This file is indexed.

/usr/lib/python2.7/dist-packages/pysparse/pysparseSuperLU.py is in python-sparse 1.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""
A framework for solving sparse linear systems of equations using an LU
factorization, by means of the supernodal sparse LU factorization package
SuperLU ([DEGLL99]_, [DGL99]_, [LD03]_).

This package is appropriate for factorizing sparse square unsymmetric or
rectangular matrices.

See [SLU]_ for more information.

**References:**

.. [DEGLL99] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li and
             J. W. H. Liu, *A supernodal approach to sparse partial pivoting*,
             SIAM Journal on Matrix Analysis and Applications **20**\ (3),
             pp. 720-755, 1999.
.. [DGL99] J. W. Demmel, J. R. Gilbert and X. S. Li,
           *An Asynchronous Parallel Supernodal Algorithm for Sparse Gaussian
           Elimination*, SIAM Journal on Matrix Analysis and Applications
           **20**\ (4), pp. 915-952, 1999.
.. [LD03] X. S. Li and J. W. Demmel, *SuperLU_DIST: A Scalable
          Distributed-Memory Sparse Direct Solver for Unsymmetric Linear
          Systems*, ACM Transactions on Mathematical Software **29**\ (2),
          pp. 110-140, 2003.
.. [SLU] http://crd.lbl.gov/~xiaoye/SuperLU

"""

# To look into:
#  - allow other data types

__docformat__ = 'restructuredtext'

import pysparseMatrix as psm
import numpy
import resource

from directSolver import PysparseDirectSolver
from pysparse  import superlu

def cputime():
    return resource.getrusage(resource.RUSAGE_SELF)[0]

class PysparseSuperLUSolver( PysparseDirectSolver ):
    """
    `PysparseSuperLUSolver` is a wrapper class around the SuperLu library for
    the factorization of full-rank n-by-m matrices. Only matrices with real
    coefficients are currently supported.

    :parameters:

       :A: The matrix to be factorized, supplied as a PysparseMatrix instance.

    :keywords:

       :symmetric: a boolean indicating that the user wishes to use symmetric
                   mode. In symmetric mode, ``permc_spec=2`` must be chosen and
                   ``diag_pivot_thresh`` must be small, e.g., 0.0 or 0.1. Since
                   the value of ``diag_pivot_thresh`` is up to the user, setting
                   ``symmetric`` to ``True`` does *not* automatically set
                   ``permc_spec`` and ``diag_pivot_thresh`` to appropriate
                   values.

       :diag_pivot_thresh: a float value between 0 and 1 representing the
                           threshold for partial pivoting (0 = no pivoting,
                           1 = always perform partial pivoting). Default: 1.0.

       :drop_tol: the value of a drop tolerance, between 0 and 1, if an
                  incomplete factorization is desired (0 = exact factorization).
                  This keyword does not exist if using SuperLU version 2.0 and
                  below. In more recent version of SuperLU, the keyword is
                  accepted but has no effect. Default: 0.0

       :relax: an integer controling the degree of relaxing supernodes.
               Default: 1.

       :panel_size: an integer specifying the maximum number of columns to form
                    a panel. Default: 10.

       :permc_spec: an integer specifying the ordering strategy used during the
                    factorization.

                    0. natural ordering,
                    1. MMD applied to the structure of
                       :math:`\mathbf{A}^T \mathbf{A}`
                    2. MMD applied to the structure of
                       :math:`\mathbf{A}^T + \mathbf{A}`
                    3. COLAMD.

                    Default: 2.

    .. attribute:: LU

       A :class:`superlu_context` object encapsulating the factorization.

    .. attribute:: sol

       The solution of the linear system after a call to :meth:`solve`.

    .. attribute:: factorizationTime

       The CPU time to perform the factorization.

    .. attribute:: solutionTime

       The CPU time to perform the forward and backward sweeps.

    .. attribute:: lunz

       The number of nonzero elements in the factors L and U together after a
       call to :meth:`fetch_lunz`.
    """
    def __init__(self, A, **kwargs):
        PysparseDirectSolver.__init__(self, A, **kwargs)

        self.type = numpy.float
        self.nrow, self.ncol = A.getShape()
        t = cputime()
        self.LU = superlu.factorize(A.matrix.to_csr(), **kwargs)
        self.factorizationTime = cputime() - t
        self.solutionTime = 0.0
        self.sol = None
        self.L = self.U = None
        return

    def solve(self, rhs, transpose = False):
        """
        Solve the linear system  ``A x = rhs``, where ``A`` is the input matrix
        and ``rhs`` is a Numpy vector of appropriate dimension. The result is
        placed in the :attr:`sol` member of the class instance.

        If the optional argument ``transpose`` is ``True``, the transpose system
        ``A^T x = rhs`` is solved.
        """
        if self.sol is None: self.sol = numpy.empty(self.ncol, self.type)
        transp = 'N'
        if transpose: transp = 'T'
        t = cputime()
        self.LU.solve(rhs, self.sol, transp)
        self.solutionTime = cputime() - t
        return

    def fetch_lunz(self):
        """
        Retrieve the number of nonzeros in the factors L and U together. The
        result is stored in the member :attr:`lunz` of the class instance.
        """
        self.lunz = self.LU.nnz

    def fetch_factors(self):
        """
        Not yet available.
        """
        raise NotImplementedError