This file is indexed.

/usr/lib/python2.7/dist-packages/PySPH-1.0a4.dev0-py2.7-linux-x86_64.egg/pysph/tools/interpolator.py is in python-pysph 0~20160514.git91867dc-4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# Standard library imports
from functools import reduce

# Library imports.
import numpy as np

# Package imports.
from pysph.base.utils import get_particle_array
from pysph.base.kernels import Gaussian
from pysph.base.nnps import LinkedListNNPS as NNPS
from pysph.sph.equation import Equation
from pysph.sph.acceleration_eval import AccelerationEval
from pysph.sph.sph_compiler import SPHCompiler


class InterpolateFunction(Equation):
    def initialize(self, d_idx, d_prop, d_number_density):
        d_prop[d_idx] = 0.0
        d_number_density[d_idx] = 0.0

    def loop(self, s_idx, d_idx, s_temp_prop, d_prop, d_number_density, WIJ):
        d_number_density[d_idx] += WIJ
        d_prop[d_idx] += WIJ*s_temp_prop[s_idx]

    def post_loop(self, d_idx, d_prop, d_number_density):
        if d_number_density[d_idx] > 1e-12:
            d_prop[d_idx] /= d_number_density[d_idx]


def get_bounding_box(particle_arrays, tight=False, stretch=0.05):
    """Find the size of the domain given a sequence of particle arrays.

    If `tight` is True, the bounds are tight, if not the domain is stretched
    along each dimension by an amount `stretch` specified as a percentage of
    the length along that dimension is added in each dimension.

    """
    xmin, xmax = 1e20, -1e20
    ymin, ymax = 1e20, -1e20
    zmin, zmax = 1e20, -1e20
    for pa in particle_arrays:
        x, y, z = pa.x, pa.y, pa.z
        xmin = min(xmin, x.min())
        xmax = max(xmax, x.max())
        ymin = min(ymin, y.min())
        ymax = max(ymax, y.max())
        zmin = min(zmin, z.min())
        zmax = max(zmax, z.max())

    bounds = np.asarray((xmin, xmax, ymin, ymax, zmin, zmax))
    if not tight:
        # Add the extra space.
        lengths = stretch*np.repeat(bounds[1::2] - bounds[::2], 2)
        lengths[::2] *= -1.0
        bounds += lengths

    return bounds

def get_nx_ny_nz(num_points, bounds):
    """Given a number of points to use and the bounds, return a triplet
    of integers for a uniform mesh with approximately that many points.
    """
    bounds = np.asarray(bounds, dtype=float)
    length = bounds[1::2] - bounds[::2]
    total_length = length.sum()
    rel_length = length/total_length
    non_zero = rel_length > 1e-3
    dim = int(non_zero.sum())
    volume = np.prod(length[non_zero])
    delta = pow(volume/num_points, 1.0/dim)
    dimensions = np.ones(3, dtype=int)
    for i in range(3):
        if rel_length[i] > 1e-4:
            dimensions[i] = int(round(length[i]/delta))

    return dimensions


class Interpolator(object):
    """Convenient class to interpolate particle properties onto a uniform grid
    or given set of particles.  This is particularly handy for visualization.

    """

    def __init__(self, particle_arrays, num_points=125000, kernel=None,
                 x=None, y=None, z=None, domain_manager=None, equations=None):
        """
        The x, y, z coordinates need not be specified, and if they are not,
        the bounds of the interpolated domain is automatically computed and
        `num_points` number of points are used in this domain uniformly placed.

        Parameters
        ----------

        particle_arrays: list
            A list of particle arrays.
        num_points: int
            the number of points to interpolate on to.
        kernel: Kernel
            the kernel to use for interpolation.
        x: ndarray
            the x-coordinate of points on which to interpolate.
        y: ndarray
            the y-coordinate of points on which to interpolate.
        z: ndarray
            the z-coordinate of points on which to interpolate.
        domain_manager: DomainManager
            An optional Domain manager for periodic domains.
        equations: sequence
            A sequence of equations or groups.  Defaults to None.  This is
            used only if the default interpolation equations are inadequate.
        """
        self._set_particle_arrays(particle_arrays)
        bounds = get_bounding_box(self.particle_arrays)
        shape = get_nx_ny_nz(num_points, bounds)
        self.dim = 3 - list(shape).count(1)

        if kernel is None:
            self.kernel = Gaussian(dim=self.dim)
        else:
            self.kernel = kernel

        self.pa = None
        self.nnps = None
        self.equations = equations
        self.func_eval = None
        self.domain_manager = domain_manager
        if x is None and y is None and z is None:
            self.set_domain(bounds, shape)
        else:
            self.set_interpolation_points(x=x, y=y, z=z)

    #### Interpolator protocol ################################################
    def set_interpolation_points(self, x=None, y=None, z=None):
        """Set the points on which we must interpolate the arrays.

        If any of x, y, z is not passed it is assumed to be 0.0 and shaped
        like the other non-None arrays.


        Parameters
        ----------

        x: ndarray
            the x-coordinate of points on which to interpolate.
        y: ndarray
            the y-coordinate of points on which to interpolate.
        z: ndarray
            the z-coordinate of points on which to interpolate.

        """
        tmp = None
        for tmp in (x, y, z):
            if tmp is not None:
                break
        if tmp is None:
            raise RuntimeError('At least one non-None array must be given.')

        def _get_array(_t):
            return np.asarray(_t) if _t is not None else np.zeros_like(tmp)

        x, y, z = _get_array(x), _get_array(y), _get_array(z)

        self.shape = x.shape
        self.pa = self._create_particle_array(x, y, z)
        arrays = self.particle_arrays + [self.pa]

        if self.func_eval is None:
            self._compile_acceleration_eval(arrays)

        self.update_particle_arrays(self.particle_arrays)

    def set_domain(self, bounds, shape):
        """Set the domain to interpolate into.

        Parameters
        ----------

        bounds: tuple
            (xmin, xmax, ymin, ymax, zmin, zmax)
        shape: tuple
            (nx, ny, nz)
        """
        self.bounds = np.asarray(bounds)
        self.shape = np.asarray(shape)
        x, y, z = self._create_default_points(self.bounds, self.shape)
        self.set_interpolation_points(x, y, z)

    def interpolate(self, prop, gradient=False):
        """Interpolate given property.

        Parameters
        ----------

        prop: str
            The name of the property to interpolate.

        gradient: bool
            Evaluate gradient and not function.

        Returns
        -------
        A numpy array suitably shaped with the property interpolated.
        """
        for array in self.particle_arrays:
            data = array.get(prop, only_real_particles=False)
            array.get('temp_prop', only_real_particles=False)[:] = data

        self.func_eval.compute(0.0, 0.1) # These are junk arguments.
        result = self.pa.prop.copy()
        result.shape = self.shape
        return result.squeeze()

    def update_particle_arrays(self, particle_arrays):
        """Call this for a new set of particle arrays which have the
        same properties as before.

        For example, if you are reading the particle array data from files,
        each time you load a new file a new particle array is read with the
        same properties.  Call this function to reset the arrays.
        """
        self._set_particle_arrays(particle_arrays)
        arrays = self.particle_arrays + [self.pa]
        self._create_nnps(arrays)
        self.func_eval.update_particle_arrays(arrays)

    #### Private protocol #####################################################

    def _create_nnps(self, arrays):
        # create the neighbor locator object
        self.nnps = NNPS(dim=self.kernel.dim, particles=arrays,
                         radius_scale=self.kernel.radius_scale,
                         domain=self.domain_manager,
                         cache=True)
        self.nnps.update()
        self.func_eval.set_nnps(self.nnps)

    def _create_default_points(self, bounds, shape):
        b = bounds
        n = shape
        x, y, z = np.mgrid[b[0]:b[1]:n[0]*1j,
                           b[2]:b[3]:n[1]*1j,
                           b[4]:b[5]:n[2]*1j,
                          ]
        return x, y, z

    def _create_particle_array(self, x, y, z):
        xr = x.ravel()
        yr = y.ravel()
        zr = z.ravel()
        self.x, self.y, self.z = x.squeeze(), y.squeeze(), z.squeeze()

        hmax = self._get_max_h_in_arrays()
        h = hmax*np.ones_like(xr)
        prop = np.zeros_like(xr)
        pa = get_particle_array(
            name='interpolate',
            x=xr, y=yr, z=zr, h=h,
            number_density=np.zeros_like(xr),
            prop=prop,
            grad_x=np.zeros_like(xr),
            grad_y=np.zeros_like(xr),
            grad_z=np.zeros_like(xr)
        )
        return pa

    def _compile_acceleration_eval(self, arrays):
        names = [x.name for x in self.particle_arrays]
        if self.equations is None:
            equations = [InterpolateFunction(dest='interpolate',
                                             sources=names)]
        else:
            equations = self.equations
        self.func_eval = AccelerationEval(arrays, equations, self.kernel)
        compiler = SPHCompiler(self.func_eval, None)
        compiler.compile()

    def _get_max_h_in_arrays(self):
        hmax = -1.0
        for array in self.particle_arrays:
            hmax = max(array.h.max(), hmax)
        return hmax

    def _set_particle_arrays(self, particle_arrays):
        self.particle_arrays = particle_arrays
        self._make_all_arrays_have_same_props(particle_arrays)
        for array in self.particle_arrays:
            if 'temp_prop' not in array.properties:
                array.add_property('temp_prop')

    def _make_all_arrays_have_same_props(self, particle_arrays):
        """Make sure all arrays have the same props.
        """
        all_props = reduce(
            set.union, [set(x.properties.keys()) for x in particle_arrays]
        )
        for array in particle_arrays:
            all_props.update(array.properties.keys())

        for array in particle_arrays:
            array_props = set(array.properties.keys())
            for prop in (all_props - array_props):
                array.add_property(prop)



def main(fname, prop, npoint):
    from pysph.solver.utils import load
    print("Loading", fname)
    data = load(fname)
    arrays = list(data['arrays'].values())
    interp = Interpolator(arrays, num_points=npoint)
    print(interp.shape)
    print("Interpolating")
    prop = interp.interpolate(prop)
    print("Visualizing")
    from mayavi import mlab
    src = mlab.pipeline.scalar_field(interp.x, interp.y, interp.z, prop)
    if interp.dim == 3:
        mlab.pipeline.scalar_cut_plane(src)
    else:
        mlab.pipeline.surface(src)
    mlab.pipeline.outline(src)
    mlab.show()

if __name__ == '__main__':
    import sys
    if len(sys.argv) < 4:
        print("Usage: interpolator.py filename property num_points")
        sys.exit(1)
    else:
        main(sys.argv[1], sys.argv[2], int(sys.argv[3]))