/usr/lib/python2.7/dist-packages/swiglpk-1.4.4.egg-info is in python-swiglpk 1.4.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | Metadata-Version: 1.1
Name: swiglpk
Version: 1.4.4
Summary: swiglpk - Simple swig bindings for the GNU Linear Programming Kit
Home-page: https://github.com/biosustain/swiglpk
Author: Nikolaus Sonnenschein
Author-email: niko.sonnenschein@gmail.com
License: GPL v3
Description: swiglpk
=======
*Plain python bindings for the GNU Linear Programming Kit (GLPK)*
|PyPI| |License| |Build Status| |AppVeyor Status|
Why?
~~~~
*swiglpk* is not a high-level wrapper for GLPK (take a look at
`optlang <https://github.com/biosustain/optlang>`__ if you are
interested in a python-based mathematical programming language). It just
provides plain vanilla `swig <http://www.swig.org/>`__ bindings to the
underlying C library. In constrast to other GLPK wrappers for python
(e.g. `PyGLPK <http://tfinley.net/software/pyglpk/>`__,
`Python-GLPK <http://www.dcc.fc.up.pt/~jpp/code/python-glpk/>`__,
`ctypes-glpk <https://code.google.com/p/ctypes-glpk/>`__,
`ecyglpki <https://github.com/equaeghe/ecyglpki>`__ etc.) it is fairly
version agnostic: it will try to guess the location of the glpk.h header
file (using ``which glpsol``) and then compile the extension for your
particular GLPK installation.
Please show us some love by staring this repo if you find swiglpk useful!
Installation
~~~~~~~~~~~~
::
pip install swiglpk
That's it. swiglpk comes with binary wheels for Windows, Mac, and Linux. No installation of third-party dependencies necessary.
Example
~~~~~~~
Running the following (slightly adapted) example from the `GLPK
manual <http://kam.mff.cuni.cz/~elias/glpk.pdf>`__ ...
::
from swiglpk import *
ia = intArray(1+1000); ja = intArray(1+1000);
ar = doubleArray(1+1000);
lp = glp_create_prob();
glp_set_prob_name(lp, "sample");
glp_set_obj_dir(lp, GLP_MAX);
glp_add_rows(lp, 3);
glp_set_row_name(lp, 1, "p");
glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
glp_set_row_name(lp, 2, "q");
glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
glp_set_row_name(lp, 3, "r");
glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
glp_add_cols(lp, 3);
glp_set_col_name(lp, 1, "x1");
glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 1, 10.0);
glp_set_col_name(lp, 2, "x2");
glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 2, 6.0);
glp_set_col_name(lp, 3, "x3");
glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 3, 4.0);
ia[1] = 1; ja[1] = 1; ar[1] = 1.0; # a[1,1] = 1
ia[2] = 1; ja[2] = 2; ar[2] = 1.0; # a[1,2] = 1
ia[3] = 1; ja[3] = 3; ar[3] = 1.0; # a[1,3] = 1
ia[4] = 2; ja[4] = 1; ar[4] = 10.0; # a[2,1] = 10
ia[5] = 3; ja[5] = 1; ar[5] = 2.0; # a[3,1] = 2
ia[6] = 2; ja[6] = 2; ar[6] = 4.0; # a[2,2] = 4
ia[7] = 3; ja[7] = 2; ar[7] = 2.0; # a[3,2] = 2
ia[8] = 2; ja[8] = 3; ar[8] = 5.0; # a[2,3] = 5
ia[9] = 3; ja[9] = 3; ar[9] = 6.0; # a[3,3] = 6
glp_load_matrix(lp, 9, ia, ja, ar);
glp_simplex(lp, None);
Z = glp_get_obj_val(lp);
x1 = glp_get_col_prim(lp, 1);
x2 = glp_get_col_prim(lp, 2);
x3 = glp_get_col_prim(lp, 3);
print("\nZ = %g; x1 = %g; x2 = %g; x3 = %g\n" % (Z, x1, x2, x3))
glp_delete_prob(lp);
... will produce the following output (the example can also be found at
examples/example.py):
::
GLPK Simplex Optimizer, v4.52
3 rows, 3 columns, 9 non-zeros
* 0: obj = 0.000000000e+00 infeas = 0.000e+00 (0)
* 2: obj = 7.333333333e+02 infeas = 0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND
Z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0
Pretty ugly right? Consider using `optlang <https://github.com/biosustain/optlang>`__ for formulating and solving your optimization problems.
Documentation
~~~~~~~~~~~~~
You can find documentation on GLPK's C API `here <http://kam.mff.cuni.cz/~elias/glpk.pdf>`__
Development
~~~~~~~~~~~
You still want to install it from source? Then you'll need to install the following
dependencies first.
- GLPK
- swig
If you're on OS X, swig and GLPK can easily be installed with
`homebrew <http://brew.sh/>`__.
::
brew install swig glpk
If you're using ubuntu linux, you can install swig and GLPK using
``apt-get``.
::
apt-get install glpk-utils libglpk-dev swig
If you're on Windows, you are on your own (checkout the `appveyor.yml <https://github.com/biosustain/swiglpk/blob/master/appveyor.yml>`_ config file for directions).
Then clone the repo and run the following.
::
python setup.py install
.. |PyPI| image:: https://img.shields.io/pypi/v/swiglpk.svg
:target: https://pypi.python.org/pypi/swiglpk
.. |License| image:: https://img.shields.io/badge/License-GPL%20v3-blue.svg
:target: http://www.gnu.org/licenses/gpl-3.0
.. |Build Status| image:: https://travis-ci.org/biosustain/swiglpk.svg?branch=master
:target: https://travis-ci.org/biosustain/swiglpk
.. |AppVeyor Status| image:: https://ci.appveyor.com/api/projects/status/mhj0r133kx7wy908/branch/master?svg=true
:target: https://ci.appveyor.com/project/phantomas1234/swiglpk/branch/master
Keywords: optimization swig glpk
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Software Development
Classifier: Intended Audience :: Science/Research
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3.4
Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
|