.5*np.sum(m*vmag2_e))

            vmag_max = vmag.max()
            decay.append(vmag_max)
            theoretical_max = U * np.exp(decay_rate * _t)
            linf.append(abs( (vmag_max - theoretical_max)/theoretical_max ))

            l1_err = np.average(np.abs(vmag - vmag_e))
            avg_vmag_e = np.average(np.abs(vmag_e))
            # scale the error by the maximum velocity.
            l1.append(l1_err/avg_vmag_e)

            p_e_max = np.abs(p_e).max()
            p_error = np.average(np.abs(p - p_e))/p_e_max
            p_l1.append(p_error)

        t, ke, ke_ex, decay, l1, linf, p_l1 = list(map(
            np.asarray, (t, ke, ke_ex, decay, l1, linf, p_l1))
        )
        decay_ex = U*np.exp(decay_rate*t)
        fname = os.path.join(self.output_dir, 'results.npz')
        np.savez(
            fname, t=t, ke=ke, ke_ex=ke_ex, decay=decay, linf=linf, l1=l1,
            p_l1=p_l1, decay_ex=decay_ex
        )

        import matplotlib
        matplotlib.use('Agg')

        from matplotlib import pyplot as plt
        plt.clf()
        plt.semilogy(t, decay_ex, label="exact")
        plt.semilogy(t, decay, label="computed")
        plt.xlabel('t'); plt.ylabel('max velocity')
        plt.legend()
        fig = os.path.join(self.output_dir, "decay.png")
        plt.savefig(fig, dpi=300)

        plt.clf()
        plt.plot(t, linf)
        plt.xlabel('t'); plt.ylabel(r'$L_\infty$ error')
        fig = os.path.join(self.output_dir, "linf_error.png")
        plt.savefig(fig, dpi=300)

        plt.clf()
        plt.plot(t, l1, label="error")
        plt.xlabel('t'); plt.ylabel(r'$L_1$ error')
        fig = os.path.join(self.output_dir, "l1_error.png")
        plt.savefig(fig, dpi=300)

        plt.clf()
        plt.plot(t, p_l1, label="error")
        plt.xlabel('t'); plt.ylabel(r'$L_1$ error for $p$')
        fig = os.path.join(self.output_dir, "p_l1_error.png")
        plt.savefig(fig, dpi=300)


if __name__ == '__main__':
    app = TaylorGreen()
    app.run()
    app.post_process(app.info_filename)