This file is indexed.

/usr/lib/python2.7/dist-packages/PySPH-1.0a4.dev0-py2.7-linux-x86_64.egg/pysph/sph/wc/transport_velocity.py is in python-pysph 0~20160514.git91867dc-4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
"""
Transport Velocity Formulation
##############################

References
----------
    .. [Adami2012] S. Adami et. al "A generalized wall boundary condition for
        smoothed particle hydrodynamics", Journal of Computational Physics
        (2012), pp. 7057--7075.

    .. [Adami2013] S. Adami et. al "A transport-velocity formulation for
        smoothed particle hydrodynamics", Journal of Computational Physics
        (2013), pp. 292--307.

"""

from pysph.sph.equation import Equation
from math import sin, cos, pi

# constants
M_PI = pi

class SummationDensity(Equation):
    r"""**Summation density with volume summation**

    In addition to the standard summation density, the number density
    for the particle is also computed. The number density is important
    for multi-phase flows to define a local particle volume
    independent of the material density.

    .. math::

        \rho_a = \sum_b m_b W_{ab}\\

        \mathcal{V}_a = \frac{1}{\sum_b W_{ab}}

    Notes
    -----
    For this equation, the destination particle array must define the
    variable `V` for particle volume.
    """

    def initialize(self, d_idx, d_V, d_rho):
        d_V[d_idx] = 0.0
        d_rho[d_idx] = 0.0

    def loop(self, d_idx, d_V, d_rho, d_m, WIJ):
        d_V[d_idx] += WIJ
        d_rho[d_idx] += d_m[d_idx]*WIJ

class VolumeSummation(Equation):
    """**Number density for volume computation**

    See `SummationDensity`
    """

    def initialize(self, d_idx, d_V):
        d_V[d_idx] = 0.0

    def loop(self, d_idx, d_V, WIJ):
        d_V[d_idx] += WIJ

class VolumeFromMassDensity(Equation):
    """**Set the inverse volume using mass density**"""
    def loop(self, d_idx, d_V, d_rho, d_m):
        d_V[d_idx] = d_rho[d_idx]/d_m[d_idx]

class SetWallVelocity(Equation):
    r"""**Extrapolating the fluid velocity on to the wall**

    Eq. (22) in [Adami2012]:

    .. math::

        \tilde{\boldsymbol{v}}_a = \frac{\sum_b\boldsymbol{v}_b W_{ab}}
        {\sum_b W_{ab}}

    Notes
    -----
    The destination particle array for this equation should define the
    *filtered* velocity variables :math:`uf, vf, wf`.

    """
    def initialize(self, d_idx, d_uf, d_vf, d_wf, d_wij):
        d_uf[d_idx] = 0.0
        d_vf[d_idx] = 0.0
        d_wf[d_idx] = 0.0
        d_wij[d_idx] = 0.0

    def loop(self, d_idx, s_idx, d_uf, d_vf, d_wf,
             s_u, s_v, s_w, d_wij, WIJ):

        # normalisation factor is different from 'V' as the particles
        # near the boundary do not have full kernel support
        d_wij[d_idx] += WIJ

        # sum in Eq. (22)
        # this will be normalized in post loop
        d_uf[d_idx] += s_u[s_idx] * WIJ
        d_vf[d_idx] += s_v[s_idx] * WIJ
        d_wf[d_idx] += s_w[s_idx] * WIJ

    def post_loop(self, d_uf, d_vf, d_wf, d_wij, d_idx,
            d_ug, d_vg, d_wg, d_u, d_v, d_w):

        # calculation is done only for the relevant boundary particles.
        # d_wij (and d_uf) is 0 for particles sufficiently away from the
        # solid-fluid interface
        if d_wij[d_idx] > 1e-12:
            d_uf[d_idx] /= d_wij[d_idx]
            d_vf[d_idx] /= d_wij[d_idx]
            d_wf[d_idx] /= d_wij[d_idx]

        # Dummy velocities at the ghost points using Eq. (23),
        # d_u, d_v, d_w are the prescribed wall velocities.
        d_ug[d_idx] = 2*d_u[d_idx] - d_uf[d_idx]
        d_vg[d_idx] = 2*d_v[d_idx] - d_vf[d_idx]
        d_wg[d_idx] = 2*d_w[d_idx] - d_wf[d_idx]

class ContinuityEquation(Equation):
    r"""**Conservation of mass equation**

    Eq (6) in [Adami2012]:

    .. math::

        \frac{d\rho_a}{dt} = \rho_a \sum_b \frac{m_b}{\rho_b}
        \boldsymbol{v}_{ab} \cdot \nabla_a W_{ab}

    """
    def initialize(self, d_idx, d_arho):
        d_arho[d_idx] = 0.0

    def loop(self, d_idx, s_idx, d_arho, s_m, d_rho, s_rho, VIJ, DWIJ):
        vijdotdwij = VIJ[0]*DWIJ[0] + VIJ[1]*DWIJ[1] + VIJ[2]*DWIJ[2]

        d_arho[d_idx] += d_rho[d_idx] * s_m[s_idx]/s_rho[s_idx] * vijdotdwij

class StateEquation(Equation):
    r"""**Generalized Weakly Compressible Equation of State**

    .. math::

        p_a = p_0\left[ \left(\frac{\rho}{\rho_0}\right)^\gamma - b
        \right] + \mathcal{X}

    Notes
    -----
    This is the generalized Tait's equation of state and the suggested values
    in [Adami2013] are :math:`\mathcal{X} = 0`, :math:`\gamma=1` and
    :math:`b = 1`.

    The reference pressure :math:`p_0` is calculated from the artificial
    sound speed and reference density:

    .. math::

        p_0 = \frac{c^2\rho_0}{\gamma}
    """

    def __init__(self, dest, sources, p0, rho0, b=1.0):
        r"""
        Parameters
        ----------
        p0 : float
            reference pressure
        rho0 : float
            reference density
        b : float
            constant (default 1.0).
        """

        self.b=b
        self.p0 = p0
        self.rho0 = rho0
        super(StateEquation, self).__init__(dest, sources)

    def loop(self, d_idx, d_p, d_rho):
        d_p[d_idx] = self.p0 * ( d_rho[d_idx]/self.rho0 - self.b )

class MomentumEquationPressureGradient(Equation):
    r"""**Momentum equation for the Transport Velocity Formulation: Pressure**

    Eq. (8) in [Adami2013]:

    .. math::

        \frac{d \boldsymbol{v}_a}{dt} = \frac{1}{m_a}\sum_b (V_a^2 +
        V_b^2)\left[-\bar{p}_{ab}\nabla_a W_{ab} \right]

    where

    .. math::

        \bar{p}_{ab} = \frac{\rho_b p_a + \rho_a p_b}{\rho_a + \rho_b}
    """

    def __init__(self, dest, sources, pb, gx=0., gy=0., gz=0.,
                 tdamp=0.0):

        r"""
        Parameters
        ----------
        pb : float
            background pressure
        gx : float
            Body force per unit mass along the x-axis
        gy : float
            Body force per unit mass along the y-axis
        gz : float
            Body force per unit mass along the z-axis
        tdamp : float
            damping time

        Notes
        -----
        This equation should have the destination as fluid and sources as
        fluid and boundary particles.

        This function also computes the contribution to the background
        pressure and accelerations due to a body force or gravity.

        The body forces are damped according to Eq. (13) in [Adami2012] to avoid
        instantaneous accelerations. By default, damping is neglected.
        """

        self.pb = pb
        self.gx = gx
        self.gy = gy
        self.gz = gz
        self.tdamp = tdamp
        super(MomentumEquationPressureGradient, self).__init__(dest, sources)

    def initialize(self, d_idx, d_au, d_av, d_aw, d_auhat, d_avhat, d_awhat):
        d_au[d_idx] = 0.0
        d_av[d_idx] = 0.0
        d_aw[d_idx] = 0.0

        d_auhat[d_idx] = 0.0
        d_avhat[d_idx] = 0.0
        d_awhat[d_idx] = 0.0

    def loop(self, d_idx, s_idx, d_m, d_rho, s_rho,
             d_au, d_av, d_aw, d_p, s_p,
             d_auhat, d_avhat, d_awhat, d_V, s_V, DWIJ):

        # averaged pressure Eq. (7)
        rhoi = d_rho[d_idx]; rhoj = s_rho[s_idx]
        pi = d_p[d_idx]; pj = s_p[s_idx]

        pij = rhoj * pi + rhoi * pj
        pij /= (rhoj + rhoi)

        # particle volumes
        Vi = 1./d_V[d_idx]; Vj = 1./s_V[s_idx]
        Vi2 = Vi * Vi; Vj2 = Vj * Vj

        # inverse mass of destination particle
        mi1 = 1.0/d_m[d_idx]

        # accelerations 1st term in Eq. (8)
        tmp = -pij * mi1 * (Vi2 + Vj2)

        d_au[d_idx] += tmp * DWIJ[0]
        d_av[d_idx] += tmp * DWIJ[1]
        d_aw[d_idx] += tmp * DWIJ[2]

        # contribution due to the background pressure Eq. (13)
        tmp = -self.pb * mi1 * (Vi2 + Vj2)

        d_auhat[d_idx] += tmp * DWIJ[0]
        d_avhat[d_idx] += tmp * DWIJ[1]
        d_awhat[d_idx] += tmp * DWIJ[2]

    def post_loop(self, d_idx, d_au, d_av, d_aw, t):
        # damped accelerations due to body or external force
        damping_factor = 1.0
        if t < self.tdamp:
            damping_factor = 0.5 * ( sin((-0.5 + t/self.tdamp)*M_PI)+ 1.0 )

        d_au[d_idx] += self.gx * damping_factor
        d_av[d_idx] += self.gy * damping_factor
        d_aw[d_idx] += self.gz * damping_factor

class MomentumEquationViscosity(Equation):
    r"""**Momentum equation for the Transport Velocity Formulation: Viscosity**

    Eq. (8) in [Adami2013]:

    .. math::

           \frac{d \boldsymbol{v}_a}{dt} = \frac{1}{m_a}\sum_b (V_a^2 +
           V_b^2)\left[ \bar{\eta}_{ab}\hat{r}_{ab}\cdot \nabla_a W_{ab}
           \frac{\boldsymbol{v}_{ab}}{|\boldsymbol{r}_{ab}|}\right]

    where

    .. math::

        \bar{\eta}_{ab} = \frac{2\eta_a \eta_b}{\eta_a + \eta_b}
    """

    def __init__(self, dest, sources, nu):
        r"""
        Parameters
        ----------
        nu : float
            kinematic viscosity
        """

        self.nu = nu
        super(MomentumEquationViscosity, self).__init__(dest, sources)

    def initialize(self, d_idx, d_au, d_av, d_aw):
        d_au[d_idx] = 0.0
        d_av[d_idx] = 0.0
        d_aw[d_idx] = 0.0

    def loop(self, d_idx, s_idx, d_rho, s_rho, d_m, d_V, s_V,
             d_au, d_av, d_aw,
             R2IJ, EPS, DWIJ, VIJ, XIJ):

        # averaged shear viscosity Eq. (6)
        etai = self.nu * d_rho[d_idx]
        etaj = self.nu * s_rho[s_idx]

        etaij = 2 * (etai * etaj)/(etai + etaj)

        # scalar part of the kernel gradient
        Fij = DWIJ[0]*XIJ[0] + DWIJ[1]*XIJ[1] + DWIJ[2]*XIJ[2]

        # particle volumes
        Vi = 1./d_V[d_idx]; Vj = 1./s_V[s_idx]
        Vi2 = Vi * Vi; Vj2 = Vj * Vj

        # accelerations 3rd term in Eq. (8)
        tmp = 1./d_m[d_idx] * (Vi2 + Vj2) * etaij * Fij/(R2IJ + EPS)

        d_au[d_idx] += tmp * VIJ[0]
        d_av[d_idx] += tmp * VIJ[1]
        d_aw[d_idx] += tmp * VIJ[2]

class MomentumEquationArtificialViscosity(Equation):
    r"""**Artificial viscosity for the momentum equation**

    Eq. (11) in [Adami2012]:

    .. math::

        \frac{d \boldsymbol{v}_a}{dt} = -\sum_b m_b \alpha h_{ab}
        c_{ab} \frac{\boldsymbol{v}_{ab}\cdot
        \boldsymbol{r}_{ab}}{\rho_{ab}\left(|r_{ab}|^2 + \epsilon
        \right)}\nabla_a W_{ab}

    where

    .. math::

        \rho_{ab} = \frac{\rho_a + \rho_b}{2}\\

        c_{ab} = \frac{c_a + c_b}{2}\\

        h_{ab} = \frac{h_a + h_b}{2}
    """
    def __init__(self, dest, sources, c0, alpha=0.1):
        r"""
        Parameters
        ----------
        alpha : float
            constant
        c0 : float
            speed of sound
        """

        self.alpha = alpha
        self.c0 = c0
        super(MomentumEquationArtificialViscosity, self).__init__(dest, sources)

    def initialize(self, d_idx, d_au, d_av, d_aw):
        d_au[d_idx] = 0.0
        d_av[d_idx] = 0.0
        d_aw[d_idx] = 0.0

    def loop(self, d_idx, s_idx, s_m, d_au, d_av, d_aw,
             RHOIJ1, R2IJ, EPS, DWIJ, VIJ, XIJ, HIJ):

        # v_{ab} \cdot r_{ab}
        vijdotrij = VIJ[0]*XIJ[0] + VIJ[1]*XIJ[1] + VIJ[2]*XIJ[2]

        # scalar part of the accelerations Eq. (11)
        piij = 0.0
        if vijdotrij < 0:
            muij = (HIJ * vijdotrij)/(R2IJ + EPS)

            piij = -self.alpha*self.c0*muij
            piij = s_m[s_idx] * piij*RHOIJ1

        d_au[d_idx] += -piij * DWIJ[0]
        d_av[d_idx] += -piij * DWIJ[1]
        d_aw[d_idx] += -piij * DWIJ[2]

class MomentumEquationArtificialStress(Equation):
    r"""**Artificial stress contribution to the Momentum Equation**

    .. math::

          \frac{d\boldsymbol{v}_a}{dt} = \frac{1}{m_a}\sum_b (V_a^2 +
          V_b^2)\left[ \frac{1}{2}(\boldsymbol{A}_a +
          \boldsymbol{A}_b) : \nabla_a W_{ab}\right]

    where the artificial stress terms are given by:

    .. math::

           \boldsymbol{A} = \rho \boldsymbol{v} (\tilde{\boldsymbol{v}}
         - \boldsymbol{v})

    """
    def initialize(self, d_idx, d_au, d_av, d_aw):
        d_au[d_idx] = 0.0
        d_av[d_idx] = 0.0
        d_aw[d_idx] = 0.0

    def loop(self, d_idx, s_idx, d_rho, d_u, d_v, d_w, d_V,
             d_uhat, d_vhat, d_what, d_au, d_av, d_aw, d_m,
             s_rho, s_u, s_v, s_w, s_V, s_uhat, s_vhat, s_what, DWIJ):
        rhoi = d_rho[d_idx]; rhoj = s_rho[s_idx]

        # physical and advection velocities
        ui = d_u[d_idx]; uhati = d_uhat[d_idx]
        vi = d_v[d_idx]; vhati = d_vhat[d_idx]
        wi = d_w[d_idx]; whati = d_what[d_idx]

        uj = s_u[s_idx]; uhatj = s_uhat[s_idx]
        vj = s_v[s_idx]; vhatj = s_vhat[s_idx]
        wj = s_w[s_idx]; whatj = s_what[s_idx]

        # particle volumes
        Vi = 1./d_V[d_idx]; Vj = 1./s_V[s_idx]
        Vi2 = Vi * Vi; Vj2 = Vj * Vj

        # artificial stress tensor
        Axxi = rhoi*ui*(uhati - ui); Axyi = rhoi*ui*(vhati - vi)
        Axzi = rhoi*ui*(whati - wi)
        Ayxi = rhoi*vi*(uhati - ui); Ayyi = rhoi*vi*(vhati - vi)
        Ayzi = rhoi*vi*(whati - wi)
        Azxi = rhoi*wi*(uhati - ui); Azyi = rhoi*wi*(vhati - vi)
        Azzi = rhoi*wi*(whati - wi)

        Axxj = rhoj*uj*(uhatj - uj); Axyj = rhoj*uj*(vhatj - vj)
        Axzj = rhoj*uj*(whatj - wj)
        Ayxj = rhoj*vj*(uhatj - uj); Ayyj = rhoj*vj*(vhatj - vj)
        Ayzj = rhoj*vj*(whatj - wj)
        Azxj = rhoj*wj*(uhatj - uj); Azyj = rhoj*wj*(vhatj - vj)
        Azzj = rhoj*wj*(whatj - wj)

        # contraction of stress tensor with kernel gradient
        Ax = 0.5*(
            (Axxi + Axxj)*DWIJ[0] +
            (Axyi + Axyj)*DWIJ[1] +
            (Axzi + Axzj)*DWIJ[2]
        )

        Ay = 0.5*(
            (Ayxi + Ayxj)*DWIJ[0] +
            (Ayyi + Ayyj)*DWIJ[1] +
            (Ayzi + Ayzj)*DWIJ[2]
        )

        Az = 0.5*(
            (Azxi + Azxj)*DWIJ[0] +
            (Azyi + Azyj)*DWIJ[1] +
            (Azzi + Azzj)*DWIJ[2]
        )

        # accelerations 2nd part of Eq. (8)
        tmp = 1./d_m[d_idx] * (Vi2 + Vj2)

        d_au[d_idx] += tmp * Ax
        d_av[d_idx] += tmp * Ay
        d_aw[d_idx] += tmp * Az

class SolidWallNoSlipBC(Equation):
    r"""**Solid wall boundary condition** [Adami2012]_

    This boundary condition is to be used with fixed ghost particles
    in SPH simulations and is formulated for the general case of
    moving boundaries.

    The velocity and pressure of the fluid particles is extrapolated
    to the ghost particles and these values are used in the equations
    of motion.

    No-penetration:

    Ghost particles participate in the continuity and state equations
    with fluid particles. This means as fluid particles approach the
    wall, the pressure of the ghost particles increases to generate a
    repulsion force that prevents particle penetration.

    No-slip:

    Extrapolation is used to set the `dummy` velocity of the ghost
    particles for viscous interaction. First, the smoothed velocity
    field of the fluid phase is extrapolated to the wall particles:

    .. math::

        \tilde{v}_a = \frac{\sum_b v_b W_{ab}}{\sum_b W_{ab}}

    In the second step, for the viscous interaction in Eqs. (10) in [Adami2012]
    and Eq. (8) in [Adami2013], the velocity of the ghost particles is
    assigned as:

    .. math::

       v_b = 2v_w -\tilde{v}_a,

    where :math:`v_w` is the prescribed wall velocity and :math:`v_b`
    is the ghost particle in the interaction.
    """

    def __init__(self, dest, sources, nu):
        r"""
        Parameters
        ----------
        nu : float
            kinematic viscosity

        Notes
        -----
        For this equation the destination particle array should be the
        fluid and the source should be ghost or boundary particles. The
        boundary particles must define a prescribed velocity :math:`u_0,
        v_0, w_0`
        """

        self.nu = nu
        super(SolidWallNoSlipBC, self).__init__(dest, sources)

    def initialize(self, d_idx, d_au, d_av, d_aw):
        d_au[d_idx] = 0.0
        d_av[d_idx] = 0.0
        d_aw[d_idx] = 0.0

    def loop(self, d_idx, s_idx, d_m, d_rho, s_rho, d_V, s_V,
             d_u, d_v, d_w,
             d_au, d_av, d_aw,
             s_ug, s_vg, s_wg,
             DWIJ, R2IJ, EPS, XIJ):

        # averaged shear viscosity Eq. (6).
        etai = self.nu * d_rho[d_idx]
        etaj = self.nu * s_rho[s_idx]

        etaij = 2 * (etai * etaj)/(etai + etaj)

        # particle volumes
        Vi = 1./d_V[d_idx]; Vj = 1./s_V[s_idx]
        Vi2 = Vi * Vi; Vj2 = Vj * Vj

        # scalar part of the kernel gradient
        Fij = XIJ[0]*DWIJ[0] + XIJ[1]*DWIJ[1] + XIJ[2]*DWIJ[2]

        # viscous contribution (third term) from Eq. (8), with VIJ
        # defined appropriately using the ghost values
        tmp = 1./d_m[d_idx] * (Vi2 + Vj2) * (etaij * Fij/(R2IJ + EPS))

        d_au[d_idx] += tmp * (d_u[d_idx] - s_ug[s_idx])
        d_av[d_idx] += tmp * (d_v[d_idx] - s_vg[s_idx])
        d_aw[d_idx] += tmp * (d_w[d_idx] - s_wg[s_idx])

class SolidWallPressureBC(Equation):
    r"""**Solid wall pressure boundary condition** [Adami2012]_

    This boundary condition is to be used with fixed ghost particles
    in SPH simulations and is formulated for the general case of
    moving boundaries.

    The velocity and pressure of the fluid particles is extrapolated
    to the ghost particles and these values are used in the equations
    of motion.

    Pressure boundary condition:

    The pressure of the ghost particle is also calculated from the
    fluid particle by interpolation using:

    .. math::

        p_g = \frac{\sum_f p_f W_{gf} + \boldsymbol{g - a_g} \cdot
        \sum_f \rho_f \boldsymbol{r}_{gf}W_{gf}}{\sum_f W_{gf}},

    where the subscripts `g` and `f` relate to the ghost and fluid
    particles respectively.

    Density of the wall particle is then set using this pressure

    .. math::

        \rho_w=\rho_0\left(\frac{p_w - \mathcal{X}}{p_0} +
        1\right)^{\frac{1}{\gamma}}
    """

    def __init__(self, dest, sources, rho0, p0, b=1.0, gx=0.0, gy=0.0, gz=0.0):
        r"""
        Parameters
        ----------
        rho0 : float
            reference density
        p0 : float
            reference pressure
        b : float
            constant (default 1.0)
        gx : float
            Body force per unit mass along the x-axis
        gy : float
            Body force per unit mass along the y-axis
        gz : float
            Body force per unit mass along the z-axis

        Notes
        -----
        For a two fluid system (boundary, fluid), this equation must be
        instantiated with boundary as the destination and fluid as the
        source.

        The boundary particle array must additionally define a property
        :math:`wij` for the denominator in Eq. (27) from [Adami2012]. This array
        sums the kernel terms from the ghost particle to the fluid
        particle.
        """

        self.rho0 = rho0
        self.p0 = p0
        self.b = b
        self.gx = gx
        self.gy = gy
        self.gz = gz

        super(SolidWallPressureBC, self).__init__(dest, sources)

    def initialize(self, d_idx, d_p, d_wij):
        d_p[d_idx] = 0.0
        d_wij[d_idx] = 0.0

    def loop(self, d_idx, s_idx, d_p, s_p, d_wij, s_rho,
             d_au, d_av, d_aw, WIJ, XIJ):

        # numerator of Eq. (27) ax, ay and az are the prescribed wall
        # accelerations which must be defined for the wall boundary
        # particle
        gdotxij = (self.gx - d_au[d_idx])*XIJ[0] + \
            (self.gy - d_av[d_idx])*XIJ[1] + \
            (self.gz - d_aw[d_idx])*XIJ[2]

        d_p[d_idx] += s_p[s_idx]*WIJ + s_rho[s_idx]*gdotxij*WIJ

        # denominator of Eq. (27)
        d_wij[d_idx] += WIJ

    def post_loop(self, d_idx, d_wij, d_p, d_rho):
        # extrapolated pressure at the ghost particle
        if d_wij[d_idx] > 1e-14:
            d_p[d_idx] /= d_wij[d_idx]

        # update the density from the pressure Eq. (28)
        d_rho[d_idx] = self.rho0 * (d_p[d_idx]/self.p0 + self.b)