This file is indexed.

/usr/lib/python2.7/dist-packages/PySPH-1.0a4.dev0-py2.7-linux-x86_64.egg/pysph/sph/iisph.py is in python-pysph 0~20160514.git91867dc-4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
"""The basic equations for the IISPH formulation of

    M. Ihmsen, J. Cornelis, B. Solenthaler, C. Horvath, M. Teschner, "Implicit
    Incompressible SPH," IEEE Transactions on Visualization and Computer
    Graphics, vol. 20, no. 3, pp. 426-435, March 2014.
    http://dx.doi.org/10.1109/TVCG.2013.105

"""

from numpy import sqrt
from pysph.sph.equation import Equation
from pysph.sph.integrator_step import IntegratorStep
from pysph.base.reduce_array import serial_reduce_array, parallel_reduce_array


class IISPHStep(IntegratorStep):
    """A straightforward and simple integrator to be used for IISPH.
    """
    def initialize(self):
        pass

    def stage1(self, d_idx, d_x, d_y, d_z, d_u, d_v, d_w,
               d_uadv, d_vadv, d_wadv, d_au, d_av, d_aw,
               d_ax, d_ay, d_az, dt):
        d_u[d_idx] = d_uadv[d_idx] + dt * d_au[d_idx]
        d_v[d_idx] = d_vadv[d_idx] + dt * d_av[d_idx]
        d_w[d_idx] = d_wadv[d_idx] + dt * d_aw[d_idx]

        d_x[d_idx] += dt * d_u[d_idx]
        d_y[d_idx] += dt * d_v[d_idx]
        d_z[d_idx] += dt * d_w[d_idx]


class NumberDensity(Equation):
    def initialize(self, d_idx, d_V):
        d_V[d_idx] = 0.0

    def loop(self, d_idx, d_V, WIJ):
        d_V[d_idx] += WIJ

class SummationDensity(Equation):
    def initialize(self, d_idx, d_rho):
        d_rho[d_idx] = 0.0

    def loop(self, d_idx, d_rho, s_idx, s_m, WIJ):
        d_rho[d_idx] += s_m[s_idx]*WIJ

class SummationDensityBoundary(Equation):
    def __init__(self, dest, sources, rho0):
        self.rho0 = rho0
        super(SummationDensityBoundary, self).__init__(dest, sources)

    def loop(self, d_idx, d_rho, s_idx, s_V, WIJ):
        d_rho[d_idx] += self.rho0/s_V[s_idx]*WIJ

class NormalizedSummationDensity(Equation):
    def initialize(self, d_idx, d_rho, d_rho_adv, d_rho0, d_V):
        d_rho0[d_idx] = d_rho[d_idx]
        d_rho[d_idx] = 0.0
        d_rho_adv[d_idx] = 0.0
        d_V[d_idx] = 0.0

    def loop(self, d_idx, d_rho, d_rho_adv, d_V, s_idx, s_m, s_rho0, WIJ):
        tmp = s_m[s_idx]*WIJ
        d_rho[d_idx] += tmp
        d_rho_adv[d_idx] += tmp/s_rho0[s_idx]
        d_V[d_idx] += WIJ

    def post_loop(self, d_idx, d_rho, d_rho_adv):
        d_rho[d_idx] /= d_rho_adv[d_idx]


class AdvectionAcceleration(Equation):
    def __init__(self, dest, sources, gx=0.0, gy=0.0, gz=0.0):
        self.gx = gx
        self.gy = gy
        self.gz = gz
        super(AdvectionAcceleration, self).__init__(dest, sources)

    def initialize(self, d_idx, d_au, d_av, d_aw, d_uadv, d_vadv, d_wadv):
        d_au[d_idx] = self.gx
        d_av[d_idx] = self.gy
        d_aw[d_idx] = self.gz
        d_uadv[d_idx] = 0.0
        d_vadv[d_idx] = 0.0
        d_wadv[d_idx] = 0.0

    def loop(self):
        pass

    def post_loop(self, d_idx, d_au, d_av, d_aw, d_uadv, d_vadv, d_wadv,
                  d_u, d_v, d_w, dt=0.0):
        d_uadv[d_idx] = d_u[d_idx] + dt*d_au[d_idx]
        d_vadv[d_idx] = d_v[d_idx] + dt*d_av[d_idx]
        d_wadv[d_idx] = d_w[d_idx] + dt*d_aw[d_idx]

class ViscosityAcceleration(Equation):
    def __init__(self, dest, sources, nu):
        self.nu = nu
        super(ViscosityAcceleration, self).__init__(dest, sources)

    def loop(self, d_idx, d_au, d_av, d_aw, s_idx, s_m, EPS,
             VIJ, XIJ, RHOIJ1, R2IJ, DWIJ):
        dwijdotxij = DWIJ[0]*XIJ[0] + DWIJ[1]*XIJ[1] + DWIJ[2]*XIJ[2]
        fac = 2.0*self.nu*s_m[s_idx]*RHOIJ1*dwijdotxij/(R2IJ + EPS)
        d_au[d_idx] += fac*VIJ[0]
        d_av[d_idx] += fac*VIJ[1]
        d_aw[d_idx] += fac*VIJ[2]

class ViscosityAccelerationBoundary(Equation):
    """The acceleration on the fluid due to a boundary.
    """
    def __init__(self, dest, sources, rho0, nu):
        self.nu = nu
        self.rho0 = rho0
        super(ViscosityAccelerationBoundary, self).__init__(dest, sources)

    def loop(self, d_idx, d_au, d_av, d_aw, d_rho, s_idx, s_V, EPS,
             VIJ, XIJ, R2IJ, DWIJ):
        phi_b = self.rho0/(s_V[s_idx]*d_rho[d_idx])
        dwijdotxij = DWIJ[0]*XIJ[0] + DWIJ[1]*XIJ[1] + DWIJ[2]*XIJ[2]

        fac = 2.0*self.nu*phi_b*dwijdotxij/(R2IJ + EPS)
        d_au[d_idx] += fac*VIJ[0]
        d_av[d_idx] += fac*VIJ[1]
        d_aw[d_idx] += fac*VIJ[2]


class ComputeDII(Equation):
    def initialize(self, d_idx, d_dii0, d_dii1, d_dii2):
        d_dii0[d_idx] = 0.0
        d_dii1[d_idx] = 0.0
        d_dii2[d_idx] = 0.0

    def loop(self, d_idx, d_rho, d_dii0, d_dii1, d_dii2,
             s_idx, s_m, DWIJ, dt=0.0):
        rho_1 = 1.0/d_rho[d_idx]
        fac = -dt*dt*s_m[s_idx]*rho_1*rho_1
        d_dii0[d_idx] += fac*DWIJ[0]
        d_dii1[d_idx] += fac*DWIJ[1]
        d_dii2[d_idx] += fac*DWIJ[2]


class ComputeDIIBoundary(Equation):
    def __init__(self, dest, sources, rho0):
        self.rho0 = rho0
        super(ComputeDIIBoundary, self).__init__(dest, sources)

    def loop(self, d_idx, d_dii0, d_dii1, d_dii2, d_rho,
             s_idx, s_m, s_V, DWIJ, dt=0.0):
        rhoi1 = 1.0/d_rho[d_idx]
        fac = -dt*dt*rhoi1*rhoi1*self.rho0/s_V[s_idx]
        d_dii0[d_idx] += fac*DWIJ[0]
        d_dii1[d_idx] += fac*DWIJ[1]
        d_dii2[d_idx] += fac*DWIJ[2]


class ComputeRhoAdvection(Equation):
    def initialize(self, d_idx, d_rho_adv, d_rho, d_p0, d_p, d_piter, d_aii):
        d_rho_adv[d_idx] = d_rho[d_idx]
        d_p0[d_idx] = d_p[d_idx]
        d_piter[d_idx] = 0.5*d_p[d_idx]

    def loop(self, d_idx, d_rho, d_rho_adv, d_uadv, d_vadv, d_wadv, d_u, d_v, d_w,
             s_idx, s_m, s_uadv, s_vadv, s_wadv, DWIJ, dt=0.0):

        vijdotdwij = (d_uadv[d_idx] - s_uadv[s_idx])*DWIJ[0] + \
                     (d_vadv[d_idx] - s_vadv[s_idx])*DWIJ[1] + \
                     (d_wadv[d_idx] - s_wadv[s_idx])*DWIJ[2]

        d_rho_adv[d_idx] += dt*s_m[s_idx]*vijdotdwij


class ComputeRhoBoundary(Equation):
    def __init__(self, dest, sources, rho0):
        self.rho0 = rho0
        super(ComputeRhoBoundary, self).__init__(dest, sources)

    def loop(self, d_idx, d_rho, d_rho_adv, d_uadv, d_vadv, d_wadv,
             s_idx, s_u, s_v, s_w, s_V, WIJ, DWIJ, dt=0.0):
        phi_b = self.rho0/s_V[s_idx]

        vijdotdwij = (d_uadv[d_idx] - s_u[s_idx])*DWIJ[0] + \
                     (d_vadv[d_idx] - s_v[s_idx])*DWIJ[1] + \
                     (d_wadv[d_idx] - s_w[s_idx])*DWIJ[2]
        d_rho_adv[d_idx] += dt*phi_b*vijdotdwij


class ComputeAII(Equation):
    def initialize(self, d_idx, d_aii):
        d_aii[d_idx] = 0.0

    def loop(self, d_idx, d_aii, d_dii0, d_dii1, d_dii2, d_m, d_rho,
             s_idx, s_m, s_rho, DWIJ, dt=0.0):
        rho1 = 1.0/d_rho[d_idx]
        fac = dt*dt*d_m[d_idx]*rho1*rho1
        # The following is m_j (d_ii - d_ji) . DWIJ
        # DWIJ = -DWJI
        dijdotdwij = (d_dii0[d_idx] - fac*DWIJ[0])*DWIJ[0] + \
                     (d_dii1[d_idx] - fac*DWIJ[1])*DWIJ[1] + \
                     (d_dii2[d_idx] - fac*DWIJ[2])*DWIJ[2]
        d_aii[d_idx] += s_m[s_idx]*dijdotdwij


class ComputeAIIBoundary(Equation):
    """ This is important and not really discussed in the original IISPH paper.
    """
    def __init__(self, dest, sources, rho0):
        self.rho0 = rho0
        super(ComputeAIIBoundary, self).__init__(dest, sources)

    def loop(self, d_idx, d_aii, d_dii0, d_dii1, d_dii2, d_rho,
             s_idx, s_m, s_V, DWIJ, dt=0.0):
        phi_b = self.rho0/s_V[s_idx]
        dijdotdwij = d_dii0[d_idx]*DWIJ[0] + d_dii1[d_idx]*DWIJ[1] + \
                     d_dii2[d_idx]*DWIJ[2]
        d_aii[d_idx] += phi_b*dijdotdwij


class ComputeDIJPJ(Equation):
    def initialize(self, d_idx, d_dijpj0, d_dijpj1, d_dijpj2):
        d_dijpj0[d_idx] = 0.0
        d_dijpj1[d_idx] = 0.0
        d_dijpj2[d_idx] = 0.0

    def loop(self, d_idx, d_dijpj0, d_dijpj1, d_dijpj2,
             s_idx, s_m, s_rho, s_piter, DWIJ, dt=0.0):
        rho1 = 1.0/s_rho[s_idx]
        fac = -dt*dt*s_m[s_idx]*rho1*rho1*s_piter[s_idx]
        d_dijpj0[d_idx] += fac*DWIJ[0]
        d_dijpj1[d_idx] += fac*DWIJ[1]
        d_dijpj2[d_idx] += fac*DWIJ[2]


class PressureSolve(Equation):
    def __init__(self, dest, sources, rho0, omega=0.5,
                 tolerance=1e-2, debug=False):
        self.rho0 = rho0
        self.omega = omega
        self.compression = 0.0
        self.debug = debug
        self.tolerance = tolerance
        super(PressureSolve, self).__init__(dest, sources)

    def initialize(self, d_idx, d_p, d_compression):
        d_p[d_idx] = 0.0
        d_compression[d_idx] = 0.0

    def loop(self, d_idx, d_p, d_piter, d_rho, d_m, d_dijpj0, d_dijpj1, d_dijpj2,
             s_idx, s_m, s_dii0, s_dii1, s_dii2,
             s_piter, s_dijpj0, s_dijpj1, s_dijpj2, DWIJ, dt=0.0):

        # Note that a good way to check this is to see that when
        # d_idx == s_idx the contribution is zero, as is expected.
        rho1 = 1.0/d_rho[d_idx]
        fac = dt*dt*d_m[d_idx]*rho1*rho1*d_piter[d_idx]
        djkpk0 = s_dijpj0[s_idx] - fac*DWIJ[0]
        djkpk1 = s_dijpj1[s_idx] - fac*DWIJ[1]
        djkpk2 = s_dijpj2[s_idx] - fac*DWIJ[2]

        tmp0 = d_dijpj0[d_idx] - s_dii0[s_idx]*s_piter[s_idx] - djkpk0
        tmp1 = d_dijpj1[d_idx] - s_dii1[s_idx]*s_piter[s_idx] - djkpk1
        tmp2 = d_dijpj2[d_idx] - s_dii2[s_idx]*s_piter[s_idx] - djkpk2
        tmpdotdwij = tmp0*DWIJ[0] + tmp1*DWIJ[1] + tmp2*DWIJ[2]

        # This is corrected in the post_loop.
        d_p[d_idx] += s_m[s_idx]*tmpdotdwij

    def post_loop(self, d_idx, d_piter, d_p0, d_p, d_aii, d_rho_adv, d_rho,
                  d_compression, dt=0.0):
        #tmp = d_rho[d_idx] - d_rho_adv[d_idx] - d_p[d_idx]
        tmp = self.rho0 - d_rho_adv[d_idx] - d_p[d_idx]
        p = (1.0 - self.omega)*d_piter[d_idx] + self.omega/d_aii[d_idx]*tmp

        aii_min = dt*dt*0.01

        # Clamp pressure to positive values.
        if p < 0.0:
            p = 0.0
        elif abs(d_aii[d_idx]) < aii_min :
            p = 0.0
        else:
            d_compression[d_idx] = abs(p*d_aii[d_idx] - tmp)

        d_piter[d_idx] = p
        d_p[d_idx] = p

    def reduce(self, dst):
        dst.tmp_comp[0] = serial_reduce_array(dst.array.compression > 0.0, 'sum')
        dst.tmp_comp[1] = serial_reduce_array(dst.array.compression, 'sum')
        dst.tmp_comp.set_data(parallel_reduce_array(dst.tmp_comp, 'sum'))
        if dst.tmp_comp[0] > 0:
            comp = dst.tmp_comp[1]/dst.tmp_comp[0]/self.rho0
        else:
            comp = 0.0
        self.compression = comp

    def converged(self):
        debug = self.debug
        compression = self.compression

        if compression > self.tolerance:
            if debug:
                print("Not converged:", compression)
            return -1.0
        else:
            if debug:
                print("Converged:", compression)
            return 1.0

class PressureSolveBoundary(Equation):
    def __init__(self, dest, sources, rho0):
        self.rho0 = rho0
        super(PressureSolveBoundary, self).__init__(dest, sources)

    def loop(self, d_idx, d_p, d_rho, d_dijpj0, d_dijpj1, d_dijpj2,
             s_idx, s_V, DWIJ):
        phi_b = self.rho0/s_V[s_idx]
        dijdotwij = d_dijpj0[d_idx]*DWIJ[0] + \
                    d_dijpj1[d_idx]*DWIJ[1] + \
                    d_dijpj2[d_idx]*DWIJ[2]
        d_p[d_idx] += phi_b*dijdotwij


class PressureForce(Equation):
    def initialize(self, d_idx, d_au, d_av, d_aw):
        d_au[d_idx] = 0.0
        d_av[d_idx] = 0.0
        d_aw[d_idx] = 0.0

    def loop(self, d_idx, d_rho, d_p, d_au, d_av, d_aw,
             s_idx, s_m, s_rho, s_p, DWIJ):
        rhoi1 = 1.0/d_rho[d_idx]
        rhoj1 = 1.0/s_rho[s_idx]
        fac = -s_m[s_idx]*(d_p[d_idx]*rhoi1*rhoi1 + s_p[s_idx]*rhoj1*rhoj1)
        d_au[d_idx] += fac*DWIJ[0]
        d_av[d_idx] += fac*DWIJ[1]
        d_aw[d_idx] += fac*DWIJ[2]

    def post_loop(self, d_idx, d_au, d_av, d_aw,
                  d_uadv, d_vadv, d_wadv, DT_ADAPT):
        fac = d_au[d_idx]*d_au[d_idx] + d_av[d_idx]*d_av[d_idx] +\
                   d_aw[d_idx]*d_aw[d_idx]
        vmag = sqrt(d_uadv[d_idx]*d_uadv[d_idx] + d_vadv[d_idx]*d_vadv[d_idx] +
                    d_wadv[d_idx]*d_wadv[d_idx])
        DT_ADAPT[0] = max(2.0*vmag, DT_ADAPT[0])
        DT_ADAPT[1] = max(2.0*fac, DT_ADAPT[1])


class PressureForceBoundary(Equation):
    def __init__(self, dest, sources, rho0):
        self.rho0 = rho0
        super(PressureForceBoundary, self).__init__(dest, sources)

    def loop(self, d_idx, d_rho, d_au, d_av, d_aw,  d_p, s_idx, s_V, DWIJ):
        rho1 = 1.0/d_rho[d_idx]
        fac = -d_p[d_idx]*rho1*rho1*self.rho0/s_V[s_idx]
        d_au[d_idx] += fac*DWIJ[0]
        d_av[d_idx] += fac*DWIJ[1]
        d_aw[d_idx] += fac*DWIJ[2]