This file is indexed.

/usr/lib/python2.7/dist-packages/PySPH-1.0a4.dev0-py2.7-linux-x86_64.egg/pysph/sph/integrator.py is in python-pysph 0~20160514.git91867dc-4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
"""Basic code for the templated integrators.

Currently we only support two-step integrators.

These classes are used to generate the code for the actual integrators
from the `sph_eval` module.
"""

from numpy import sqrt

# Local imports.
from .integrator_step import IntegratorStep

###############################################################################
# `Integrator` class
###############################################################################
class Integrator(object):
    r"""Generic class for multi-step integrators in PySPH for a system of
    ODES of the form :math:`\frac{dy}{dt} = F(y)`.
    """

    def __init__(self, **kw):
        """Pass fluid names and suitable `IntegratorStep` instances.

        For example::

            >>> integrator = Integrator(fluid=WCSPHStep(), solid=WCSPHStep())

        where "fluid" and "solid" are the names of the particle arrays.
        """
        for array_name, integrator_step in kw.items():
            if not isinstance(integrator_step, IntegratorStep):
                msg='Stepper %s must be an instance of IntegratorStep'%(integrator_step)
                raise ValueError(msg)

        self.steppers = kw
        self.parallel_manager = None
        # This is set later when the underlying compiled integrator is created
        # by the SPHCompiler.
        self.c_integrator = None

    def __repr__(self):
        name = self.__class__.__name__
        s = self.steppers
        args = ', '.join(['%s=%s'%(k, s[k]) for k in s])
        return '%s(%s)'%(name, args)

    ##########################################################################
    # Public interface.
    ##########################################################################
    def set_fixed_h(self, fixed_h):
        # compute h_minimum once for constant smoothing lengths
        if fixed_h:
            self.compute_h_minimum()

        self.fixed_h=fixed_h

    def set_nnps(self, nnps):
        self.c_integrator.set_nnps(nnps)

    def compute_h_minimum(self):
        a_eval = self.c_integrator.acceleration_eval

        hmin = 1.0
        for pa in a_eval.particle_arrays:
            h = pa.get_carray('h')
            h.update_min_max()

            if h.minimum < hmin:
                hmin = h.minimum

        self.h_minimum = hmin

    def compute_time_step(self, dt, cfl):
        """If there are any adaptive timestep constraints, the appropriate
        timestep is returned, else None is returned.
        """
        a_eval = self.c_integrator.acceleration_eval

        # different time step controls
        dt_cfl_factor = a_eval.dt_cfl
        dt_visc_factor = a_eval.dt_viscous

        # force factor is acceleration squared
        dt_force_factor = a_eval.dt_force

        # iterate over particles and find hmin if using vatialbe h
        if not self.fixed_h:
            self.compute_h_minimum()

        hmin = self.h_minimum

        # default time steps set to some large value
        dt_cfl = dt_force = dt_viscous = 1e20

        # stable time step based on courant condition
        if dt_cfl_factor > 0:
            dt_cfl = hmin/dt_cfl_factor

        # stable time step based on force criterion
        if dt_force_factor > 0:
            dt_force = sqrt( hmin/sqrt(dt_force_factor) )

        # stable time step based on viscous condition
        if dt_visc_factor > 0:
            dt_viscous = hmin/dt_visc_factor

        # minimum of all three
        dt_min = min( dt_cfl, dt_force, dt_viscous )

        # return the computed time steps. If dt factors aren't
        # defined, the default dt is returned
        if dt_min <= 0.0:
            return None
        else:
            return cfl*dt_min

    def one_timestep(self, t, dt):
        """User written function that actually does one timestep.

        This function is used in the high-performance Cython implementation.
        The assumptions one may make are the following:

            - t and dt are passed.

            - the following methods are available:

                - self.initialize()

                - self.stage1(), self.stage2() etc. depending on the number of
                  stages available.

                - self.compute_accelerations(t, dt)
                - self.do_post_stage(stage_dt, stage_count_from_1)

        Please see any of the concrete implementations of the Integrator class
        to study.  By default the Integrator implements a
        predict-evaluate-correct method, the same as PECIntegrator.

        """
        self.initialize()

        # Predict
        self.stage1()

        # Call any post-stage functions.
        self.do_post_stage(0.5*dt, 1)

        self.compute_accelerations()

        # Correct
        self.stage2()

        # Call any post-stage functions.
        self.do_post_stage(dt, 2)

    def set_compiled_object(self, c_integrator):
        """Set the high-performance compiled object to call internally.
        """
        self.c_integrator = c_integrator

    def set_parallel_manager(self, pm):
        self.c_integrator.set_parallel_manager(pm)

    def set_post_stage_callback(self, callback):
        """This callback is called when the particles are moved, i.e
        one stage of the integration is done.

        This callback is passed the current time value, the timestep and the
        stage.

        The current time value is  t + stage_dt, for example this would be
        0.5*dt for a two stage predictor corrector integrator.

        """
        self.c_integrator.set_post_stage_callback(callback)

    def step(self, time, dt):
        """This function is called by the solver.

        To implement the integration step please override the
        ``one_timestep`` method.
        """
        self.c_integrator.step(time, dt)


###############################################################################
# `EulerIntegrator` class
###############################################################################
class EulerIntegrator(Integrator):
    def one_timestep(self, t, dt):
        self.compute_accelerations()
        self.stage1()
        self.do_post_stage(dt, 1)


###############################################################################
# `PECIntegrator` class
###############################################################################
class PECIntegrator(Integrator):
    r"""
    In the Predict-Evaluate-Correct (PEC) mode, the system is advanced using:

    .. math::

        y^{n+\frac{1}{2}} = y^n + \frac{\Delta t}{2}F(y^{n-\frac{1}{2}}) --> Predict

        F(y^{n+\frac{1}{2}}) --> Evaluate

        y^{n + 1} = y^n + \Delta t F(y^{n+\frac{1}{2}})

    """
    def one_timestep(self, t, dt):
        self.initialize()

        # Predict
        self.stage1()

        # Call any post-stage functions.
        self.do_post_stage(0.5*dt, 1)

        self.compute_accelerations()

        # Correct
        self.stage2()

        # Call any post-stage functions.
        self.do_post_stage(dt, 2)

###############################################################################
# `EPECIntegrator` class
###############################################################################
class EPECIntegrator(Integrator):
    r"""
    Predictor corrector integrators can have two modes of
    operation.

    In the Evaluate-Predict-Evaluate-Correct (EPEC) mode, the
    system is advanced using:

    .. math::

        F(y^n) --> Evaluate

        y^{n+\frac{1}{2}} = y^n + F(y^n) --> Predict

        F(y^{n+\frac{1}{2}}) --> Evaluate

        y^{n+1} = y^n + \Delta t F(y^{n+\frac{1}{2}}) --> Correct

    Notes:

    The Evaluate stage of the integrator forces a function
    evaluation. Therefore, the PEC mode is much faster but relies on
    old accelertions for the Prediction stage.

    In the EPEC mode, the final corrector can be modified to:

    :math:`y^{n+1} = y^n + \frac{\Delta t}{2}\left( F(y^n) + F(y^{n+\frac{1}{2}}) \right)`

    This would require additional storage for the accelerations.

    """
    def one_timestep(self, t, dt):
        self.initialize()

        self.compute_accelerations()

        # Predict
        self.stage1()

        # Call any post-stage functions.
        self.do_post_stage(0.5*dt, 1)

        self.compute_accelerations()

        # Correct
        self.stage2()

        # Call any post-stage functions.
        self.do_post_stage(dt, 2)

###############################################################################
# `TVDRK3Integrator` class
###############################################################################
class TVDRK3Integrator(Integrator):
    r"""
    In the TVD-RK3 integrator, the system is advanced using:

    .. math::

        y^{n + \frac{1}{3}} = y^n + \Delta t F( y^n )

        y^{n + \frac{2}{3}} = \frac{3}{4}y^n + \frac{1}{4}(y^{n + \frac{1}{3}} + \Delta t F(y^{n + \frac{1}{3}}))

        y^{n + 1} = \frac{1}{3}y^n + \frac{2}{3}(y^{n + \frac{2}{3}} + \Delta t F(y^{n + \frac{2}{3}}))

    """
    def one_timestep(self, t, dt):
        self.initialize()

        # stage 1
        self.compute_accelerations()
        self.stage1()
        self.do_post_stage(1./3*dt, 1)

        # stage 2
        self.compute_accelerations()
        self.stage2()
        self.do_post_stage(2./3*dt, 2)

        # stage 3 and end
        self.compute_accelerations()
        self.stage3()
        self.do_post_stage(dt, 3)


###############################################################################
class LeapFrogIntegrator(PECIntegrator):
    r"""A leap-frog integrator.
    """

    def one_timestep(self, t, dt):

        self.stage1()
        self.do_post_stage(0.5*dt, 1)

        self.compute_accelerations()
        self.stage2()
        self.do_post_stage(dt, 2)


###############################################################################
class PEFRLIntegrator(Integrator):
    r"""A Position-Extended Forest-Ruth-Like integrator [Omeylan2002]_

    References
    ----------
    .. [Omeylan2002] I.M. Omelyan, I.M. Mryglod and R. Folk, "Optimized
       Forest-Ruth- and Suzuki-like algorithms for integration of motion
       in many-body systems", Computer Physics Communications 146, 188 (2002)
       http://arxiv.org/abs/cond-mat/0110585

    """

    def one_timestep(self, t, dt):

        self.stage1()
        self.do_post_stage(0.1786178958448091*dt, 1)

        self.compute_accelerations()
        self.stage2()
        self.do_post_stage(0.1123533131749906*dt, 2)

        self.compute_accelerations()
        self.stage3()
        self.do_post_stage(0.8876466868250094*dt, 3)

        self.compute_accelerations()
        self.stage4()
        self.do_post_stage(0.8213821041551909*dt, 4)

        self.compute_accelerations()
        self.stage5()
        self.do_post_stage(dt, 5)