This file is indexed.

/usr/lib/python2.7/dist-packages/pywt/_multilevel.py is in python-pywt 0.5.1-1.1ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
# Copyright (c) 2006-2012 Filip Wasilewski <http://en.ig.ma/>
# Copyright (c) 2012-2016 The PyWavelets Developers
#                         <https://github.com/PyWavelets/pywt>
# See COPYING for license details.

"""
Multilevel 1D and 2D Discrete Wavelet Transform
and Inverse Discrete Wavelet Transform.
"""

from __future__ import division, print_function, absolute_import

import warnings
from copy import copy
import numpy as np

from ._extensions._pywt import Wavelet
from ._extensions._dwt import dwt_max_level
from ._dwt import dwt, idwt
from ._multidim import dwt2, idwt2, dwtn, idwtn, _fix_coeffs

__all__ = ['wavedec', 'waverec', 'wavedec2', 'waverec2', 'wavedecn',
           'waverecn', 'coeffs_to_array', 'array_to_coeffs']


def _check_level(size, dec_len, level):
    """
    Set the default decomposition level or check if requested level is valid.
    """
    if level is None:
        level = dwt_max_level(size, dec_len)
    elif level < 0:
        raise ValueError(
            "Level value of %d is too low . Minimum level is 0." % level)
    else:
        max_level = dwt_max_level(size, dec_len)
        if level > max_level:
            raise ValueError(
                "Level value of %d is too high.  Maximum allowed is %d." % (
                    level, max_level))
    return level


def wavedec(data, wavelet, mode='symmetric', level=None, axis=-1):
    """
    Multilevel 1D Discrete Wavelet Transform of data.

    Parameters
    ----------
    data: array_like
        Input data
    wavelet : Wavelet object or name string
        Wavelet to use
    mode : str, optional
        Signal extension mode, see Modes (default: 'symmetric')
    level : int, optional
        Decomposition level (must be >= 0). If level is None (default) then it
        will be calculated using the ``dwt_max_level`` function.
    axis: int, optional
        Axis over which to compute the DWT. If not given, the
        last axis is used.

    Returns
    -------
    [cA_n, cD_n, cD_n-1, ..., cD2, cD1] : list
        Ordered list of coefficients arrays
        where `n` denotes the level of decomposition. The first element
        (`cA_n`) of the result is approximation coefficients array and the
        following elements (`cD_n` - `cD_1`) are details coefficients arrays.

    Examples
    --------
    >>> from pywt import wavedec
    >>> coeffs = wavedec([1,2,3,4,5,6,7,8], 'db1', level=2)
    >>> cA2, cD2, cD1 = coeffs
    >>> cD1
    array([-0.70710678, -0.70710678, -0.70710678, -0.70710678])
    >>> cD2
    array([-2., -2.])
    >>> cA2
    array([  5.,  13.])

    """
    data = np.asarray(data)

    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    try:
        axes_shape = data.shape[axis]
    except IndexError:
        raise ValueError("Axis greater than data dimensions")
    level = _check_level(axes_shape, wavelet.dec_len, level)

    coeffs_list = []

    a = data
    for i in range(level):
        a, d = dwt(a, wavelet, mode, axis)
        coeffs_list.append(d)

    coeffs_list.append(a)
    coeffs_list.reverse()

    return coeffs_list


def waverec(coeffs, wavelet, mode='symmetric', axis=-1):
    """
    Multilevel 1D Inverse Discrete Wavelet Transform.

    Parameters
    ----------
    coeffs : array_like
        Coefficients list [cAn, cDn, cDn-1, ..., cD2, cD1]
    wavelet : Wavelet object or name string
        Wavelet to use
    mode : str, optional
        Signal extension mode, see Modes (default: 'symmetric')
    axis: int, optional
        Axis over which to compute the inverse DWT. If not given, the
        last axis is used.

    Examples
    --------
    >>> import pywt
    >>> coeffs = pywt.wavedec([1,2,3,4,5,6,7,8], 'db1', level=2)
    >>> pywt.waverec(coeffs, 'db1')
    array([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.])
    """

    if not isinstance(coeffs, (list, tuple)):
        raise ValueError("Expected sequence of coefficient arrays.")

    if len(coeffs) < 1:
        raise ValueError(
            "Coefficient list too short (minimum 1 arrays required).")
    elif len(coeffs) == 1:
        # level 0 transform (just returns the approximation coefficients)
        return coeffs[0]

    a, ds = coeffs[0], coeffs[1:]

    for d in ds:
        if (a is not None) and (d is not None) and (len(a) == len(d) + 1):
            a = a[:-1]
        a = idwt(a, d, wavelet, mode, axis)

    return a


def wavedec2(data, wavelet, mode='symmetric', level=None, axes=(-2, -1)):
    """
    Multilevel 2D Discrete Wavelet Transform.

    Parameters
    ----------
    data : ndarray
        2D input data
    wavelet : Wavelet object or name string
        Wavelet to use
    mode : str, optional
        Signal extension mode, see Modes (default: 'symmetric')
    level : int, optional
        Decomposition level (must be >= 0). If level is None (default) then it
        will be calculated using the ``dwt_max_level`` function.
    axes : 2-tuple of ints, optional
        Axes over which to compute the DWT. Repeated elements are not allowed.

    Returns
    -------
    [cAn, (cHn, cVn, cDn), ... (cH1, cV1, cD1)] : list
        Coefficients list.  For user-specified ``axes``, ``cH*``
        corresponds to ``axes[0]`` while ``cV*`` corresponds to ``axes[1]``.
        The first element returned is the approximation coefficients for the
        nth level of decomposition.  Remaining elements are tuples of detail
        coefficients in descending order of decomposition level.
        (i.e. cH1 are the horizontal detail coefficients at the first level)

    Examples
    --------
    >>> import pywt
    >>> import numpy as np
    >>> coeffs = pywt.wavedec2(np.ones((4,4)), 'db1')
    >>> # Levels:
    >>> len(coeffs)-1
    2
    >>> pywt.waverec2(coeffs, 'db1')
    array([[ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.]])
    """
    data = np.asarray(data)
    if data.ndim < 2:
        raise ValueError("Expected input data to have at least 2 dimensions.")

    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    axes = tuple(axes)
    if len(axes) != 2:
        raise ValueError("Expected 2 axes")
    if len(axes) != len(set(axes)):
        raise ValueError("The axes passed to wavedec2 must be unique.")
    try:
        axes_sizes = [data.shape[ax] for ax in axes]
    except IndexError:
        raise ValueError("Axis greater than data dimensions")
    level = _check_level(min(axes_sizes), wavelet.dec_len, level)

    coeffs_list = []

    a = data
    for i in range(level):
        a, ds = dwt2(a, wavelet, mode, axes)
        coeffs_list.append(ds)

    coeffs_list.append(a)
    coeffs_list.reverse()

    return coeffs_list


def waverec2(coeffs, wavelet, mode='symmetric', axes=(-2, -1)):
    """
    Multilevel 2D Inverse Discrete Wavelet Transform.

    coeffs : list or tuple
        Coefficients list [cAn, (cHn, cVn, cDn), ... (cH1, cV1, cD1)]
    wavelet : Wavelet object or name string
        Wavelet to use
    mode : str, optional
        Signal extension mode, see Modes (default: 'symmetric')
    axes : 2-tuple of ints, optional
        Axes over which to compute the IDWT. Repeated elements are not allowed.

    Returns
    -------
    2D array of reconstructed data.

    Examples
    --------
    >>> import pywt
    >>> import numpy as np
    >>> coeffs = pywt.wavedec2(np.ones((4,4)), 'db1')
    >>> # Levels:
    >>> len(coeffs)-1
    2
    >>> pywt.waverec2(coeffs, 'db1')
    array([[ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.]])
    """

    if not isinstance(coeffs, (list, tuple)):
        raise ValueError("Expected sequence of coefficient arrays.")

    if len(axes) != len(set(axes)):
        raise ValueError("The axes passed to waverec2 must be unique.")

    if len(coeffs) < 1:
        raise ValueError(
            "Coefficient list too short (minimum 1 array required).")
    elif len(coeffs) == 1:
        # level 0 transform (just returns the approximation coefficients)
        return coeffs[0]

    a, ds = coeffs[0], coeffs[1:]
    a = np.asarray(a)

    for d in ds:
        d = tuple(np.asarray(coeff) if coeff is not None else None
                  for coeff in d)
        d_shapes = (coeff.shape for coeff in d if coeff is not None)
        try:
            d_shape = next(d_shapes)
        except StopIteration:
            idxs = slice(None), slice(None)
        else:
            if not all(s == d_shape for s in d_shapes):
                raise ValueError("All detail shapes must be the same length.")
            idxs = tuple(slice(None, -1 if a_len == d_len + 1 else None)
                         for a_len, d_len in zip(a.shape, d_shape))
        a = idwt2((a[idxs], d), wavelet, mode, axes)

    return a


def wavedecn(data, wavelet, mode='symmetric', level=None, axes=None):
    """
    Multilevel nD Discrete Wavelet Transform.

    Parameters
    ----------
    data : ndarray
        nD input data
    wavelet : Wavelet object or name string
        Wavelet to use
    mode : str, optional
        Signal extension mode, see Modes (default: 'symmetric')
    level : int, optional
        Decomposition level (must be >= 0). If level is None (default) then it
        will be calculated using the ``dwt_max_level`` function.
    axes : sequence of ints, optional
        Axes over which to compute the DWT. Axes may not be repeated. The
        default is ``None``, which means transform all axes
        (``axes = range(data.ndim)``).

    Returns
    -------
    [cAn, {details_level_n}, ... {details_level_1}] : list
        Coefficients list.  Coefficients are listed in descending order of
        decomposition level.  ``cAn`` are the approximation coefficients at
        level ``n``.  Each ``details_level_i`` element is a dictionary
        containing detail coefficients at level `i` of the decomposition.  As
        a concrete example, a 3D decomposition would have the following set of
        keys in each ``details_level_i`` dictionary::

            {'aad', 'ada', 'daa', 'add', 'dad', 'dda', 'ddd'}

        where the order of the characters in each key map to the specified
        ``axes``.

    Examples
    --------
    >>> import numpy as np
    >>> from pywt import wavedecn, waverecn
    >>> coeffs = wavedecn(np.ones((4, 4, 4)), 'db1')
    >>> # Levels:
    >>> len(coeffs)-1
    2
    >>> waverecn(coeffs, 'db1')  # doctest: +NORMALIZE_WHITESPACE
    array([[[ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.]],
           [[ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.]],
           [[ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.]],
           [[ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.]]])

    """
    data = np.asarray(data)

    if len(data.shape) < 1:
        raise ValueError("Expected at least 1D input data.")

    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    if np.isscalar(axes):
        axes = (axes, )
    if axes is None:
        axes = range(data.ndim)
    else:
        axes = tuple(axes)
    if len(axes) != len(set(axes)):
        raise ValueError("The axes passed to wavedecn must be unique.")
    ndim_transform = len(axes)
    try:
        axes_shapes = [data.shape[ax] for ax in axes]
    except IndexError:
        raise ValueError("Axis greater than data dimensions")
    level = _check_level(min(axes_shapes), wavelet.dec_len, level)

    coeffs_list = []

    a = data
    for i in range(level):
        coeffs = dwtn(a, wavelet, mode, axes)
        a = coeffs.pop('a' * ndim_transform)
        coeffs_list.append(coeffs)

    coeffs_list.append(a)
    coeffs_list.reverse()

    return coeffs_list


def _match_coeff_dims(a_coeff, d_coeff_dict):
    # For each axis, compare the approximation coeff shape to one of the
    # stored detail coeffs and truncate the last element along the axis
    # if necessary.
    if a_coeff is None:
        return None
    if not d_coeff_dict:
        return a_coeff
    d_coeff = d_coeff_dict[next(iter(d_coeff_dict))]
    size_diffs = np.subtract(a_coeff.shape, d_coeff.shape)
    if np.any((size_diffs < 0) | (size_diffs > 1)):
        raise ValueError("incompatible coefficient array sizes")
    return a_coeff[[slice(s) for s in d_coeff.shape]]


def waverecn(coeffs, wavelet, mode='symmetric', axes=None):
    """
    Multilevel nD Inverse Discrete Wavelet Transform.

    coeffs : array_like
        Coefficients list [cAn, {details_level_n}, ... {details_level_1}]
    wavelet : Wavelet object or name string
        Wavelet to use
    mode : str, optional
        Signal extension mode, see Modes (default: 'symmetric')
    axes : sequence of ints, optional
        Axes over which to compute the IDWT.  Axes may not be repeated.

    Returns
    -------
    nD array of reconstructed data.

    Examples
    --------
    >>> import numpy as np
    >>> from pywt import wavedecn, waverecn
    >>> coeffs = wavedecn(np.ones((4, 4, 4)), 'db1')
    >>> # Levels:
    >>> len(coeffs)-1
    2
    >>> waverecn(coeffs, 'db1')  # doctest: +NORMALIZE_WHITESPACE
    array([[[ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.]],
           [[ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.]],
           [[ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.]],
           [[ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.],
            [ 1.,  1.,  1.,  1.]]])

    """
    if len(coeffs) < 1:
        raise ValueError(
            "Coefficient list too short (minimum 1 array required).")

    a, ds = coeffs[0], coeffs[1:]

    # Raise error for invalid key combinations
    ds = list(map(_fix_coeffs, ds))

    if not ds:
        # level 0 transform (just returns the approximation coefficients)
        return coeffs[0]
    if a is None and not any(ds):
        raise ValueError("At least one coefficient must contain a valid value.")

    coeff_ndims = []
    if a is not None:
        a = np.asarray(a)
        coeff_ndims.append(a.ndim)
    for d in ds:
        coeff_ndims += [v.ndim for k, v in d.items()]

    # test that all coefficients have a matching number of dimensions
    unique_coeff_ndims = np.unique(coeff_ndims)
    if len(unique_coeff_ndims) == 1:
        ndim = unique_coeff_ndims[0]
    else:
        raise ValueError(
            "All coefficients must have a matching number of dimensions")

    if np.isscalar(axes):
        axes = (axes, )
    if axes is None:
        axes = range(ndim)
    else:
        axes = tuple(axes)
    if len(axes) != len(set(axes)):
        raise ValueError("The axes passed to waverecn must be unique.")
    ndim_transform = len(axes)

    for idx, d in enumerate(ds):
        if a is None and not d:
            continue
        # The following if statement handles the case where the approximation
        # coefficient returned at the previous level may exceed the size of the
        # stored detail coefficients by 1 on any given axis.
        if idx > 0:
            a = _match_coeff_dims(a, d)
        d['a' * ndim_transform] = a
        a = idwtn(d, wavelet, mode, axes)

    return a


def _coeffs_wavedec_to_wavedecn(coeffs):
    """Convert wavedec coefficients to the wavedecn format."""
    if len(coeffs) == 0:
        return coeffs
    coeffs = copy(coeffs)
    for n in range(1, len(coeffs)):
        if coeffs[n] is None:
            continue
        if coeffs[n].ndim != 1:
            raise ValueError("expected a 1D coefficient array")
        coeffs[n] = dict(d=coeffs[n])
    return coeffs


def _coeffs_wavedec2_to_wavedecn(coeffs):
    """Convert wavedec2 coefficients to the wavedecn format."""
    if len(coeffs) == 0:
        return coeffs
    coeffs = copy(coeffs)
    for n in range(1, len(coeffs)):
        if not isinstance(coeffs[n], (tuple, list)) or len(coeffs[n]) != 3:
            raise ValueError("expected a 3-tuple of detail coefficients")
        (da, ad, dd) = coeffs[n]
        coeffs[n] = dict(ad=ad, da=da, dd=dd)
    return coeffs


def _determine_coeff_array_shape(coeffs, axes):
    arr_shape = np.asarray(coeffs[0].shape)
    axes = np.asarray(axes)  # axes that were transformed
    ndim_transform = len(axes)
    ncoeffs = coeffs[0].size
    for d in coeffs[1:]:
        arr_shape[axes] += np.asarray(d['d'*ndim_transform].shape)[axes]
        for k, v in d.items():
            ncoeffs += v.size
    arr_shape = tuple(arr_shape.tolist())
    # if the total number of coefficients doesn't equal the size of the array
    # then tight packing is not possible.
    is_tight_packing = (np.prod(arr_shape) == ncoeffs)
    return arr_shape, is_tight_packing


def coeffs_to_array(coeffs, padding=0, axes=None):
    """
    Arrange a wavelet coefficient list from `wavedecn` into a single array.

    Parameters
    ----------

    coeffs: array-like
        dictionary of wavelet coefficients as returned by pywt.wavedecn
    padding : float or None, optional
        If None, raise an error if the coefficients cannot be tightly packed.
    axes : sequence of ints, optional
        Axes over which the DWT that created ``coeffs`` was performed.  The
        default value of ``None`` corresponds to all axes.

    Returns
    -------
    coeff_arr : array-like
        Wavelet transform coefficient array.
    coeff_slices : list
        List of slices corresponding to each coefficient.  As a 2D example,
        `coeff_arr[coeff_slices[1]['dd']]` would extract the first level detail
        coefficients from `coeff_arr`.

    See Also
    --------
    array_to_coeffs : the inverse of coeffs_to_array

    Notes
    -----
    Assume a 2D coefficient dictionary, c, from a two-level transform.

    Then all 2D coefficients will be stacked into a single larger 2D array
    as follows::

        +---------------+---------------+-------------------------------+
        |               |               |                               |
        |     c[0]      |  c[1]['da']   |                               |
        |               |               |                               |
        +---------------+---------------+           c[2]['da']          |
        |               |               |                               |
        | c[1]['ad']    |  c[1]['dd']   |                               |
        |               |               |                               |
        +---------------+---------------+ ------------------------------+
        |                               |                               |
        |                               |                               |
        |                               |                               |
        |          c[2]['ad']           |           c[2]['dd']          |
        |                               |                               |
        |                               |                               |
        |                               |                               |
        +-------------------------------+-------------------------------+

    Examples
    --------
    >>> import pywt
    >>> cam = pywt.data.camera()
    >>> coeffs = pywt.wavedecn(cam, wavelet='db2', level=3)
    >>> arr, coeff_slices = pywt.coeffs_to_array(coeffs)

    """
    if not isinstance(coeffs, list) or len(coeffs) == 0:
        raise ValueError("input must be a list of coefficients from wavedecn")
    if coeffs[0] is None:
        raise ValueError("coeffs_to_array does not support missing "
                         "coefficients.")
    if not isinstance(coeffs[0], np.ndarray):
        raise ValueError("first list element must be a numpy array")
    if len(coeffs) > 1:
        # convert wavedec or wavedec2 format coefficients to waverecn format
        if isinstance(coeffs[1], dict):
            pass
        elif isinstance(coeffs[1], np.ndarray):
            coeffs = _coeffs_wavedec_to_wavedecn(coeffs)
        elif isinstance(coeffs[1], (tuple, list)):
            coeffs = _coeffs_wavedec2_to_wavedecn(coeffs)
        else:
            raise ValueError("invalid coefficient list")
    # initialize with the approximation coefficients.
    a_coeffs = coeffs[0]
    a_shape = a_coeffs.shape
    ndim = a_coeffs.ndim
    if len(coeffs) == 1:
        # only a single approximation coefficient array was found
        return a_coeffs, [[slice(None)] * ndim]

    # Determine the number of dimensions that were transformed via key length
    ndim_transform = len(list(coeffs[1].keys())[0])
    if axes is None:
        if ndim_transform < ndim:
            raise ValueError(
                "coeffs corresponds to a DWT performed over only a subset of "
                "the axes.  In this case, axes must be specified.")
        axes = np.arange(ndim)

    if len(axes) != ndim_transform:
        raise ValueError(
            "The length of axes doesn't match the number of dimensions "
            "transformed.")

    # determine size of output and if tight packing is possible
    arr_shape, is_tight_packing = _determine_coeff_array_shape(coeffs, axes)

    # preallocate output array
    if padding is None:
        if not is_tight_packing:
            raise ValueError("array coefficients cannot be tightly packed")
        coeff_arr = np.empty(arr_shape, dtype=a_coeffs.dtype)
    else:
        coeff_arr = np.full(arr_shape, padding, dtype=a_coeffs.dtype)

    a_slices = [slice(s) for s in a_shape]
    coeff_arr[a_slices] = a_coeffs

    # initialize list of coefficient slices
    coeff_slices = []
    coeff_slices.append(a_slices)

    # loop over the detail cofficients, adding them to coeff_arr
    ds = coeffs[1:]
    for coeff_dict in ds:
        coeff_slices.append({})  # new dictionary for detail coefficients
        if np.any([d is None for d in coeff_dict.values()]):
            raise ValueError("coeffs_to_array does not support missing "
                             "coefficients.")
        d_shape = coeff_dict['d' * ndim_transform].shape
        for key in coeff_dict.keys():
            d = coeff_dict[key]
            slice_array = [slice(None), ] * ndim
            for i, let in enumerate(key):
                ax_i = axes[i]  # axis corresponding to this transform index
                if let == 'a':
                    slice_array[ax_i] = slice(d.shape[ax_i])
                elif let == 'd':
                    slice_array[ax_i] = slice(a_shape[ax_i],
                                              a_shape[ax_i] + d.shape[ax_i])
                else:
                    raise ValueError("unexpected letter: {}".format(let))
            coeff_arr[slice_array] = d
            coeff_slices[-1][key] = slice_array
        a_shape = [a_shape[n] + d_shape[n] for n in range(ndim)]
    return coeff_arr, coeff_slices


def array_to_coeffs(arr, coeff_slices, output_format='wavedecn'):
    """
    Convert a combined array of coefficients back to a list compatible with
    `waverecn`.

    Parameters
    ----------

    arr: array-like
        An array containing all wavelet coefficients.  This should have been
        generated via `coeffs_to_array`.
    coeff_slices : list of tuples
        List of slices corresponding to each coefficient as obtained from
        `array_to_coeffs`.
    output_format : {'wavedec', 'wavedec2', 'wavedecn'}
        Make the form of the coefficients compatible with this type of
        multilevel transform.

    Returns
    -------
    coeffs: array-like
        Wavelet transform coefficient array.

    See Also
    --------
    coeffs_to_array : the inverse of array_to_coeffs

    Notes
    -----
    A single large array containing all coefficients will have subsets stored,
    into a `waverecn` list, c, as indicated below::

        +---------------+---------------+-------------------------------+
        |               |               |                               |
        |     c[0]      |  c[1]['da']   |                               |
        |               |               |                               |
        +---------------+---------------+           c[2]['da']          |
        |               |               |                               |
        | c[1]['ad']    |  c[1]['dd']   |                               |
        |               |               |                               |
        +---------------+---------------+ ------------------------------+
        |                               |                               |
        |                               |                               |
        |                               |                               |
        |          c[2]['ad']           |           c[2]['dd']          |
        |                               |                               |
        |                               |                               |
        |                               |                               |
        +-------------------------------+-------------------------------+

    Examples
    --------
    >>> import pywt
    >>> from numpy.testing import assert_array_almost_equal
    >>> cam = pywt.data.camera()
    >>> coeffs = pywt.wavedecn(cam, wavelet='db2', level=3)
    >>> arr, coeff_slices = pywt.coeffs_to_array(coeffs)
    >>> coeffs_from_arr = pywt.array_to_coeffs(arr, coeff_slices)
    >>> cam_recon = pywt.waverecn(coeffs_from_arr, wavelet='db2')
    >>> assert_array_almost_equal(cam, cam_recon)

    """
    arr = np.asarray(arr)
    coeffs = []
    if len(coeff_slices) == 0:
        raise ValueError("empty list of coefficient slices")
    else:
        coeffs.append(arr[coeff_slices[0]])

    # difference coefficients at each level
    for n in range(1, len(coeff_slices)):
        if output_format == 'wavedec':
            d = arr[coeff_slices[n]['d']]
        elif output_format == 'wavedec2':
            d = (arr[coeff_slices[n]['da']],
                 arr[coeff_slices[n]['ad']],
                 arr[coeff_slices[n]['dd']])
        elif output_format == 'wavedecn':
            d = {}
            for k, v in coeff_slices[n].items():
                d[k] = arr[v]
        else:
            raise ValueError(
                "Unrecognized output format: {}".format(output_format))
        coeffs.append(d)
    return coeffs