This file is indexed.

/usr/lib/python2.7/dist-packages/PySPH-1.0a4.dev0-py2.7-linux-x86_64.egg/pysph/sph/gas_dynamics/basic.py is in python-pysph 0~20160514.git91867dc-4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
"""Basic equations for Gas-dynamics"""

from pysph.sph.equation import Equation
from math import sqrt

class ScaleSmoothingLength(Equation):
    def __init__(self, dest, sources, factor=2.0):
        super(ScaleSmoothingLength, self).__init__(dest, sources)
        self.factor = factor

    def loop(self, d_idx, d_h):
        d_h[d_idx] = d_h[d_idx] * self.factor

class UpdateSmoothingLengthFromVolume(Equation):
    def __init__(self, dest, sources, dim, k=1.2):
        super(UpdateSmoothingLengthFromVolume, self).__init__(dest, sources)
        self.k = k
        self.dim1 = 1./dim

    def loop(self, d_idx, d_m, d_rho, d_h):
        d_h[d_idx] = self.k * pow( d_m[d_idx]/d_rho[d_idx], self.dim1)

class SummationDensity(Equation):
    def __init__(
        self, dest, sources, dim,
        density_iterations=False, iterate_only_once=False, k=1.2, htol=1e-6):
        r"""Summation density with iterative solution of the smoothing lengths.

        Parameters:

        density_iterations : bint
            Flag to indicate density iterations are required.

        iterate_only_once : bint
            Flag to indicate if only one iteration is required

        k : double
            Kernel scaling factor

        htol : double
            Iteration tolerance

        """
        self.density_iterations = density_iterations
        self.iterate_only_once = iterate_only_once
        self.dim = dim
        self.k = k
        self.htol = htol

        # by default, we set the equation_has_converged attribute to True. If
        # density_iterations is set to True, we will have at least one
        # iteration to determine the new smoothing lengths since the
        # 'converged' property of the particles is intialized to False
        self.equation_has_converged = 1

        super(SummationDensity, self).__init__(dest, sources)

    def initialize(
        self, d_idx, d_rho, d_div, d_grhox, d_grhoy, d_arho, d_dwdh):

        d_rho[d_idx] = 0.0
        d_div[d_idx] = 0.0

        d_grhox[d_idx] = 0.0
        d_grhoy[d_idx] = 0.0
        d_arho[d_idx]  = 0.0

        d_dwdh[d_idx] = 0.0

        # set the converged attribute for the Equation to True. Within
        # the post-loop, if any particle hasn't converged, this is set
        # to False. The Group can therefore iterate till convergence.
        self.equation_has_converged = 1

    def loop(self, d_idx, s_idx, d_rho, d_grhox, d_grhoy, d_arho,
             d_dwdh, s_m, d_converged, VIJ, WI, DWI, GHI):

        mj = s_m[s_idx]
        vijdotdwij = VIJ[0]*DWI[0] + VIJ[1]*DWI[1] + VIJ[2]*DWI[2]

        # density
        d_rho[d_idx] += mj * WI

        # density accelerations
        d_arho[d_idx] += mj * vijdotdwij

        # gradient of density
        d_grhox[d_idx] += mj * DWI[0]
        d_grhoy[d_idx] += mj * DWI[1]

        # gradient of kernel w.r.t h
        d_dwdh[d_idx] += mj * GHI

    def post_loop(self, d_idx, d_arho, d_rho, d_div, d_omega, d_dwdh,
                  d_h0, d_h, d_m, d_ah, d_converged):

        # iteratively find smoothing length consistent with the
        if self.density_iterations:
            if not ( d_converged[d_idx] == 1 ):
                # current mass and smoothing length. The initial
                # smoothing length h0 for this particle must be set
                # outside the Group (that is, in the integrator)
                mi = d_m[d_idx]; hi = d_h[d_idx]; hi0 = d_h0[d_idx]

                # density from the mass, smoothing length and kernel
                # scale factor
                rhoi = mi/(hi/self.k)**self.dim

                dhdrhoi = -hi/( self.dim*d_rho[d_idx] )
                dwdhi = d_dwdh[d_idx]
                omegai = 1.0 - dhdrhoi*dwdhi

                # correct omegai
                if omegai < 0:
                    omegai = 1.0

                # kernel multiplier. These are the multiplicative
                # pre-factors, or the "grah-h" terms in the
                # equations. Remember that the equations use 1/omega
                gradhi = 1.0/omegai
                d_omega[d_idx] = gradhi

                # the non-linear function and it's derivative
                func = rhoi - d_rho[d_idx]
                dfdh = omegai/dhdrhoi

                # Newton Raphson estimate for the new h
                hnew = hi - func/dfdh

                # Nanny control for h
                if ( hnew > 1.2 * hi ):
                    hnew = 1.2 * hi
                elif ( hnew < 0.8 * hi ):
                    hnew = 0.8 * hi

                # overwrite if gone awry
                if ( (hnew <= 1e-6) or (gradhi < 1e-6) ):
                    hnew = self.k * (mi/d_rho[d_idx])**(1./self.dim)

                # check for convergence
                diff = abs( hnew-hi )/hi0

                if not ( (diff < self.htol) and (omegai > 0) or self.iterate_only_once):
                    # this particle hasn't converged. This means the
                    # entire group must be repeated until this fellow
                    # has converged, or till the maximum iteration has
                    # been reached.
                    self.equation_has_converged = -1

                    # set particle properties for the next
                    # iteration. For the 'converged' array, a value of
                    # 0 indicates the particle hasn't converged
                    d_h[d_idx] = hnew
                    d_converged[d_idx] = 0
                else:
                    d_arho[d_idx] *= d_omega[d_idx]
                    d_ah[d_idx] = d_arho[d_idx] * dhdrhoi
                    d_converged[d_idx] = 1

        # comptue the divergence of velocity
        d_div[d_idx] = -d_arho[d_idx]/d_rho[d_idx]

    def converged(self):
        return self.equation_has_converged

class IdealGasEOS(Equation):
    def __init__(self, dest, sources, gamma):
        self.gamma = gamma
        self.gamma1 = gamma - 1.0
        super(IdealGasEOS, self).__init__(dest, sources)

    def loop(self, d_idx, d_p, d_rho, d_e, d_cs):
        d_p[d_idx] = self.gamma1 * d_rho[d_idx] * d_e[d_idx]
        d_cs[d_idx] = sqrt( self.gamma * d_p[d_idx]/d_rho[d_idx] )

class Monaghan92Accelerations(Equation):
    def __init__(self, dest, sources, alpha=1.0, beta=2.0):
        self.alpha = alpha
        self.beta = beta

        super(Monaghan92Accelerations, self).__init__(dest, sources)

    def initialize(self, d_idx, d_au, d_av, d_aw, d_ae):
        d_au[d_idx] = 0.0
        d_av[d_idx] = 0.0
        d_aw[d_idx] = 0.0
        d_ae[d_idx] = 0.0

    def loop(self, d_idx, s_idx, d_rho, s_rho, d_p, s_p, d_cs, s_cs,
             d_au, d_av, d_aw, d_ae, s_m,
             VIJ, DWIJ, XIJ, EPS, HIJ, R2IJ, RHOIJ1):

        rhoi2 = d_rho[d_idx] * d_rho[d_idx]
        rhoj2 = s_rho[s_idx] * s_rho[s_idx]

        tmpi = d_p[d_idx]/rhoi2
        tmpj = s_p[s_idx]/rhoj2

        vijdotxij = VIJ[0]*XIJ[0] + VIJ[1]*XIJ[1] + VIJ[2]*XIJ[2]
        piij = 0.0
        if vijdotxij < 0:
            muij = HIJ*vijdotxij/(R2IJ + EPS)
            cij = 0.5 * (d_cs[d_idx] + s_cs[s_idx])

            piij = -self.alpha*cij*muij + self.beta*muij*muij
            piij *= RHOIJ1

        d_au[d_idx] += -s_m[s_idx] * (tmpi + tmpj + piij) * DWIJ[0]
        d_av[d_idx] += -s_m[s_idx] * (tmpi + tmpj + piij) * DWIJ[1]
        d_aw[d_idx] += -s_m[s_idx] * (tmpi + tmpj + piij) * DWIJ[2]

        vijdotdwij = VIJ[0]*DWIJ[0] + VIJ[1]*DWIJ[1] + VIJ[2]*DWIJ[2]

        d_ae[d_idx] += 0.5 * s_m[s_idx] * (tmpi + tmpj + piij) * vijdotdwij

class MPMAccelerations(Equation):
    def __init__(
        self, dest, sources, beta=2.0,
        update_alpha1=False, update_alpha2=False,
        alpha1_min=0.1, alpha2_min=0.1, sigma=0.1):

        self.beta = beta
        self.sigma = sigma

        self.update_alpha1 = update_alpha1
        self.update_alpha2 = update_alpha2

        self.alpha1_min = alpha1_min
        self.alpha2_min = alpha2_min

        super(MPMAccelerations, self).__init__(dest, sources)

    def initialize(self, d_idx, d_au, d_av, d_aw, d_ae, d_am,
                   d_aalpha1, d_aalpha2, d_del2e):
        d_au[d_idx] = 0.0
        d_av[d_idx] = 0.0
        d_aw[d_idx] = 0.0
        d_ae[d_idx] = 0.0

        d_aalpha1[d_idx] = 0.0
        d_aalpha2[d_idx] = 0.0

        d_del2e[d_idx] = 0.0

    def loop(self, d_idx, s_idx, d_m, s_m, d_p, s_p, d_cs, s_cs,
             d_e, s_e, d_rho, s_rho, d_au, d_av, d_aw, d_ae,
             d_omega, s_omega, XIJ, VIJ, DWI, DWJ, DWIJ, HIJ,
             d_del2e, d_alpha1, s_alpha1, d_alpha2, s_alpha2,
             EPS, RIJ, R2IJ, RHOIJ, DT_ADAPT):

        # particle pressure
        pi = d_p[d_idx]
        pj = s_p[s_idx]

        # pi/rhoi**2
        rhoi2 = d_rho[d_idx]*d_rho[d_idx]
        pibrhoi2 = pi/rhoi2

        # pj/rhoj**2
        rhoj2 = s_rho[s_idx]*s_rho[s_idx]
        pjbrhoj2 = pj/rhoj2

        # averaged sound speed
        cij = 0.5 * (d_cs[d_idx] + s_cs[s_idx])

        # averaged mass
        mi = d_m[d_idx]
        mj = s_m[s_idx]
        mij = 0.5 * (mi + mj)

        # averaged sound speed
        ci = d_cs[d_idx]
        cj = s_cs[s_idx]
        cij = 0.5 * (ci + cj)

        # normalized interaction vector
        if RIJ < 1e-8:
            XIJ[0] = 0.0
            XIJ[1] = 0.0
            XIJ[2] = 0.0
        else:
            XIJ[0] /= RIJ
            XIJ[1] /= RIJ
            XIJ[2] /= RIJ

        # v_{ij} \cdot r_{ij} or vijdotxij
        dot = VIJ[0]*XIJ[0] + VIJ[1]*XIJ[1] + VIJ[2]*XIJ[2]

        # scalar part of the kernel gradient DWIJ
        Fij = XIJ[0]*DWIJ[0] + XIJ[1]*DWIJ[1] + XIJ[2]*DWIJ[2]

        # signal velocities
        pdiff = abs(pi-pj)
        vsig1 = 0.5 * max(cij - self.beta*dot, 0.0)
        vsig2 = sqrt( pdiff/RHOIJ )

        # compute the Courant-limited time step factor.
        DT_ADAPT[0] = max( DT_ADAPT[0], cij + self.beta * dot )

        # Artificial viscosity
        if dot <= 0.0:

            # viscosity
            alpha1 = 0.5 * (d_alpha1[d_idx] + s_alpha1[s_idx])
            tmpv = mj/RHOIJ * alpha1 * vsig1 * dot
            d_au[d_idx] += tmpv * DWIJ[0]
            d_av[d_idx] += tmpv * DWIJ[1]
            d_aw[d_idx] += tmpv * DWIJ[2]

            # viscous contribution to the thermal energy
            d_ae[d_idx] += -0.5*mj/RHOIJ*alpha1*vsig1*dot*dot*Fij

        # grad-h correction terms. These will be set to 1.0 by the
        # integrator and thus can be used safely.
        omegai = d_omega[d_idx]; omegaj = s_omega[s_idx]

        # gradient terms
        d_au[d_idx] += -mj*(pibrhoi2*omegai*DWI[0] + pjbrhoj2*omegaj*DWJ[0])
        d_av[d_idx] += -mj*(pibrhoi2*omegai*DWI[1] + pjbrhoj2*omegaj*DWJ[1])
        d_aw[d_idx] += -mj*(pibrhoi2*omegai*DWI[2] + pjbrhoj2*omegaj*DWJ[2])

        # accelerations for the thermal energy
        vijdotdwi = VIJ[0]*DWI[0] + VIJ[1]*DWI[1] + VIJ[2]*DWI[2]
        d_ae[d_idx] += mj * pibrhoi2 * omegai * vijdotdwi

        # thermal conduction
        alpha2 = 0.5 * (d_alpha2[d_idx] + s_alpha2[s_idx])
        eij = d_e[d_idx] - s_e[s_idx]
        d_ae[d_idx] += mj/RHOIJ * alpha2 * vsig2 * eij * Fij

        # Laplacian of thermal energy
        d_del2e[d_idx] += mj/s_rho[s_idx] * eij/(RIJ + EPS) * Fij

    def post_loop(self, d_idx, d_h, d_cs, d_alpha1, d_aalpha1, d_div,
                  d_del2e, d_e, d_alpha2, d_aalpha2):

        hi = d_h[d_idx]
        tau = hi/(self.sigma*d_cs[d_idx])

        if self.update_alpha1:
            S1 = max( -d_div[d_idx], 0.0 )
            d_aalpha1[d_idx] = (self.alpha1_min - d_alpha1[d_idx])/tau + S1

        if self.update_alpha2:
            #S2 = d_h[d_idx] * abs(d_del2e[d_idx])/sqrt(d_e[d_idx])
            S2 = 0.01 * d_h[d_idx] * d_del2e[d_idx]
            d_aalpha2[d_idx] = (self.alpha2_min - d_alpha2[d_idx])/tau + S2