This file is indexed.

/usr/lib/python2.7/dist-packages/pywt/_multidim.py is in python-pywt 0.5.1-1.1ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Copyright (c) 2006-2012 Filip Wasilewski <http://en.ig.ma/>
# Copyright (c) 2012-2016 The PyWavelets Developers
#                         <https://github.com/PyWavelets/pywt>
# See COPYING for license details.

"""
2D and nD Discrete Wavelet Transforms and Inverse Discrete Wavelet Transforms.
"""

from __future__ import division, print_function, absolute_import

__all__ = ['dwt2', 'idwt2', 'dwtn', 'idwtn']

from itertools import product

import numpy as np

from ._extensions._pywt import Wavelet, Modes
from ._extensions._dwt import dwt_axis, idwt_axis


def dwt2(data, wavelet, mode='symmetric', axes=(-2, -1)):
    """
    2D Discrete Wavelet Transform.

    Parameters
    ----------
    data : array_like
        2D array with input data
    wavelet : Wavelet object or name string
        Wavelet to use
    mode : str, optional
        Signal extension mode, see Modes (default: 'symmetric')
    axes : 2-tuple of ints, optional
        Axes over which to compute the DWT. Repeated elements mean the DWT will
        be performed multiple times along these axes.

    Returns
    -------
    (cA, (cH, cV, cD)) : tuple
        Approximation, horizontal detail, vertical detail and diagonal
        detail coefficients respectively.  Horizontal refers to array axis 0
        (or ``axes[0]`` for user-specified ``axes``).

    Examples
    --------
    >>> import numpy as np
    >>> import pywt
    >>> data = np.ones((4,4), dtype=np.float64)
    >>> coeffs = pywt.dwt2(data, 'haar')
    >>> cA, (cH, cV, cD) = coeffs
    >>> cA
    array([[ 2.,  2.],
           [ 2.,  2.]])
    >>> cV
    array([[ 0.,  0.],
           [ 0.,  0.]])

    """
    axes = tuple(axes)
    data = np.asarray(data)
    if len(axes) != 2:
        raise ValueError("Expected 2 axes")
    if data.ndim < len(np.unique(axes)):
        raise ValueError("Input array has fewer dimensions than the specified "
                         "axes")

    coefs = dwtn(data, wavelet, mode, axes)
    return coefs['aa'], (coefs['da'], coefs['ad'], coefs['dd'])


def idwt2(coeffs, wavelet, mode='symmetric', axes=(-2, -1)):
    """
    2-D Inverse Discrete Wavelet Transform.

    Reconstructs data from coefficient arrays.

    Parameters
    ----------
    coeffs : tuple
        (cA, (cH, cV, cD)) A tuple with approximation coefficients and three
        details coefficients 2D arrays like from `dwt2()`
    wavelet : Wavelet object or name string
        Wavelet to use
    mode : str, optional
        Signal extension mode, see Modes (default: 'symmetric')
    axes : 2-tuple of ints, optional
        Axes over which to compute the IDWT. Repeated elements mean the IDWT
        will be performed multiple times along these axes.

    Examples
    --------
    >>> import numpy as np
    >>> import pywt
    >>> data = np.array([[1,2], [3,4]], dtype=np.float64)
    >>> coeffs = pywt.dwt2(data, 'haar')
    >>> pywt.idwt2(coeffs, 'haar')
    array([[ 1.,  2.],
           [ 3.,  4.]])

    """
    # L -low-pass data, H - high-pass data
    LL, (HL, LH, HH) = coeffs
    axes = tuple(axes)
    if len(axes) != 2:
        raise ValueError("Expected 2 axes")

    coeffs = {'aa': LL, 'da': HL, 'ad': LH, 'dd': HH}

    # drop the keys corresponding to value = None
    coeffs = dict((k, v) for k, v in coeffs.items() if v is not None)

    return idwtn(coeffs, wavelet, mode, axes)


def dwtn(data, wavelet, mode='symmetric', axes=None):
    """
    Single-level n-dimensional Discrete Wavelet Transform.

    Parameters
    ----------
    data : array_like
        n-dimensional array with input data.
    wavelet : Wavelet object or name string
        Wavelet to use.
    mode : str, optional
        Signal extension mode, see `Modes`.  Default is 'symmetric'.
    axes : sequence of ints, optional
        Axes over which to compute the DWT. Repeated elements mean the DWT will
        be performed multiple times along these axes. A value of ``None`` (the
        default) selects all axes.

        Axes may be repeated, but information about the original size may be
        lost if it is not divisible by ``2 ** nrepeats``. The reconstruction
        will be larger, with additional values derived according to the
        ``mode`` parameter. ``pywt.wavedecn`` should be used for multilevel
        decomposition.

    Returns
    -------
    coeffs : dict
        Results are arranged in a dictionary, where key specifies
        the transform type on each dimension and value is a n-dimensional
        coefficients array.

        For example, for a 2D case the result will look something like this::

            {'aa': <coeffs>  # A(LL) - approx. on 1st dim, approx. on 2nd dim
             'ad': <coeffs>  # V(LH) - approx. on 1st dim, det. on 2nd dim
             'da': <coeffs>  # H(HL) - det. on 1st dim, approx. on 2nd dim
             'dd': <coeffs>  # D(HH) - det. on 1st dim, det. on 2nd dim
            }

        For user-specified ``axes``, the order of the characters in the
        dictionary keys map to the specified ``axes``.

    """
    data = np.asarray(data)
    if np.iscomplexobj(data):
        real = dwtn(data.real, wavelet, mode, axes)
        imag = dwtn(data.imag, wavelet, mode, axes)
        return dict((k, real[k] + 1j * imag[k]) for k in real.keys())

    if data.dtype == np.dtype('object'):
        raise TypeError("Input must be a numeric array-like")
    if data.ndim < 1:
        raise ValueError("Input data must be at least 1D")

    if axes is None:
        axes = range(data.ndim)
    axes = (a + data.ndim if a < 0 else a for a in axes)

    mode = Modes.from_object(mode)
    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    coeffs = [('', data)]
    for axis in axes:
        new_coeffs = []
        for subband, x in coeffs:
            cA, cD = dwt_axis(x, wavelet, mode, axis)
            new_coeffs.extend([(subband + 'a', cA),
                               (subband + 'd', cD)])
        coeffs = new_coeffs
    return dict(coeffs)


def _fix_coeffs(coeffs):
    missing_keys = [k for k, v in coeffs.items() if
                    v is None]
    if missing_keys:
        raise ValueError(
            "The following detail coefficients were set to None: "
            "{}.".format(missing_keys))

    invalid_keys = [k for k, v in coeffs.items() if
                    not set(k) <= set('ad')]
    if invalid_keys:
        raise ValueError(
            "The following invalid keys were found in the detail "
            "coefficient dictionary: {}.".format(invalid_keys))

    key_lengths = [len(k) for k in coeffs.keys()]
    if len(np.unique(key_lengths)) > 1:
        raise ValueError(
            "All detail coefficient names must have equal length.")

    return dict((k, np.asarray(v)) for k, v in coeffs.items())


def idwtn(coeffs, wavelet, mode='symmetric', axes=None):
    """
    Single-level n-dimensional Inverse Discrete Wavelet Transform.

    Parameters
    ----------
    coeffs: dict
        Dictionary as in output of `dwtn`. Missing or None items
        will be treated as zeroes.
    wavelet : Wavelet object or name string
        Wavelet to use
    mode : str, optional
        Signal extension mode used in the decomposition,
        see Modes (default: 'symmetric').
    axes : sequence of ints, optional
        Axes over which to compute the IDWT. Repeated elements mean the IDWT
        will be performed multiple times along these axes. A value of ``None``
        (the default) selects all axes.

        For the most accurate reconstruction, the axes should be provided in
        the same order as they were provided to ``dwtn``.

    Returns
    -------
    data: ndarray
        Original signal reconstructed from input data.

    """
    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)
    mode = Modes.from_object(mode)

    # Raise error for invalid key combinations
    coeffs = _fix_coeffs(coeffs)

    if any(np.iscomplexobj(v) for v in coeffs.values()):
        real_coeffs = dict((k, v.real) for k, v in coeffs.items())
        imag_coeffs = dict((k, v.imag) for k, v in coeffs.items())
        return (idwtn(real_coeffs, wavelet, mode, axes) +
                1j * idwtn(imag_coeffs, wavelet, mode, axes))

    # key length matches the number of axes transformed
    ndim_transform = max(len(key) for key in coeffs.keys())

    try:
        coeff_shapes = (v.shape for k, v in coeffs.items()
                        if v is not None and len(k) == ndim_transform)
        coeff_shape = next(coeff_shapes)
    except StopIteration:
        raise ValueError("`coeffs` must contain at least one non-null wavelet "
                         "band")
    if any(s != coeff_shape for s in coeff_shapes):
        raise ValueError("`coeffs` must all be of equal size (or None)")

    if axes is None:
        axes = range(ndim_transform)
        ndim = ndim_transform
    else:
        ndim = len(coeff_shape)
    axes = (a + ndim if a < 0 else a for a in axes)

    for key_length, axis in reversed(list(enumerate(axes))):
        if axis < 0 or axis >= ndim:
            raise ValueError("Axis greater than data dimensions")

        new_coeffs = {}
        new_keys = [''.join(coef) for coef in product('ad', repeat=key_length)]

        for key in new_keys:
            L = coeffs.get(key + 'a', None)
            H = coeffs.get(key + 'd', None)

            new_coeffs[key] = idwt_axis(L, H, wavelet, mode, axis)
        coeffs = new_coeffs

    return coeffs['']