This file is indexed.

/usr/lib/python2.7/dist-packages/PySPH-1.0a4.dev0-py2.7-linux-x86_64.egg/pysph/solver/solver.py is in python-pysph 0~20160514.git91867dc-4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
""" An implementation of a general solver base class """

# System library imports.
import os
import numpy

# PySPH imports
from pysph.base.kernels import CubicSpline
from pysph.sph.acceleration_eval import AccelerationEval
from pysph.sph.sph_compiler import SPHCompiler

from pysph.solver.utils import FloatPBar, load, dump

import logging
logger = logging.getLogger(__name__)

EPSILON = numpy.finfo(float).eps*2

class Solver(object):
    """Base class for all PySPH Solvers
    """
    def __init__(self, dim=2, integrator=None, kernel=None,
                 n_damp=0, tf=1.0, dt=1e-3,
                 adaptive_timestep=False, cfl=0.3,
                 output_at_times=(),
                 fixed_h=False, **kwargs):
        """**Constructor**

        Any additional keyword args are used to set the values of any
        of the attributes.

        Parameters
        ----------

        dim : int
            Dimension of the problem

        integrator : pysph.sph.integrator.Integrator
            Integrator to use

        kernel : pysph.base.kernels.Kernel
            SPH kernel to use

        n_damp : int
            Number of timesteps for which the initial damping is required.
            This is used to improve stability for problems with strong
            discontinuity in initial condition.
            Setting it to zero will disable damping of the timesteps.

        dt : double
            Suggested initial time step for integration

        tf : double
            Final time for integration

        adaptive_timestep : bint
            Flag to use adaptive time steps

        cfl : double
            CFL number for adaptive time stepping

        pfreq : int
            Output files dumping frequency.

        output_at_times : list/array
            Optional list of output times to force dump the output file

        fixed_h : bint
            Flag for constant smoothing lengths `h`

        Example
        -------

        >>> integrator = PECIntegrator(fluid=WCSPHStep())
        >>> kernel = CubicSpline(dim=2)
        >>> solver = Solver(dim=2, integrator=integrator, kernel=kernel,
        ...                 n_damp=50, tf=1.0, dt=1e-3, adaptive_timestep=True,
        ...                 pfreq=100, cfl=0.5, output_at_times=[1e-1, 1.0])

        """

        self.integrator = integrator
        self.dim = dim
        if kernel is not None:
            self.kernel = kernel
        else:
            self.kernel = CubicSpline(dim)

        # set the particles to None
        self.particles = None

        # Set the AccelerationEval instance to None.
        self.acceleration_eval = None

        # solver time and iteration count
        self.t = 0
        self.count = 0

        self.execute_commands = None

        # list of functions to be called before and after an integration step
        self.pre_step_callbacks = []
        self.post_step_callbacks = []

        # List of functions to be called after each stage of the integrator.
        self.post_stage_callbacks = []

        # default output printing frequency
        self.pfreq = 100

        # Compress generated files.
        self.compress_output = False
        self.disable_output = False

        # the process id for parallel runs
        self.pid = None

        # set the default rank to 0
        self.rank = 0

        # set the default comm to None.
        self.comm = None

        # set the default mode to serial
        self.in_parallel = False

        # arrays to print output
        self.arrays_to_print = []

        # the default parallel output mode
        self.parallel_output_mode = "collected"

        # flag to print all arrays
        self.detailed_output = False

        # flag to save Remote arrays
        self.output_only_real = True

        # output filename
        self.fname = self.__class__.__name__

        # output drectory
        self.output_directory = self.fname+'_output'

        # solution damping to avoid impulsive starts
        self.n_damp = n_damp

        # Use adaptive time steps and cfl number
        self.adaptive_timestep = adaptive_timestep
        self.cfl = cfl

        # list of output times
        self.output_at_times = numpy.asarray(output_at_times)
        self.force_output = False

        # default time step constants
        self.tf = tf
        self.dt = dt
        self.max_steps = 1 << 31
        self._prev_dt = None
        self._damping_factor = 1.0
        self._epsilon = EPSILON*tf

        # flag for constant smoothing lengths
        self.fixed_h = fixed_h

        # Set all extra keyword arguments
        for attr, value in kwargs.items():
            if hasattr(self, attr):
                setattr(self, attr, value)
            else:
                msg = 'Unknown keyword arg "%s" passed to constructor'%attr
                raise TypeError(msg)


    ##########################################################################
    # Public interface.
    ##########################################################################
    def setup(self, particles, equations, nnps, kernel=None, fixed_h=False):
        """ Setup the solver.

        The solver's processor id is set if the in_parallel flag is set
        to true.

        The order of the integrating calcs is determined by the solver's
        order attribute.

        This is usually called at the start of a PySPH simulation.

        """

        self.particles = particles
        if kernel is not None:
            self.kernel = kernel

        mode = 'mpi' if self.in_parallel else 'serial'
        self.acceleration_eval = AccelerationEval(
            particles, equations, self.kernel, mode
        )

        sep = '-'*70
        eqn_info = '[\n' + ',\n'.join([str(e) for e in equations]) + '\n]'
        logger.info('Using equations:\n%s\n%s\n%s'%(sep, eqn_info, sep))
        logger.info(
            'Using integrator:\n%s\n  %s\n%s'%(sep, self.integrator, sep)
        )

        sph_compiler = SPHCompiler(
            self.acceleration_eval, self.integrator
        )
        sph_compiler.compile()

        # Set the nnps for all concerned objects.
        self.acceleration_eval.set_nnps(nnps)
        self.integrator.set_nnps(nnps)

        # set the parallel manager for the integrator
        self.integrator.set_parallel_manager(self.pm)

        # Set the post_stage_callback.
        self.integrator.set_post_stage_callback(self._post_stage_callback)

        # set integrator option for constant smoothing length
        self.fixed_h = fixed_h
        self.integrator.set_fixed_h( fixed_h )

        logger.debug("Solver setup complete.")

    def add_post_stage_callback(self, callback):
        """These callbacks are called *after* each integrator stage.

        The callbacks are passed (current_time, dt, stage).  See the the
        `Integrator.one_timestep` methods for examples of how this is called.

        Example
        -------

        >>> def post_stage_callback_function(t, dt, stage):
        >>>     # This function is called after every stage of integrator.
        >>>     print t, dt, stage
        >>>     # Do something
        >>> solver.add_post_stage_callback(post_stage_callback_function)
        """
        self.post_stage_callbacks.append(callback)

    def add_post_step_callback(self, callback):
        """These callbacks are called *after* each timestep is performed.

        The callbacks are passed the solver instance (i.e. self).

        Example
        -------

        >>> def post_step_callback_function(solver):
        >>>     # This function is called after every time step.
        >>>     print solver.t, solver.dt
        >>>     # Do something
        >>> solver.add_post_step_callback(post_step_callback_function)
        """
        self.post_step_callbacks.append(callback)

    def add_pre_step_callback(self, callback):
        """These callbacks are called *before* each timestep is performed.

        The callbacks are passed the solver instance (i.e. self).

        Example
        -------

        >>> def pre_step_callback_function(solver):
        >>>     # This function is called before every time step.
        >>>     print solver.t, solver.dt
        >>>     # Do something
        >>> solver.add_pre_step_callback(pre_step_callback_function)
        """
        self.pre_step_callbacks.append(callback)

    def append_particle_arrrays(self, arrays):
        """ Append the particle arrays to the existing particle arrays
        """
        if not self.particles:
            print('Warning! Particles not defined.')
            return

        for array in self.particles:
            array_name = array.name
            for arr in arrays:
                if array_name == arr.name:
                    array.append_parray(arr)

        self.setup(self.particles)

    def set_adaptive_timestep(self, value):
        """Set it to True to use adaptive timestepping based on
        cfl, viscous and force factor.

        Look at pysph.sph.integrator.compute_time_step for more details.
        """
        self.adaptive_timestep = value

    def set_cfl(self, value):
        'Set the CFL number for adaptive time stepping'
        self.cfl = value

    def set_final_time(self, tf):
        """ Set the final time for the simulation """
        self.tf = tf
        self._epsilon = EPSILON*tf

    def set_time_step(self, dt):
        """ Set the time step to use """
        self.dt = dt

    def set_print_freq(self, n):
        """ Set the output print frequency """
        self.pfreq = n

    def set_disable_output(self, value):
        """Disable file output.
        """
        self.disable_output = value

    def set_arrays_to_print(self, array_names=None):
        """Only print the arrays with the given names.
        """

        available_arrays = [array.name for array in self.particles]

        if array_names:
            for name in array_names:
                if not name in available_arrays:
                    raise RuntimeError("Array %s not availabe"%(name))

                for arr in self.particles:
                    if arr.name == name:
                        array = arr
                        break
                self.arrays_to_print.append(array)
        else:
            self.arrays_to_print = self.particles

    def set_output_fname(self, fname):
        """ Set the output file name """
        self.fname = fname

    def set_output_printing_level(self, detailed_output):
        """ Set the output printing level """
        self.detailed_output = detailed_output

    def set_output_only_real(self, output_only_real):
        """ Set the flag to save out only real particles """
        self.output_only_real = output_only_real

    def set_output_directory(self, path):
        """ Set the output directory """
        self.output_directory = path

    def set_output_at_times(self, output_at_times):
        """ Set a list of output times """
        self.output_at_times = numpy.asarray(output_at_times)

    def set_max_steps(self, max_steps):
        """Set the maximum number of iterations to perform.
        """
        self.max_steps = max_steps

    def set_compress_output(self, compress):
        """Compress the dumped output files.
        """
        self.compress_output = compress

    def set_parallel_output_mode(self, mode="collected"):
        """Set the default solver dump mode in parallel.

        The available modes are:

        collected : Collect array data from all processors on root and
                    dump a single file.


        distributed : Each processor dumps a file locally.

        """
        assert mode in ("collected", "distributed")
        self.parallel_output_mode = mode

    def set_command_handler(self, callable, command_interval=1):
        """ set the `callable` to be called at every `command_interval` iteration

        the `callable` is called with the solver instance as an argument
        """
        self.execute_commands = callable
        self.command_interval = command_interval

    def set_parallel_manager(self, pm):
        self.pm = pm

    def barrier(self):
        if self.comm:
            self.comm.barrier()

    def solve(self, show_progress=True):
        """ Solve the system

        Notes
        -----
        Pre-stepping functions are those that need to be called before
        the integrator is called.

        Similarly, post step functions are those that are called after
        the stepping within the integrator.

        """
        if self.in_parallel:
            show = False
        else:
            show = show_progress
        bar = FloatPBar(self.t, self.tf, show=show)
        self._epsilon = EPSILON*self.tf

        # Initial solution
        self.dump_output()
        self.barrier() # everybody waits for this to complete

        # Compute the accelerations once for the predictor corrector
        # integrator to work correctly at the first time step.
        self.acceleration_eval.compute(self.t, self.dt)

        # Now get a suitable adaptive (if requested) and damped timestep to
        # integrate with.
        self.dt = self._get_timestep()

        while (self.tf - self.t) > self._epsilon and \
              (self.count < self.max_steps):

            # perform any pre step functions
            for callback in self.pre_step_callbacks:
                callback(self)

            if self.rank == 0:
                logger.debug(
                    "Iteration=%d, time=%f, timestep=%f" % \
                        (self.count, self.t, self.dt)
                )
            # perform the integration and update the time.
            #print 'Solver Iteration', self.count, self.dt, self.t
            self.integrator.step(self.t, self.dt)

            # perform any post step functions
            for callback in self.post_step_callbacks:
                callback(self)

            # update time and iteration counters if successfully
            # integrated
            self.t += self.dt
            self.count += 1
            self._epsilon = EPSILON*self.tf*self.count

            # Compute the next timestep.
            self.dt = self._get_timestep()

            # Note: this may adjust dt to land at a desired time.
            self._dump_output_if_needed()

            # update progress bar
            bar.update(self.t)

            # update the time for all arrays
            self.update_particle_time()

            if self.execute_commands is not None:
                if self.count % self.command_interval == 0:
                    self.execute_commands(self)

        # close the progress bar
        bar.finish()

        # final output save
        self.dump_output()

    def update_particle_time(self):
        for array in self.particles:
            array.set_time(self.t)

    def dump_output(self):
        """Dump the simulation results to file

        The arrays used for printing are determined by the particle
        array's `output_property_arrays` data attribute. For debugging
        it is sometimes nice to have all the arrays (including
        accelerations) saved. This can be chosen from using the
        command line option `--detailed-output`

        Output data Format:

        A single file named as: <fname>_<rank>_<iteration_count>.npz

        The data is saved as a Python dictionary with two keys:

        `solver_data` : Solver meta data like time, dt and iteration number

        `arrays` : A dictionary keyed on particle array names and with
                   particle properties as value.

         Example:

         You can load the data output by PySPH like so:

         >>> from pysph.solver.utils import load
         >>> data = load('output_directory/filename_x_xxx.npz')
         >>> solver_data = data['solver_data']
         >>> arrays = data['arrays']
         >>> fluid = arrays['fluid']
         >>> ...

         In the above example, it is assumed that the output file
         contained an array named fluid.

        """
        if self.disable_output:
            return

        if self.rank == 0:
            msg = 'Writing output at time %g, iteration %d, dt = %g'%(
                self.t, self.count, self.dt)
            logger.info(msg)

        fname = os.path.join(self.output_directory,
                             self.fname  + '_' + str(self.count))

        comm = None
        if self.parallel_output_mode == "collected" and self.in_parallel:
            comm = self.comm

        dump(fname, self.particles, self._get_solver_data(),
             detailed_output=self.detailed_output,
             only_real=self.output_only_real, mpi_comm=comm,
             compress=self.compress_output)

    def load_output(self, count):
        """Load particle data from dumped output file.

        Parameters
        ----------
        count : str
            The iteration time from which to load the data. If time is '?' then
            list of available data files is returned else the latest available
            data file is used

        Notes
        -----
        Data is loaded from the :py:attr:`output_directory` using the same format
        as stored by the :py:meth:`dump_output` method.
        Proper functioning required that all the relevant properties of arrays be
        dumped.

        """
        # get the list of available files
        available_files = [i.rsplit('_',1)[1][:-4]
                            for i in os.listdir(self.output_directory)
                             if i.startswith(self.fname) and i.endswith('.npz')]

        if count == '?':
            return sorted(set(available_files), key=int)

        else:
            if not count in available_files:
                msg = "File with iteration count `%s` does not exist"%(count)
                msg += "\nValid iteration counts are %s"%(sorted(set(available_files), key=int))
                #print msg
                raise IOError(msg)

        array_names = [pa.name for pa in self.particles]

        # load the output file
        data = load(os.path.join(self.output_directory,
                                 self.fname+'_'+str(count)+'.npz'))

        arrays = [ data["arrays"][i] for i in array_names ]

        # set the Particle's arrays
        self.particles = arrays

        solver_data = data['solver_data']

        self.t = float(solver_data['t'])
        self.dt = float(solver_data['dt'])
        self.count = int(solver_data['count'])

    def get_options(self, arg_parser):
        """ Implement this to add additional options for the application """
        pass

    def setup_solver(self, options=None):
        """ Implement the basic solvers here

        All subclasses of Solver may implement this function to add the
        necessary operations for the problem at hand.

        Parameters
        ----------
        options : dict
            options set by the user using commandline (there is no guarantee
            of existence of any key)
        """
        pass

    ##########################################################################
    # Non-public interface.
    ##########################################################################
    def _compute_timestep(self):
        undamped_dt = self._get_undamped_timestep()
        if self.adaptive_timestep:
            # locally stable time step
            dt = self.integrator.compute_time_step(undamped_dt, self.cfl)

            # set the globally stable time step across all processors
            if self.in_parallel:
                if dt is None:
                    # For some reason this processor does not have an adaptive
                    # timestep constraint so we set it to a large number so the
                    # timestep is determined by the other processors.
                    dt = 1e20
                dt = self.pm.update_time_steps(dt)
            else:
                if dt is None:
                    dt = undamped_dt
        else:
            dt = undamped_dt

        return dt

    def _damp_timestep(self, dt):
        """Damp the timestep initially to prevent transient errors at startup.

        This basically damps the initial timesteps by the factor

        0.5  (sin(pi*(-0.5 + count/n_damp)) + 1)

        Where n_damp is the number of iterations to damp the timestep for and
        count is the number of iterations.

        """
        n_damp = self.n_damp
        if self.count < n_damp and n_damp > 0:
            iter_fraction = (self.count+1)/float(n_damp)
            fac = 0.5*(numpy.sin(numpy.pi*(-0.5 + iter_fraction)) + 1.0)
            self._damping_factor = fac
        else:
            self._damping_factor = 1.0

        return dt*self._damping_factor

    def _dump_output_if_needed(self):
        """Dump output if needed while solve is running.

        This is called by `solve`.

        Warning
        -------

        This will adjust `dt` if the user has asked for output at a
        non-integral multiple of dt.
        """
        if abs(self.t - self.tf) < self._epsilon:
            return

        # dump output if the iteration number is a multiple of the printing
        # frequency.
        dump = self.count % self.pfreq == 0

        # Consider the other cases if user has requested output at a specified
        # time.

        output_at_times = self.output_at_times
        dt = self.dt

        # adjust dt to land on specific output times or dump output if we have
        # reached a desired time.
        if len(output_at_times) > 0:
            tdiff = output_at_times - self.t

            if numpy.any(numpy.abs(tdiff) < self._epsilon):
                dump = True

            # Our next step may exceed a required timestep so we adjust the
            # timestep.
            timestep_too_big = (tdiff > 0.0) & (tdiff < dt)
            if numpy.any(timestep_too_big):
                index = numpy.where(timestep_too_big)[0]
                output_time = output_at_times[index]
                if abs(output_time - self.t) > self._epsilon:
                    # It sometimes happens that the current time is just
                    # shy of the requested output time which results in a
                    # ridiculously small dt so we skip that case.

                    # Compute the new time-step to fall on the specified output
                    # time instant and save the previous dt value.
                    self._prev_dt = dt
                    self.dt = float(output_time - self.t)

        if dump:
            self.dump_output()
            self.barrier()

    def _get_solver_data(self):
        if self._prev_dt is not None:
            dt = self._prev_dt/self._damping_factor
        else:
            dt = self._get_undamped_timestep()

        return {'dt': dt, 't': self.t, 'count': self.count}

    def _get_timestep(self):
        if abs(self.tf - self.t) < self._epsilon:
            # We have reached the end, so no need to adjust the timestep
            # anymore.
            return self.dt

        if self._prev_dt is not None and \
           abs(self._prev_dt - self.dt) > self._epsilon:
            # if the _prev_dt was set then we need to use it as the current dt
            # was set to print at an intermediate time.
            self.dt = self._prev_dt
            self._prev_dt = None

        dt = self._compute_timestep()
        dt = self._damp_timestep(dt)

        # adjust dt to land exactly on final time
        if (self.t + dt) > (self.tf - self._epsilon):
            dt = self.tf - self.t

        return dt

    def _get_undamped_timestep(self):
        return self.dt/self._damping_factor

    def _post_stage_callback(self, time, dt, stage):
        for callback in self.post_stage_callbacks:
            callback(time, dt, stage)


############################################################################