This file is indexed.

/usr/lib/python2.7/dist-packages/PySPH-1.0a4.dev0-py2.7-linux-x86_64.egg/pysph/sph/solid_mech/basic.py is in python-pysph 0~20160514.git91867dc-4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
"""
Basic Equations for Solid Mechanics
###################################

References
----------
.. [Gray2001] J. P. Gray et al., "SPH elastic dynamics", Computer Methods 
    in Applied Mechanics and Engineering, 190 (2001), pp 6641 - 6662.
"""

from pysph.sph.equation import Equation
from textwrap import dedent

class MonaghanArtificialStress(Equation):
    r"""**Artificial stress to remove tensile instability**
    
    The dispersion relations in [Gray2001] are used to determine the 
    different components of :math:`R`.
    
    Angle of rotation for particle :math:`a`
    
    .. math::
    
        \tan{2 \theta_a} = \frac{2\sigma_a^{xy}}{\sigma_a^{xx} - \sigma_a^{yy}}
        
    In rotated frame, the new components of the stress tensor are
    
    .. math::
    
        \bar{\sigma}_a^{xx} = \cos^2{\theta_a} \sigma_a^{xx} + 2\sin{\theta_a}
        \cos{\theta_a}\sigma_a^{xy} + \sin^2{\theta_a}\sigma_a^{yy}\\
        
        \bar{\sigma}_a^{yy} = \sin^2{\theta_a} \sigma_a^{xx} + 2\sin{\theta_a}
        \cos{\theta_a}\sigma_a^{xy} + \cos^2{\theta_a}\sigma_a^{yy}
        
    Components of :math:`R` in rotated frame:
    
    .. math::
        
        \bar{R}_{a}^{xx}=\begin{cases}-\epsilon\frac{\bar{\sigma}_{a}^{xx}}
        {\rho^{2}} & \bar{\sigma}_{a}^{xx}>0\\0 & \bar{\sigma}_{a}^{xx}\leq0
        \end{cases}\\
        
        \bar{R}_{a}^{yy}=\begin{cases}-\epsilon\frac{\bar{\sigma}_{a}^{yy}}
        {\rho^{2}} & \bar{\sigma}_{a}^{yy}>0\\0 & \bar{\sigma}_{a}^{yy}\leq0
        \end{cases}
    
    Components of :math:`R` in original frame:
    
    .. math::
    
        R_a^{xx} = \cos^2{\theta_a} \bar{R}_a^{xx} + 
        \sin^2{\theta_a} \bar{R}_a^{yy}\\
        
        R_a^{yy} = \sin^2{\theta_a} \bar{R}_a^{xx} + 
        \cos^2{\theta_a} \bar{R}_a^{yy}\\

        R_a^{xy} = \sin{\theta_a} \cos{\theta_a}\left(\bar{R}_a^{xx} - 
        \bar{R}_a^{yy}\right)
    """
    
    def __init__(self, dest, sources, eps=0.3):
        r"""
        Parameters
        ----------
        eps : float
            constant
        """
        self.eps = eps
        super(MonaghanArtificialStress, self).__init__(dest, sources)

    def _cython_code_(self):
        code = dedent("""
        cimport cython
        from pysph.base.linalg3 cimport eigen_decomposition
        from pysph.base.linalg3 cimport transform_diag_inv
        """)
        return code

    def loop(self, d_idx, d_rho, d_p,
             d_s00, d_s01, d_s02, d_s11, d_s12, d_s22,
             d_r00, d_r01, d_r02, d_r11, d_r12, d_r22):
        r"""Compute the stress terms

        Parameters
        ----------
        d_sxx : DoubleArray
            Stress Tensor Deviatoric components (Symmetric)

        d_rxx : DoubleArray
            Artificial stress components (Symmetric)
        """
        # 1/rho_a^2
        rhoi = d_rho[d_idx]
        rhoi21 = 1./(rhoi * rhoi)

        ## Matrix and vector declarations ##

        # Matrix of Eigenvectors (columns)
        R = declare('matrix((3,3))')

        # Artificial stress in the original coordinates
        Rab = declare('matrix((3,3))')

        # Stress tensor with pressure.
        S = declare('matrix((3,3))')
        # Eigenvalues
        V = declare('matrix((3,))')

        # Artificial stress in principle direction
        rd = declare('matrix((3,))')

        # get the diagonal terms for the stress tensor adding pressure
        S[0][0] = d_s00[d_idx] - d_p[d_idx]
        S[1][1] = d_s11[d_idx] - d_p[d_idx]
        S[2][2] = d_s22[d_idx] - d_p[d_idx]

        S[1][2] = S[2][1] = d_s12[d_idx]
        S[0][2] = S[2][0] = d_s02[d_idx]
        S[0][1] = S[1][0] = d_s01[d_idx]

        # compute the principle stresses
        eigen_decomposition(S, R, cython.address(V[0]))

        # artificial stress corrections
        if V[0] > 0: rd[0] = -self.eps * V[0] * rhoi21
        else : rd[0] = 0

        if V[1] > 0: rd[1] = -self.eps * V[1] * rhoi21
        else : rd[1] = 0

        if V[2] > 0: rd[2] = -self.eps * V[2] * rhoi21
        else : rd[2] = 0

        # transform artificial stresses in original frame
        transform_diag_inv(cython.address(rd[0]), R, Rab)

        # store the values
        d_r00[d_idx] = Rab[0][0]; d_r11[d_idx] = Rab[1][1]; d_r22[d_idx] = Rab[2][2]
        d_r12[d_idx] = Rab[1][2]; d_r02[d_idx] = Rab[0][2]; d_r01[d_idx] = Rab[0][1]

class MomentumEquationWithStress2D(Equation):
    r"""**Momentum Equation with Artificial Stress**
    
    .. math::
    
        \frac{D\vec{v_a}^i}{Dt} = \sum_b m_b\left(\frac{\sigma_a^{ij}}{\rho_a^2} 
        +\frac{\sigma_b^{ij}}{\rho_b^2} + R_{ab}^{ij}f^n \right)\nabla_a W_{ab}
    
    where
    
    .. math::
    
        f_{ab} = \frac{W(r_{ab})}{W(\Delta p)}\\
        
        R_{ab}^{ij} = R_{a}^{ij} + R_{b}^{ij}
    """
    def __init__(self, dest, sources, wdeltap=-1, n=1):
        r"""
        Parameters
        ----------
        wdeltap : float
            evaluated value of :math:`W(\Delta p)`
        n : float
            constant
        with_correction : bool
            switch for using tensile instability correction
        """
        
        self.wdeltap = wdeltap
        self.n = n
        self.with_correction = True
        if wdeltap < 0:
            self.with_correction = False
        super(MomentumEquationWithStress2D, self).__init__(dest, sources)

    def initialize(self, d_idx, d_au, d_av):
        d_au[d_idx] = 0.0
        d_av[d_idx] = 0.0

    def loop(self, d_idx, s_idx, d_rho, s_rho, s_m, d_p, s_p,
             d_s00, d_s01, d_s11, s_s00, s_s01, s_s11,
             d_r00, d_r01, d_r11, s_r00, s_r01, s_r11,
             d_au, d_av, WIJ, DWIJ):

        pa = d_p[d_idx]
        pb = s_p[s_idx]

        rhoa = d_rho[d_idx]
        rhob = s_rho[s_idx]

        rhoa21 = 1./(rhoa * rhoa)
        rhob21 = 1./(rhob * rhob)

        s00a = d_s00[d_idx]
        s01a = d_s01[d_idx]
        s10a = d_s01[d_idx]
        s11a = d_s11[d_idx]

        s00b = s_s00[s_idx]
        s01b = s_s01[s_idx]
        s10b = s_s01[s_idx]
        s11b = s_s11[s_idx]

        r00a = d_r00[d_idx]
        r01a = d_r01[d_idx]
        r10a = d_r01[d_idx]
        r11a = d_r11[d_idx]

        r00b = s_r00[s_idx]
        r01b = s_r01[s_idx]
        r10b = s_r01[s_idx]
        r11b = s_r11[s_idx]

        # Add pressure to the deviatoric components
        s00a = s00a - pa
        s00b = s00b - pb

        s11a = s11a - pa
        s11b = s11b - pb

        # compute the kernel correction term
        if self.with_correction:
            fab = WIJ/self.wdeltap
            fab = pow(fab, self.n)

            art_stress00 = fab * (r00a + r00b)
            art_stress01 = fab * (r01a + r01b)
            art_stress11 = fab * (r11a + r11b)
        else:
            art_stress00 = 0.0
            art_stress01 = 0.0
            art_stress11 = 0.0

        # compute accelerations
        mb = s_m[s_idx]

        d_au[d_idx] += mb * (s00a*rhoa21 + s00b*rhob21 + art_stress00) * DWIJ[0] + \
            mb * (s01a*rhoa21 + s01b*rhob21 + art_stress01) * DWIJ[1]

        d_av[d_idx] += mb * (s10a*rhoa21 + s10b*rhob21 + art_stress01) * DWIJ[0] + \
            mb * (s11a*rhoa21 + s11b*rhob21 + art_stress11) * DWIJ[1]

class HookesDeviatoricStressRate2D(Equation):
    r""" **Rate of change of stress (2D)**

    .. math:: 
        \frac{dS^{ij}}{dt} = 2\mu\left(\epsilon^{ij} - \frac{1}{3}\delta^{ij}
        \epsilon^{ij}\right) + S^{ik}\Omega^{jk} + \Omega^{ik}S^{kj}

    where

    .. math:: 
    
        \epsilon^{ij} = \frac{1}{2}\left(\frac{\partial v^i}{\partial x^j} +
        \frac{\partial v^j}{\partial x^i}\right)\\
        
        \Omega^{ij} = \frac{1}{2}\left(\frac{\partial v^i}{\partial x^j} - 
           \frac{\partial v^j}{\partial x^i} \right)

    """
    def __init__(self, dest, sources, shear_mod):
        r"""
        Parameters
        ----------
        shear_mod : float
            shear modulus (:math:`\mu`)
        """
        
        self.shear_mod = shear_mod
        super(HookesDeviatoricStressRate2D, self).__init__(dest, sources)

    def initialize(self, d_idx, d_as00, d_as01, d_as11):
        d_as00[d_idx] = 0.0
        d_as01[d_idx] = 0.0
        d_as11[d_idx] = 0.0

    def loop(self, d_idx, d_s00, d_s01, d_s11,
             d_v00, d_v01, d_v10, d_v11,
             d_as00, d_as01, d_as11):

        v00 = d_v00[d_idx]
        v01 = d_v01[d_idx]
        v10 = d_v10[d_idx]
        v11 = d_v11[d_idx]

        s00 = d_s00[d_idx]
        s01 = d_s01[d_idx]
        s10 = d_s01[d_idx]
        s11 = d_s11[d_idx]

        # strain rate tensor is symmetric
        eps00 = v00
        eps01 = 0.5 * (v01 + v10)

        eps10 = eps01
        eps11 = v11

        # rotation tensor is asymmetric
        omega01 = 0.5 * (v01 - v10)
        omega10 = -omega01

        tmp = 2.0*self.shear_mod
        trace = 1.0/3.0 * (eps00 + eps11)

        # S_00
        d_as00[d_idx] = tmp*( eps00 - trace ) + \
            ( s01*omega01 ) + ( s10*omega01 )

        # S_01
        d_as01[d_idx] = tmp*(eps01) + \
            ( s00*omega10 ) + ( s11*omega01 )

        # S_11
        d_as11[d_idx] = tmp*( eps11 - trace ) + \
            ( s10*omega10 ) + ( s01*omega10 )

class EnergyEquationWithStress2D(Equation):
    def __init__(self, dest, sources, alpha=1.0, beta=1.0,
                 eta=0.01):
        self.alpha = alpha
        self.beta = beta
        self.eta = eta
        super(EnergyEquationWithStress2D,self).__init__(dest, sources)

    def initialize(self, d_idx, d_ae):
        d_ae[d_idx] = 0.0

    def loop(self, d_idx, s_idx, s_m, d_rho, s_rho, d_p, s_p,
             d_cs, s_cs, d_ae, XIJ, VIJ, DWIJ, HIJ, R2IJ, RHOIJ1):

        rhoa = d_rho[d_idx]
        ca = d_cs[d_idx]
        pa = d_p[d_idx]

        rhob = s_rho[s_idx]
        cb = s_cs[s_idx]
        pb = s_p[s_idx]
        mb = s_m[s_idx]

        rhoa2 = 1./(rhoa*rhoa)
        rhob2 = 1./(rhob*rhob)

        # artificial viscosity
        vijdotxij = VIJ[0]*XIJ[0] + VIJ[1]*XIJ[1] + VIJ[2]*XIJ[2]

        piij = 0.0
        if vijdotxij < 0:
            cij = 0.5 * (d_cs[d_idx] + s_cs[s_idx])

            muij = (HIJ * vijdotxij)/(R2IJ + self.eta*self.eta*HIJ*HIJ)

            piij = -self.alpha*cij*muij + self.beta*muij*muij
            piij = piij*RHOIJ1


        vijdotdwij = VIJ[0]*DWIJ[0] + VIJ[1]*DWIJ[1] + VIJ[2]*DWIJ[2]

        # thermal energy contribution
        d_ae[d_idx] += 0.5 * mb * (pa*rhoa2 + pb*rhob2 + piij)

    def post_loop(self, d_idx, d_rho,
                  d_s00, d_s01, d_s11, s_s00, s_s01, s_s11,
                  d_v00, d_v01, d_v10, d_v11,
                  d_ae):

        # particle density
        rhoa = d_rho[d_idx]

        # deviatoric stress rate (symmetric)
        s00a = d_s00[d_idx]
        s01a = d_s01[d_idx]
        s10a = d_s01[d_idx]
        s11a = d_s11[d_idx]

        # strain rate tensor (symmetric)
        eps00 = d_v00[d_idx]
        eps01 = 0.5 * (d_v01[d_idx] + d_v10[d_idx])

        eps10 = eps01
        eps11 = d_v11[d_idx]

        # energy acclerations
        sdoteij = s00a*eps00 +  s01a*eps01 + s10a*eps10 + s11a*eps11
        d_ae[d_idx] += 1./rhoa * sdoteij