This file is indexed.

/usr/lib/python2.7/dist-packages/specutils/extinction.py is in python-specutils 0.2.2-1build3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Extinction models.

Classes are callables representing the corresponding extinction
function with a fixed R_V. When calling an extinction function multiple
times with the same R_V, it will be faster to create a class instance with
fixed R_V and use that object to evaluate the extinction. See class
documentation for details.
"""

from __future__ import division
from os import path
import numpy as np

from astropy.io import ascii
from astropy.utils import data as apydata
from astropy import units as u


from specutils import cextinction

try:
    import scipy
except ImportError:
    HAS_SCIPY = False
else:
    HAS_SCIPY = True

__all__ = ['extinction_ccm89', 'extinction_od94', 'extinction_gcc09',
           'extinction_f99', 'extinction_fm07', 'extinction_wd01',
           'extinction_d03', 'extinction', 'reddening',
           'ExtinctionF99', 'ExtinctionD03', 'ExtinctionWD01']

def _process_wave(wave):
    return wave.to(u.angstrom).flatten()

def _process_inputs(wave, ebv, a_v, r_v):
    if (a_v is None) and (ebv is None):
        raise ValueError('Must specify either a_v or ebv')
    if (a_v is not None) and (ebv is not None):
        raise ValueError('Cannot specify both a_v and ebv')
    if a_v is None:
        a_v = ebv * r_v

    scalar = np.isscalar(wave)
    wave = np.atleast_1d(wave)
    if wave.ndim > 2:
        raise ValueError("wave cannot be more than 1-d")

    return wave, scalar, a_v

def _check_wave(wave, minwave, maxwave):
    if np.any((wave < minwave) | (wave > maxwave)):
        raise ValueError('Wavelengths must be between {0:.2f} and {1:.2f} '
                         'angstroms'.format(minwave, maxwave))
    


def extinction_ccm89(wave, a_v, r_v=3.1):
    """Cardelli, Clayton, & Mathis (1989) extinction model.

    The parameters given in the original paper [1]_ are used.
    The function works between 910 A and 3.3 microns, although note the
    claimed validity is only for wavelength above 1250 A.

    {0}

    Notes
    -----
    In Cardelli, Clayton & Mathis (1989) the mean
    R_V-dependent extinction law, is parameterized as

    .. math::

       <A(\lambda)/A_V> = a(x) + b(x) / R_V

    where the coefficients a(x) and b(x) are functions of
    wavelength. At a wavelength of approximately 5494.5 angstroms (a
    characteristic wavelength for the V band), a(x) = 1 and b(x) = 0,
    so that A(5494.5 angstroms) = A_V. This function returns

    .. math::

       A(\lambda) = A_V (a(x) + b(x) / R_V)

    where A_V can either be specified directly or via E(B-V)
    (by defintion, A_V = R_V * E(B-V)).

    References
    ----------
    .. [1] Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
    """

    _check_wave(wave, 909.091 * u.angstrom, 33333.333 * u.angstrom)

    res = cextinction.ccm89(_process_wave(wave).value, a_v, r_v)

    return res.reshape(wave.shape)

def extinction_od94(wave, a_v, r_v=3.1):
    """O'Donnell (1994) extinction model.
    
    Like Cardelli, Clayton, & Mathis (1989) [1]_ but using the O'Donnell
    (1994) [2]_ optical coefficients between 3030 A and 9091 A.

    {0}

    Notes
    -----
    This function matches the Goddard IDL astrolib routine CCM_UNRED.
    From the documentation for that routine:

    1. The CCM curve shows good agreement with the Savage & Mathis (1979)
       [3]_ ultraviolet curve shortward of 1400 A, but is probably
       preferable between 1200 and 1400 A.
    2. Curve is extrapolated between 912 and 1000 A as suggested by
       Longo et al. (1989) [4]_
    3. Valencic et al. (2004) [5]_ revise the ultraviolet CCM
       curve (3.3 -- 8.0 um^-1).    But since their revised curve does
       not connect smoothly with longer and shorter wavelengths, it is
       not included here.

    References
    ----------
    .. [1] Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
    .. [2] O'Donnell, J. E. 1994, ApJ, 422, 158O 
    .. [3] Savage & Mathis 1979, ARA&A, 17, 73
    .. [4] Longo et al. 1989, ApJ, 339,474
    .. [5] Valencic et al. 2004, ApJ, 616, 912
    """


    _check_wave(wave, 909.091 * u.angstrom, 33333.333 * u.angstrom)

    res = cextinction.od94(_process_wave(wave).value, a_v, r_v)

    return res.reshape(wave.shape)

def extinction_gcc09(wave, a_v, r_v=3.1):
    """Gordon, Cartledge, & Clayton (2009) extinction model.

    Uses the UV coefficients of Gordon, Cartledge, & Clayton (2009)
    [1]_ between 910 A and 3030 A, otherwise the same as the
    `extinction_od94` function.  Also note that the two do not connect
    perfectly: there is a discontinuity at 3030 A. Note that
    GCC09 equations 14 and 15 apply to all x>5.9 (the GCC09 paper
    mistakenly states they do not apply at x>8; K. Gordon,
    priv. comm.).

    .. warning :: Note that the Gordon, Cartledge, & Clayton (2009) paper
                  has incorrect parameters for the 2175 angstrom bump that
                  have not been corrected here.

    {0}

    References
    ----------
    .. [1] Gordon, K. D., Cartledge, S., & Clayton, G. C. 2009, ApJ, 705, 1320
    """

    _check_wave(wave, 909.091 * u.angstrom, 33333.333 * u.angstrom)

    res = cextinction.gcc09(_process_wave(wave).value, a_v, r_v)

    return res.reshape(wave.shape)

_f99_xknots = 1.e4 / np.array([np.inf, 26500., 12200., 6000., 5470.,
                               4670., 4110., 2700., 2600.])

class ExtinctionF99(object):
    """Fitzpatrick (1999) extinction model with fixed R_V.

    Parameters
    ----------
    r_v : float
        Relation between specific and total extinction, ``a_v = r_v * ebv``.

    Examples
    --------
    Create a callable that gives the extinction law for a given ``r_v``
    and use it:

    >>> f = ExtinctionF99(3.1)
    >>> f(3000., a_v=1.)
    1.7993995521481463

    """

    def __init__(self, a_v, r_v=3.1):
        if not HAS_SCIPY:
            raise ImportError('To use this function scipy needs to be installed')

        from scipy.interpolate import splmake

        self.a_v = a_v
        self.r_v = r_v

        kknots = cextinction.f99kknots(_f99_xknots, self.r_v)

        self._spline = splmake(_f99_xknots, kknots, order=3)

    def __call__(self, wave):
        if not HAS_SCIPY:
            raise ImportError('To use this function scipy needs to be installed')

        from scipy.interpolate import spleval

        wave_shape = wave.shape
        wave = _process_wave(wave)

        _check_wave(wave, 909.091* u.angstrom, 6. * u.micron)

        res = np.empty_like(wave.__array__(), dtype=np.float64)

        # Analytic function in the UV.
        uvmask = wave < (2700. * u.angstrom)
        if np.any(uvmask):
            res[uvmask] = cextinction.f99uv(wave[uvmask].value, self.a_v, self.r_v)

        # Spline in the Optical/IR
        oirmask = ~uvmask
        if np.any(oirmask):
            k = spleval(self._spline, 1. / wave[oirmask].to('micron'))
            res[oirmask] = self.a_v / self.r_v * (k + self.r_v)

        return res.reshape(wave_shape)

def extinction_f99(wave, a_v, r_v=3.1):
    """Fitzpatrick (1999) extinction model.

    Fitzpatrick (1999) [1]_ model which relies on the parametrization
    of Fitzpatrick & Massa (1990) [2]_ in the UV (below 2700 A) and
    spline fitting in the optical and IR. This function is defined
    from 910 A to 6 microns, but note the claimed validity goes down
    only to 1150 A. The optical spline points are not taken from F99
    Table 4, but rather updated versions from E. Fitzpatrick (this
    matches the Goddard IDL astrolib routine FM_UNRED).

    {0}

    References
    ----------
    .. [1] Fitzpatrick, E. L. 1999, PASP, 111, 63
    .. [2] Fitzpatrick, E. L. & Massa, D. 1990, ApJS, 72, 163
    """

    f = ExtinctionF99(a_v, r_v)
    return f(wave)


# fm07 knots for spline
_fm07_r_v = 3.1
_fm07_xknots = np.array([0., 0.25, 0.50, 0.75, 1., 1.e4/5530., 1.e4/4000.,
                        1.e4/3300., 1.e4/2700., 1.e4/2600.])
_fm07_kknots = cextinction.fm07kknots(_fm07_xknots)
try:
    from scipy.interpolate import splmake
    _fm07_spline = splmake(_fm07_xknots, _fm07_kknots, order=3)
except ImportError:
    pass


def extinction_fm07(wave, a_v):
    """Fitzpatrick & Massa (2007) extinction model for R_V = 3.1.

    The Fitzpatrick & Massa (2007) [1]_ model, which has a slightly
    different functional form from that of Fitzpatrick (1999) [3]_
    (`extinction_f99`). Fitzpatrick & Massa (2007) claim it is
    preferable, although it is unclear if signficantly so (Gordon et
    al. 2009 [2]_). Defined from 910 A to 6 microns.

    .. note :: This model is not R_V dependent.

    {0}

    References
    ----------
    .. [1] Fitzpatrick, E. L. & Massa, D. 2007, ApJ, 663, 320
    .. [2] Gordon, K. D., Cartledge, S., & Clayton, G. C. 2009, ApJ, 705, 1320
    .. [3] Fitzpatrick, E. L. 1999, PASP, 111, 63
    """
    if not HAS_SCIPY:
        raise ImportError('To use this function scipy needs to be installed')
    from scipy.interpolate import spleval

    wave_shape = wave.shape
    wave = _process_wave(wave)


    _check_wave(wave, 909.091 * u.angstrom, 6.0 * u.micron)
    res = np.empty_like(wave.__array__(), dtype=np.float64)

    # Simple analytic function in the UV
    uvmask = wave < (2700. * u.angstrom)
    if np.any(uvmask):
        res[uvmask] = cextinction.fm07uv(wave[uvmask].value, a_v)
    
    # Spline in the Optical/IR
    oirmask = ~uvmask
    if np.any(oirmask):
        k = spleval(_fm07_spline, (1. / wave[oirmask].to('micron')).value)
        res[oirmask] = a_v / _fm07_r_v * (k + _fm07_r_v)

    return res.reshape(wave_shape)


prefix = path.join('data', 'extinction_models', 'kext_albedo_WD_MW')
_wd01_fnames = {'3.1': prefix + '_3.1B_60.txt',
                '4.0': prefix + '_4.0B_40.txt',
                '5.5': prefix + '_5.5B_30.txt'}
_d03_fnames = {'3.1': prefix + '_3.1A_60_D03_all.txt',
               '4.0': prefix + '_4.0A_40_D03_all.txt',
               '5.5': prefix + '_5.5A_30_D03_all.txt'}
del prefix

class ExtinctionWD01(object):
    """Weingartner and Draine (2001) extinction model with fixed R_V.

    Parameters
    ----------
    r_v : float
        Relation between specific and total extinction, ``a_v = r_v * ebv``.

    Examples
    --------
    Create a callable that gives the extinction law for a given ``r_v``
    and use it:

    >>> f = ExtinctionWD01(3.1)
    >>> f(3000., a_v=1.)

    Arrays are also accepted and ``ebv`` can be specified instead of ``a_v``:

    >>> f([3000., 4000.], ebv=1./3.1)

    """

    def __init__(self, a_v, r_v):

        if not HAS_SCIPY:
            raise ImportError('To use this function scipy needs to be installed')

        from scipy.interpolate import interp1d

        self.a_v = a_v
        self.r_v = r_v

        fname_key = [item for item in _wd01_fnames.keys() if np.isclose(
            float(item), self.r_v)]

        if len(fname_key) == 0:
            raise ValueError("model only defined for r_v in [3.1, 4.0, 5.5]")
        elif len(fname_key) == 1:
            fname = _wd01_fnames[fname_key[0]]
        else:
            raise ValueError('The given float {0} matches multiple available'
                             ' r_vs [3.1, 4.0, 5.5] - unexpected code error')


        fname = apydata.get_pkg_data_filename(fname)
        data = ascii.read(fname, Reader=ascii.FixedWidth, data_start=51,
                          names=['wave', 'albedo', 'avg_cos', 'C_ext',
                                 'K_abs'],
                          col_starts=[0, 10, 18, 25, 35],
                          col_ends=[9, 17, 24, 34, 42], guess=False)

        # Reverse entries so that they ascend in x (needed for the spline).
        waveknots = np.asarray(data['wave'])[::-1]
        cknots = np.asarray(data['C_ext'])[::-1]
        xknots = 1. / waveknots  # Values in inverse microns.

        # Create a spline just to get normalization.
        spline = interp1d(xknots, cknots)
        cknots = cknots / spline(1.e4 / 5495.)  # Normalize cknots.
        self._spline = interp1d(xknots, cknots)

    def __call__(self, wave):

        wave_shape = wave.shape
        wave = _process_wave(wave)

        x = (1 / wave).to('1/micron')

        res = self.a_v * self._spline(x.value)

        return res.reshape(wave_shape)


def extinction_wd01(wave, a_v, r_v=3.1):
    """Weingartner and Draine (2001) extinction model.

    The Weingartner & Draine (2001) [1]_ dust model.  This model is a
    calculation of the interstellar extinction using a dust model of
    carbonaceous grains and amorphous silicate grains. The
    carbonaceous grains are like PAHs when small and like graphite
    when large. This model is evaluated at discrete wavelengths and
    interpolated between these wavelengths. Grid goes from 1 A to 1000
    microns. The model has been calculated for three different grain
    size distributions which produce interstellar exinctions that look
    like 'ccm89' at Rv = 3.1, Rv = 4.0 and Rv = 5.5.  No interpolation
    to other Rv values is performed, so this model can be evaluated
    only for these values.

    The dust model gives the extinction per H nucleon.  For
    consistency with other extinction laws we normalize this
    extinction law so that it is equal to 1.0 at 5495 angstroms.

    .. note :: Model is not an analytic  function of R_V. Only ``r_v``
               values of 3.1, 4.0 and 5.5 are accepted.

    .. note :: This function reads a table from a file on disk on each call.
               For repeated calls with the same ``r_v``, it will be far faster
               to use the class-based interface `ExtinctionWD01`.

    {0}

    See Also
    --------
    ExtinctionWD01

    References
    ----------
    .. [1] Weingartner, J.C. & Draine, B.T. 2001, ApJ, 548, 296

    """

    f = ExtinctionWD01(a_v, r_v)
    return f(wave)


class ExtinctionD03(ExtinctionWD01):
    """Draine (2003) extinction model with fixed R_V.

    Parameters
    ----------
    r_v : float
        Relation between specific and total extinction, ``a_v = r_v * ebv``.

    Examples
    --------
    Create a callable that gives the extinction law for a given ``r_v``
    and use it:

    >>> f = ExtinctionWD01(3.1)
    >>> f(3000., a_v=1.)

    Arrays are also accepted and ``ebv`` can be specified instead of ``a_v``:

    >>> f([3000., 4000.], ebv=1./3.1)

    """

    def __init__(self, a_v, r_v):
        if not HAS_SCIPY:
            raise ImportError('To use this function scipy needs to be installed')

        from scipy.interpolate import interp1d

        super(ExtinctionD03, self).__init__(a_v, r_v)

        fname_key = [item for item in _wd01_fnames.keys() if np.isclose(
            float(item), self.r_v)]

        if len(fname_key) == 0:
            raise ValueError("model only defined for r_v in [3.1, 4.0, 5.5]")
        elif len(fname_key) == 1:
            fname = _d03_fnames[fname_key[0]]
        else:
            raise ValueError('The given float {0} matches multiple available'
                             ' r_vs [3.1, 4.0, 5.5] - unexpected code error')

        fname = apydata.get_pkg_data_filename(fname)

        data = ascii.read(fname, Reader=ascii.FixedWidth, data_start=67,
                          names=['wave', 'albedo', 'avg_cos', 'C_ext',
                                 'K_abs', 'avg_cos_sq', 'comment'],
                          col_starts=[0, 12, 20, 27, 37, 47, 55],
                          col_ends=[11, 19, 26, 36, 46, 54, 80], guess=False)
        xknots = 1. / np.asarray(data['wave'])
        cknots = np.asarray(data['C_ext'])

        # Create a spline just to get normalization.
        spline = interp1d(xknots, cknots)
        cknots = cknots / spline((1. / (5495. * u.angstrom)).to('1/micron').value)  # Normalize cknots.
        self._spline = interp1d(xknots, cknots)


def extinction_d03(wave, a_v, r_v=3.1):
    """Draine (2003) extinction model.

    The Draine (2003) [2]_ update to WD01 [1]_ where the 
    carbon/PAH abundances relative to 'wd01' have been reduced by a 
    factor of 0.93.

    The dust model gives the extinction per H nucleon.  For
    consistency with other extinction laws we normalize this
    extinction law so that it is equal to 1.0 at 5495 angstroms.

    .. note :: Model is not an analytic  function of R_V. Only ``r_v``
               values of 3.1, 4.0 and  5.5 are accepted.

    {0}

    References
    ----------
    .. [1] Weingartner, J.C. & Draine, B.T. 2001, ApJ, 548, 296
    .. [2] Draine, B.T. 2003, ARA&A, 41, 241
    """
    f = ExtinctionD03(a_v, r_v)
    return f(wave)

_extinction_models = {'ccm89': extinction_ccm89,
                      'od94': extinction_od94,
                      'gcc09': extinction_gcc09,
                      'f99': extinction_f99,
                      'fm07': extinction_fm07,
                      'wd01': extinction_wd01,
                      'd03': extinction_d03}


def extinction(wave, a_v, r_v=3.1, model='od94'):
    """Generic interface for all extinction model functions.

    Parameters
    ----------
    wave : float or list_like
        Wavelength(s) in angstroms.
    a_v : float
        Total V band extinction A(V), in magnitudes. A(V) = R_V * E(B-V).
    r_v : float, optional
        R_V parameter. Default is the standard Milky Way average of 3.1.
    model : {'ccm89', 'od94', 'gcc09', 'f99', 'fm07', 'wd01', d03'}, optional
        Use function ``extinction_[model]``. E.g., for 'ccm89', the function
        ``extinction_ccm89`` is used.

    Returns
    -------
    extinction : float or `~numpy.ndarray`
        Extinction in magnitudes at given wavelengths.

    See Also
    --------
    extinction_ccm89
    extinction_od94
    extinction_gcc09
    extinction_f99
    extinction_fm07
    extinction_wd01
    extinction_d03
    reddening

    Notes
    -----

    **Visual comparison of models**

    The plot below shows a comparison of the models for
    ``r_v=3.1``. The shaded regions show the limits of claimed
    validity for the f99 model (> 1150 A) and the ccm89/od94 models (>
    1250 A). The vertical dotted lines indicate transition wavelengths in
    the models (3030.3 A and 9090.9 A for ccm89, od94 and gcc09;
    2700. A for f99, fm07).

    .. plot::

       import numpy as np
       import matplotlib.pyplot as plt
       from mpl_toolkits.axes_grid1 import make_axes_locatable
       from specutils.extinction import extinction

       models = ['ccm89', 'od94', 'gcc09', 'f99', 'fm07','wd01','d03']
       wave = np.logspace(np.log10(910.), np.log10(30000.), 2000)
       a_lambda = {model: extinction(wave, a_v=1., model=model)
                   for model in models}

       fig = plt.figure(figsize=(8.5, 6.))

       ax = plt.axes()
       for model in models:
           plt.plot(wave, a_lambda[model], label=model)
       plt.axvline(x=2700., ls=':', c='k')
       plt.axvline(x=3030.3030, ls=':', c='k')
       plt.axvline(x=9090.9091, ls=':', c='k')
       plt.axvspan(wave[0], 1150., fc='0.8', ec='none', zorder=-1000)
       plt.axvspan(1150., 1250., fc='0.9', ec='none', zorder=-1000)    
       plt.text(0.67, 0.95, '$R_V = 3.1$', transform=ax.transAxes, va='top',
                size='x-large')
       plt.ylabel('Extinction ($A(\lambda)$ / $A_V$)')
       plt.legend()
       plt.setp(ax.get_xticklabels(), visible=False)

       divider = make_axes_locatable(ax)
       axresid = divider.append_axes("bottom", size=2.0, pad=0.2, sharex=ax)
       for model in models:
           plt.plot(wave, a_lambda[model] - a_lambda['f99'])
       plt.axvline(x=2700., ls=':', c='k')
       plt.axvline(x=3030.3030, ls=':', c='k')
       plt.axvline(x=9090.9091, ls=':', c='k')
       plt.axvspan(wave[0], 1150., fc='0.8', ec='none', zorder=-1000)
       plt.axvspan(1150., 1250., fc='0.9', ec='none', zorder=-1000)
       plt.xlim(wave[0], wave[-1])
       plt.ylim(ymin=-0.4,ymax=0.4)
       plt.ylabel('residual from f99')
       plt.xlabel('Wavelength ($\AA$)')

       ax.set_xscale('log')
       axresid.set_xscale('log')
       plt.tight_layout()

       fig.show()

    Examples
    --------

    >>> wave = [2000., 2500., 3000.]
    >>> extinction(wave, a_v=1., r_v=3.1, model='f99')
    array([ 2.76225609,  2.27590036,  1.79939955])

    The extinction scales linearly with ``a_v``. This means
    that when calculating extinction for multiple values of ``a_v``, one can compute extinction ahead of time for a given set of
    wavelengths and then scale by ``a_v`` or ``ebv`` later.  For example:

    >>> a_lambda_over_a_v = extinction(wave, a_v=1.)
    >>> a_v = 0.5
    >>> a_lambda = a_v * a_lambda_over_a_v

    """

    model = model.lower()
    if model not in _extinction_models:
        raise ValueError('unknown model: {0}'.format(model))

    if model == 'fm07':
        if not np.isclose(r_v, 3.1):
            raise ValueError('r_v must be 3.1 for fm07 model')
        return _extinction_models[model](wave, a_v=a_v)
    else:
        return _extinction_models[model](wave, a_v=a_v, r_v=r_v)

def reddening(wave, a_v, r_v=3.1, model='od94'):
    """Inverse of flux transmission fraction at given wavelength(s).

    Parameters
    ----------
    wave : float or list_like
        Wavelength(s) in angstroms at which to evaluate the reddening.
    a_v : float
        Total V band extinction, in magnitudes. A(V) = R_V * E(B-V).
    r_v : float, optional
        R_V parameter. Default is the standard Milky Way average of 3.1.
    model : {'ccm89', 'od94', 'gcc09', 'f99', 'fm07'}, optional

    Returns
    -------
    reddening : float or `~numpy.ndarray`
        Inverse of flux transmission fraction, equivalent to
        ``10**(0.4 * extinction(wave))``. To deredden spectra,
        multiply flux values by these value(s). To redden spectra, divide
        flux values by these value(s).

    See Also
    --------
    extinction

    """

    return 10**(0.4 * extinction(wave, a_v, r_v=r_v, model=model))


_func_doc = """

    Parameters
    ----------
    wave : float or list_like
        Wavelength(s) in angstroms.
    a_v : float
        A(V) total V band extinction,
        in magnitudes.
    r_v : float, optional
        R_V parameter. Default is the standard Milky Way average of 3.1.

    Returns
    -------
    extinction : `~numpy.ndarray`
        Extinction in magnitudes at given wavelengths.
    """

for func in [extinction_ccm89, extinction_od94, extinction_gcc09,
             extinction_f99, extinction_fm07, extinction_wd01,
             extinction_d03]:
    func.__doc__ = func.__doc__.format(_func_doc)