This file is indexed.

/usr/lib/python2.7/dist-packages/vigra/arraytypes.py is in python-vigra 1.10.0+git20160211.167be93+dfsg-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
#######################################################################
#
#         Copyright 2009-2011 by Ullrich Koethe
#
#    This file is part of the VIGRA computer vision library.
#    The VIGRA Website is
#        http://hci.iwr.uni-heidelberg.de/vigra/
#    Please direct questions, bug reports, and contributions to
#        ullrich.koethe@iwr.uni-heidelberg.de    or
#        vigra@informatik.uni-hamburg.de
#
#    Permission is hereby granted, free of charge, to any person
#    obtaining a copy of this software and associated documentation
#    files (the "Software"), to deal in the Software without
#    restriction, including without limitation the rights to use,
#    copy, modify, merge, publish, distribute, sublicense, and/or
#    sell copies of the Software, and to permit persons to whom the
#    Software is furnished to do so, subject to the following
#    conditions:
#
#    The above copyright notice and this permission notice shall be
#    included in all copies or substantial portions of the
#    Software.
#
#    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND
#    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
#    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
#    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
#    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
#    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
#    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
#    OTHER DEALINGS IN THE SOFTWARE.
#
#######################################################################
from __future__ import print_function
from functools import reduce

import sys
import copy
import numpy
import vigra.ufunc as ufunc
import collections
import vigra.vigranumpycore as vigranumpycore

from vigra.vigranumpycore import AxisType, AxisInfo, AxisTags

if sys.version_info[0] > 2:
    buffer = memoryview
    xrange = range

def _preserve_doc(f):
    npy_doc = eval('numpy.ndarray.%s.__doc__' % f.__name__)
    f.__doc__ =  ("" if npy_doc is None else npy_doc) + \
                 ("" if f.__doc__ is None else "\n" + f.__doc__)
    return f

# a decorator to finalize the return value of a
# dimension-reducing function (e.g. array.max())
def _finalize_reduce_result(f):
    def new_f(self, axis=None, out=None):
        if type(axis) == str:
            axis = self.axistags.index(axis)
        res = f(self, axis, out)
        if out is None:
            if axis is not None:
                res.axistags = self._copy_axistags()
                del res.axistags[axis]
            else:
                # this 'else' is necessary because numpy 1.6.0 gives
                #     type(res) == type(self)
                # instead of the desired
                #     type(res) == self.dtype
                # when res is scalar and self is a subclass of ndarray
                # (this is probably a bug in numpy, since it works correctly
                #  when self is a plain ndarray)
                res = res.dtype.type(res)
        return res
    new_f.__doc__ = f.__doc__
    return new_f

def _numpyarray_overloaded_function(f, self, axis=None, dtype=None, out=None):
    if type(axis) == str:
        axis = self.axistags.index(axis)
    if axis is None:
        return f(self.transposeToOrder('C').view(numpy.ndarray), dtype=dtype, out=out)
    else:
        res = f(self.view(numpy.ndarray), axis, dtype, out)
        if out is None:
            res = res.view(VigraArray)
            res.axistags = self._copy_axistags()
            del res.axistags[axis]
        return res

class classproperty(object):
    def __get__(self, instance, cls):
            if self.__instance_method is not None and instance is not None:
                return self.__instance_method(instance)
            else:
                return self.__class_method(cls)
    def __init__(self, class_method, instance_method=None):
            self.__class_method = class_method
            self.__instance_method = instance_method

def newaxis(axisinfo=AxisInfo()):
    '''
    Create a new singleton axis via the indexing operator. This works similar to
    `numpy.newaxis`, but allows to provide an AxisInfo object for the new axis.
    For example::

        >>> s = vigra.ScalarImage((width, height))
        >>> s.axistags  # no channel axis
        x y
        >>> t = s[..., numpy.newaxis]
        >>> t.axistags  # with unknown axis type
        x y ?
        >>> t = s[..., vigra.newaxis(vigra.AxisInfo.c)]
        >>> t.axistags  # with channel axis
        x y c
    '''
    if isinstance(axisinfo, str):
        return eval('AxisInfo.'+axisinfo)
    else:
        return axisinfo

def makeAxistags(spec, order=None, noChannels=None):
    '''
    Create a new :class:`~vigra.AxisTags` object from the specification ``spec``.
    ``spec`` can be one of the following:

    * an instance of the ``AxisTags`` class. In this case, the function creates
      a copy of ``spec``. If ``order`` is given, the resulting axistags are
      transposed to the desired order ('C', 'F', or 'V'). If ``noChannels=True``,
      the channel axis (if any) is dropped from the specification.

    * a string or tuple of axis keys (e.g. ``'xyc'`` or ``('x', 'y', 'c')`` respectively)
      or a tuple of :class:`~vigra.AxisInfo` objects (e.g.
      ``(AxisInfo.x, AxisInfo.y, AxisInfo.c)``). The function then constructs a
      new ``AxisTags`` object from this specification. If ``order`` is given,
      the resulting axistags are transposed to the desired order ('C', 'F', or 'V').
      If ``noChannels=True``, the channel axis (if any) is dropped from the specification.

    * an integer signifying the desired number of axes. In this case, the call (including
      optional arguments ``order`` and ``noChannels``) is forwarded to the function
      :meth:`~vigra.VigraArray.defaultAxistags`, whose output is returned.
    '''
    if isinstance(spec, int):
        return VigraArray.defaultAxistags(spec, order=order, noChannels=noChannels)

    if isinstance(spec, AxisTags):
        res = copy.copy(spec)
    else:
        tags = [k if isinstance(k, AxisInfo) else eval('AxisInfo.'+k) for k in spec]
        res = AxisTags(*tuple(tags))
    if order:
        res.transpose(res.permutationToOrder(order))
    if noChannels:
        res.dropChannelAxis()
    return res

def taggedView(array, axistags='', force=False, order=None, noChannels=False):
    '''
    Create a view to the given array with type :class:`~vigra.VigraArray` and
    desired axistags.

    You can either explicitly provide axistags to be imposed on the array
    (parameter ``axistags``), or a general description for the desired axis
    ordering (parameters ``order`` and ``noChannels``). It is an error to
    specify axistags and order simultaneously. In addition, the effect of
    ``taggedView()`` depends on whether ``array`` already has axistags or not.

    1. If ``array`` has no axistags or ``force=True`` (i.e. existing axistags
       shall be ignored) and the ``order`` parameter is given, the function
       constructs appropriate axistags via :meth:`~vigra.VigraArray.defaultAxistags`::

       >>> view = array.view(VigraArray)
       >>> view.axistags = VigraArray.defaultAxistags(view.ndim, order, noChannels)

    2. If ``array`` has no axistags (or ``force=True``) and the ``axistags`` parameter
       is given, the function transforms this specification into an object of type
       :class:`~vigra.AxisTags` and attaches the result to the view::

       >>> view = array.view(VigraArray)
       >>> view.axistags = makeAxistags(axistags)

    3. If ``array`` has axistags (and ``force=False``) and the ``order`` parameter is
       given, the function transposes the array into the desired order::

       >>> view = array.transposeToOrder(order)
       >>> if noChannels:
       ...     view = view.dropChannelAxis()

    4. If ``array`` has axistags (and ``force=False``) and the ``axistags`` parameter
       is given, the function calls :meth:`~vigra.VigraArray.withAxes` to transforms
       the present axistags into the desired ones::

       >>> view = array.withAxes(axistags)

    The function raises a RuntimeError when the axistag specification is incompatible
    with the array.
    '''
    if axistags and order:
        raise RuntimeError("vigra.taggedView(): you cannot specify 'axistags' and 'order' at the same time.")
    if hasattr(array, 'axistags') and not force:
        if not axistags:
            array = array.transposeToOrder(order)
            if noChannels:
                array = array.dropChannelAxis()
        else:
            array = array.withAxes(axistags)
    else:
        if not axistags:
            axistags = VigraArray.defaultAxistags(array.ndim, order, noChannels)
        else:
            axistags = makeAxistags(axistags)
        if array.ndim != len(axistags):
            raise RuntimeError('vigra.taggedView(): array.ndim must match len(axistags).')
        array = array.view(VigraArray)
        array.axistags = axistags
    return array

def dropChannelAxis(array):
    '''
    Return the view created by ``array.``:meth:`~vigra.VigraArray.dropChannelAxis` if
    the given array supports that function, or return ``array`` unchanged otherwise.
    '''
    try:
        return array.dropChannelAxis()
    except:
        return array

# FIXME: This is a workaround for the disabled C++ function for the same purpose.
#        Enable the C++ version when boost 1.41 is available on all relevant platforms.
def _AxisTags_fromJSON(json_rep):
    '''
        Construct a new AxisTags object from the given JSON representation.
        This is mainly used to reconstruct arrays from HDF5 datasets with
        a suitable axistags attribute (see :func:`~vigra.impex.readHDF5`).
    '''
    tag_dict = eval(json_rep)
    tag_list = []
    for tags in tag_dict['axes']:
        tags['typeFlags'] = AxisType(tags['typeFlags'])
        tag_list.append(AxisInfo(**tags))
    return AxisTags(tag_list)

def _AxisTags__reduce__(self):
    '''
        enable pickling of AxisTags
    '''
    return _AxisTags_fromJSON, (self.toJSON(),)

AxisTags.__reduce__ = _AxisTags__reduce__
AxisTags.fromJSON = staticmethod(_AxisTags_fromJSON)
AxisTags.fromJSON.__doc__ = _AxisTags_fromJSON.__doc__

# How to construct a VigraArray
#
# case 1: from shape and order or axistags
# conventions: - shape has explicit channel axis
#              - 'A' order defaults to 'V' order
#              - order implies axistags and vice versa, you cannot provide both
# * look up the array type. If it is a plain ndarray, skip axistags
# * construct array according to order, optionally init with a constant
# * create and assign normalized axistags, if not explicitly given
# * optionally remove a singleton channel dimension (while we know where it is)
# * permute the array by the inverse normalization
# * assign axistags, if explicitly given (check compatibility)
#
# case 2: from another array
# * if taget order is 'A' or source and target order are equal, copy as is (including axistags)
# * otherwise, normalize the shape according to target order and
#   remember the normalizing permutation
# * construct array in normalized order
# * permute the array by the inverse normalization
# * copy original data and axistags

_constructArrayFromAxistags = vigranumpycore.constructArrayFromAxistags

def _constructArrayFromOrder(cls, shape, dtype, order, init):
    axistags = VigraArray.defaultAxistags(len(shape), order)
    return _constructArrayFromAxistags(cls, shape, dtype, axistags, init)

def _constructArrayFromArray(cls, obj, dtype, order, init, axistags):
    if order is None:
        order = 'A'
    if order == 'A':
        # we cannot use ndarray.copy('A') here, because this only preserves 'C' and 'F'
        # order, whereas any other order is silently transformed into 'C'

        # we must also make sure that a singleton channel index has the smallest stride
        # (otherwise, strides in the copy may not exactly match those in obj)
        strides = list(obj.strides)
        try:
            channelIndex = obj.channelIndex
            if channelIndex < obj.ndim and obj.shape[channelIndex] == 1:
                strides[channelIndex] = 0
        except:
            pass
        permutation = list(numpy.array(strides).argsort())
        norm_shape = tuple(numpy.array(obj.shape)[permutation])
        inverse_permutation = list(numpy.array(permutation).argsort())
        array = numpy.ndarray.__new__(cls, norm_shape, dtype, order='F')
        array = array.transpose(inverse_permutation)
    else:
        array = _constructArrayFromOrder(cls, obj.shape, dtype, order, False)

    if init:
        array[...] = obj
    if cls is not numpy.ndarray:
        if axistags is not None:
            array.axistags = axistags
        elif hasattr(array, 'axistags'):
            del array.axistags
    return array

def _constructArrayFromPickle(_arraypickle, _permutation, _axistags):
    reconstructionFunction = _arraypickle[0]
    reconstructionArgs = _arraypickle[1]
    array = reconstructionFunction(*reconstructionArgs)
    array.__setstate__(_arraypickle[2])
    array = array.transpose(_permutation)
    array.axistags = AxisTags.fromJSON(_axistags)
    return array

def _constructArrayFromZMQSocket(socket, flags=0, copy=True, track=False):
    metadata = socket.recv_json(flags=flags)
    axistags = AxisTags.fromJSON(socket.recv(flags=flags))
    data = buffer(socket.recv(flags=flags, copy=copy, track=track))
    array = numpy.frombuffer(data, dtype=metadata['dtype']).reshape(metadata['shape'])
    array = taggedView(array.transpose(metadata['permutation']), axistags)
    return array

##################################################################

class VigraArray(numpy.ndarray):
    '''
    This class extends numpy.ndarray with the concept of **axistags**
    which encode the semantics of the array's axes. VigraArray overrides all
    numpy.ndarray methods in order to handle axistags in a sensible way.
    In particular, operations acting on two arrays simultaneously (e.g.
    addition) will first transpose the arguments such that their axis
    ordering matches.

    Constructor:

    .. method:: VigraArray(obj, dtype=numpy.float32, order=None, init=True, value=None, axistags=None)

        :param obj: an array or shape object (see below)
        :param dtype: desired element type
        :param order: desired memory layout (see below)
        :param init: True: initialize the image with zeros; False: do not
                     initialize the image
        :type init: boolean
        :param value: initialize the image with this value (overrides init)
        :type value: convertible to dtype
        :param axistags: the AxisTags object of the new array. The length of
                         axistags must match the array's shape. It axistags=None,
                         obj.axistags is used if it exists. Otherwise, a new
                         axistags object is created by a call to
                         :meth:`~vigra.VigraArray.defaultAxistags`.

        **obj** may be one of the following

        * If obj is a numpy.ndarray or a subtype, a copy of obj with the given
          dtype, order and resulting class VigraArray is created. If obj.axistags
          exists, the new array will have these axistags as well, unless new
          axistags are explicitly passed to the constructor.
        * If obj is a sequence, it is interpreted as a shape.
        * Otherwise, or if shape and axistags are incompatible, an exception
          is raised.

        **order** can be 'C' (C order), 'F' (Fortran order), 'V' (VIGRA
        order), 'A' (any), or None. This parameter controls the order of strides
        and axistags (unless axistags are explicit passed into the constructor).
        See the :ref:`order definitions <array-order-parameter>` for details. If
        'order=None', the order is determined by :attr:`VigraArray.defaultOrder`.
    '''

    ###############################################################
    #                                                             #
    #       a number of helper functions related to axistags      #
    #                                                             #
    ###############################################################

    # a number of helper functions related to axistags

    # IMPORTANT: do not remove or rename this function, it is called from C++
    @classproperty
    def defaultOrder(cls):
        '''
        Get the default axis ordering, currently 'V' (VIGRA order)
        '''
        return 'V'

    # IMPORTANT: do not remove or rename this function, it is called from C++
    @staticmethod
    def defaultAxistags(tagSpec, order=None, noChannels=False):
        '''
        Get default axistags for the given specification 'tagSpec'. TagSpec can be the
        number of dimensions of the array (``array.ndim``, must be <= 5) or a string
        containing a sequence of axis keys (only the default keys 'x', 'y', 'z', 't',
        and 'c' are currently supported). The 'order' parameter determines the axis
        ordering, see the :ref:`order definitions <array-order-parameter>` for details.
        If 'noChannels' is True, there will be no channel axis. Examples::

            >>> vigra.VigraArray.defaultAxistags(3)
            x y c
            >>> vigra.VigraArray.defaultAxistags(4)
            x y z c
            >>> vigra.VigraArray.defaultAxistags(5)
            x y z t c
            >>> vigra.VigraArray.defaultAxistags(3, order='C')
            y x c
            >>> vigra.VigraArray.defaultAxistags(2, noChannels=True)
            x y
            >>> vigra.VigraArray.defaultAxistags(3, noChannels=True)
            x y z
            >>> vigra.VigraArray.defaultAxistags(4, noChannels=True)
            x y z t
            >>> vigra.VigraArray.defaultAxistags('xty')
            x t y
            >>> vigra.VigraArray.defaultAxistags('xty', order='V')
            x y t
        '''
        if type(tagSpec) == str:
            taglist = [eval('AxisInfo.' + k) for k in tagSpec]
        else:
            start = 1 if noChannels else 0
            end = start + tagSpec
            taglist = [AxisInfo.c, AxisInfo.x, AxisInfo.y, AxisInfo.z, AxisInfo.t][start:end]
            if order is None or order == 'A':
                order = VigraArray.defaultOrder
        tags = AxisTags(taglist)
        if order is not None:
            tags.transpose(tags.permutationToOrder(order))
        return tags

    # IMPORTANT: do not remove or rename this function, it is called from C++
    @staticmethod
    def _copyValuesImpl(target, source):
        try:
            target = target.squeeze()
            target = target.transposeToNumpyOrder()
        except:
            pass

        try:
            source = source.squeeze()
            source = source.transposeToNumpyOrder()
        except:
            pass

        try:
            compatible = source.axistags.compatible(target.axistags)
        except:
            compatible = True

        if not compatible:
            raise RuntimeError("VigraArray._copyValuesImpl(): incompatible axistags")

        target[...] = source

    # IMPORTANT: do not remove or rename this function, it is called from C++
    @staticmethod
    def _empty_axistags(ndim):
        '''Create an axistags object with non-informative entries.
           That is, all axisinfo objects are '?'.
        '''
        return AxisTags(ndim)

    def _copy_axistags(self):
        '''Create a copy of 'self.axistags'. If the array doesn't have axistags, _empty_axistags()
           will be returned.
        '''
        return copy.copy(getattr(self, 'axistags', self._empty_axistags(self.ndim)))

    def _transform_axistags(self, index):
        if hasattr(self, 'axistags'):
            return self.axistags.transform(index, self.ndim)
        else:
            return self._empty_axistags(self.ndim)

    def _transpose_axistags(self, *permutation):
        '''Create a copy of self.axistags with transposed entries.
        '''
        if hasattr(self, 'axistags'):
            res = copy.copy(self.axistags)
            try:
                len(permutation[0])
                res.transpose(permutation[0])
            except:
                res.transpose(permutation)
            return res
        else:
            return self._empty_axistags(self.ndim)

    ###############################################################
    #                                                             #
    #                   standard array functions                  #
    #                                                             #
    ###############################################################

    def __new__(cls, obj, dtype=numpy.float32, order=None, init=True, value=None, axistags=None):
        if value is not None:
            init = False
        if isinstance(obj, numpy.ndarray):
            if axistags is None:
                if hasattr(obj, 'axistags'):
                    axistags = copy.copy(obj.axistags)
                else:
                    raise RuntimeError("VigraArray(): axistags must be given when constructing from plain array.")
            elif obj.ndim != len(axistags):
                raise RuntimeError("VigraArray(): axistags have wrong length.")
            if order is None:
                res = _constructArrayFromAxistags(cls, obj.shape, dtype, axistags, init)
                if init:
                    res[...] = obj
            else:
                res = _constructArrayFromArray(cls, obj, dtype, order, init, axistags)
        else:
            if axistags is None:
                if order is None:
                    order = VigraArray.defaultOrder
            elif len(axistags) != len(obj):
                raise RuntimeError("VigraArray(): axistags have wrong length.")
            if order is None:
                res = _constructArrayFromAxistags(cls, obj, dtype, axistags, init)
            else:
                res = _constructArrayFromOrder(cls, obj, dtype, order, init)
                if cls is not numpy.ndarray and axistags is not None:
                    res.axistags = axistags
        if value is not None:
            res.fill(value)
        return res

    __array_priority__ = 15.0

    def __array_finalize__(self, obj):
        if hasattr(obj, 'axistags'):
            self.axistags = obj.axistags

    def __copy__(self, order='A'):
        result = numpy.ndarray.__copy__(self, order)
        result.axistags = result._copy_axistags()
        return result

    @_preserve_doc
    def __deepcopy__(self, memo):
        # numpy.ndarray.__deepcopy__ always creates C-order arrays =>
        #   transpose self accordingly, and transpose back after the copy
        result = numpy.ndarray.__deepcopy__(self.transposeToNumpyOrder(), memo)
        result = result.transpose(self.permutationFromNumpyOrder())
        memo[id(self)] = result
        result.__dict__ = copy.deepcopy(self.__dict__, memo)
        return result

    def __repr__(self):
        return "%s(shape=%s, axistags=%s, dtype=%s, data=\n%s)" % \
          (self.__class__.__name__, str(self.shape), repr(self.axistags), str(self.dtype), str(self))

    def __str__(self):
        try:
            self = self.transposeToVigraOrder().transpose()
        except:
            pass
        return str(self.view(numpy.ndarray))

    def __reduce__(self):
        '''
            Enable pickling of a VigraArray, including axistags. The stride ordering
            will be preserved in the unpickled array. Note that user-defined attributes
            will not be saved and restored.
        '''
        # since the stride ordering is not necessarily preserved by ndarray's pickling
        # functions, we need to normalize stride ordering, and permute to the original
        # ordering upon reconstruction
        pickled = numpy.ndarray.__reduce__(self.transposeToNumpyOrder())
        return _constructArrayFromPickle, (pickled, self.permutationFromNumpyOrder(), self.axistags.toJSON())

    @staticmethod
    def receiveSocket(socket, flags=0, copy=True, track=False):
        '''
        Reconstruct an array that has been transferred via a ZMQ socket by a call to
        VigraArray.sendSocket(). This only works when the 'zmq' module is available.
        The meaning of the arguments is described in zmq.Socket.recv().
        '''
        return _constructArrayFromZMQSocket(socket, flags, copy, track)


    ###############################################################
    #                                                             #
    #                     array I/O and display                   #
    #                                                             #
    ###############################################################

    def writeImage(self, filename, dtype = '', compression = '', mode='w'):
        '''Write an image to a file.
        Consult :func:`vigra.impex.writeImage` for detailed documentation'''
        import vigra.impex

        ndim = self.ndim
        if self.channelIndex < ndim:
            ndim -= 1
        if ndim != 2:
            raise RuntimeError("VigraArray.writeImage(): array must have 2 non-channel axes.")

        vigra.impex.writeImage(self, filename, dtype, compression, mode)

    def writeSlices(self, filename_base, filename_ext, dtype = '', compression = ''):
        '''Write a volume to a sequence of files.
        Consult :func:`vigra.impex.writeVolume` for detailed documentation.
        '''
        import vigra.impex

        ndim = self.ndim
        if self.channelIndex < ndim:
            ndim -= 1
        if ndim != 3:
            raise RuntimeError("VigraArray.writeSlices(): array must have 3 non-channel axes.")

        vigra.impex.writeVolume(self, filename_base, filename_ext, dtype, compression)

    def writeHDF5(self, filenameOurGroup, pathInFile):
        '''Write the array to a HDF5 file.
           This is just a shortcut for :func:`vigra.impex.writeHDF5`
        '''
        import vigra.impex

        vigra.impex.writeHDF5(self, filenameOurGroup, pathInFile)

    def sendSocket(self, socket, flags=0, copy=True, track=False):
        '''
        Send array and metadata over a ZMQ socket. Only works if the 'zmq' module is available.
        The meaning of the arguments is described in zmq.Socket.send().
        '''
        import zmq

        transposed = self.transposeToNumpyOrder().view(numpy.ndarray)
        metadata = dict(
            dtype = str(transposed.dtype),
            shape = transposed.shape,
            permutation = self.permutationFromNumpyOrder()
        )
        socket.send_json(metadata, flags|zmq.SNDMORE)
        socket.send(self.axistags.toJSON().encode('ascii'), flags|zmq.SNDMORE)
        return socket.send(transposed, flags, copy=copy, track=track)

    def imshow(self):
        '''
        Shorthand for 'vigra.imshow(self)'.
        '''
        import vigra
        return vigra.imshow(self)

    def show(self, normalize=True):
        '''
        Display this image in a vigra.pyqt.ImageWindow.

        The channels are intepreted as follows: 1 channel = gray image,
        2 channels = gray + alpha, 3 channels = RGB, 4 channels = RGB + alpha.

        The parameter `normalize` can be used to normalize an image's
        value range to 0..255:

        `normalize` = (nmin, nmax):
          scale & clip image values from nmin..nmax to 0..255

        `normalize` = nmax:
          lets nmin default to zero, i.e. scale & clip the range 0..nmax
          to 0..255

        `normalize` = True: (default)
          scale the image's actual range min()..max() to 0..255

        `normalize` = False:
          don't scale the image's values

        '''
        from pyqt.imagewindow import showImage

        ndim = self.ndim
        channelIndex = self.channelIndex
        if channelIndex < ndim:
            if self.channels > 4:
                raise RuntimeError("VigraArray.show(): array can have at most 4 channels.")
            ndim -= 1
        if ndim != 2:
            raise RuntimeError("VigraArray.show(): array must have 2 non-channel axes.")

        return showImage(self.transposeToVigraOrder(), normalize)

    def qimage(self, normalize=True):
        '''
        Convert this image to a Qt QImage (mainly for display purposes).
        The present image must have 1, 2, 3, or 4 channels, and the resulting
        QImage will have QImage.Format_Indexed8 iff there was only one
        channel and QImage.Format_[A]RGB32 otherwise (with the last of
        2/4 channels being used as alpha channel).

        The parameter `normalize` can be used to normalize an image's
        value range to 0..255:

        `normalize` = (nmin, nmax):
          scale & clip image values from nmin..nmax to 0..255

        `normalize` = nmax:
          lets nmin default to zero, i.e. scale & clip the range 0..nmax
          to 0..255

        `normalize` = True: (default)
          scale the image's actual range min()..max() to 0..255

        `normalize` = False:
          don't scale the image's values

        '''
        try:
            import qimage2ndarray
        except Exception as e:
            from vigra import _fallbackModule
            _fallbackModule('qimage2ndarray',
            '''
            %s

            If qimage2ndarray is missing on your system, download it from
            http://pypi.python.org/pypi/qimage2ndarray/.''' % str(e))
            import qimage2ndarray

        ndim = self.ndim
        if self.channelIndex < ndim:
            ndim -= 1
        if ndim != 2:
            raise RuntimeError("VigraArray.qimage(): array must have 2 non-channel axes.")

        yxImage = self.transposeToNumpyOrder()

        if self.channels == 1:
            q = qimage2ndarray.gray2qimage(yxImage.dropChannelAxis(), normalize)
        else:
            q = qimage2ndarray.array2qimage(yxImage, normalize)

        return q

    def asRGB(self, normalize=True):
        '''
        Expand a scalar array (i.e. an array with a single channel) into an RGB array with
        three identical color channels. This is useful when you want to paste color
        annotations (e.g. user labels) into the array.

        The parameter `normalize` can be used to normalize the array's
        value range to 0..255:

        `normalize` = (nmin, nmax):
          scale & clip array values from nmin..nmax to 0..255

        `normalize` = True: (default)
          scale the array's actual range min()..max() to 0..255

        `normalize` = False:
          don't scale the array's values

        '''
        if self.channels != 1:
            raise RuntimeError("VigraArray.asRGB(): array must have a single channel.")
        img = self.dropChannelAxis()
        shape = img.shape + (3,)
        axistags = copy.copy(img.axistags)
        axistags.append(AxisInfo.c)
        res = VigraArray(shape, axistags=axistags)
        if normalize:
            try:
                m, M = normalize
                clip = True
            except:
                m, M = img.min(), img.max()
                clip = False
            if m == M:
                return res
            f = 255.0 // (M - m)
            img = f * (img - m)
            if clip:
                img = numpy.minimum(255.0, numpy.maximum(0.0, img))
        res[...,0] = img
        res[...,1] = img
        res[...,2] = img
        return res

    ###############################################################
    #                                                             #
    #           new functionality enabled by axistags             #
    #                                                             #
    ###############################################################

    def copyValues(self, other):
        '''
        Copy the values of an array to another one. This is similar to::

            self[...] = other

        but will first transpose both arrays so that axistags are aligned. If
        there is no valid alignment, RuntimeError will be raised.
        '''
        self._copyValuesImpl(self, other)

    # IMPORTANT: do not remove or rename this property, it is called from C++
    @property
    def channelIndex(self):
        '''
        The index of the channel axis according to the axistags.
        For example, when axistags are 'x y c', the channel index is 2.
        If the axistags contain no channel axis, self.ndim is returned.
        '''
        return self.axistags.channelIndex

    # IMPORTANT: do not remove or rename this property, it is called from C++
    @property
    def innerNonchannelIndex(self):
        '''
        The index of the innermost non-channel axis according to the axistags.
        The innermost axis is determined by the AxisInfo sorting rules (see
        the :ref:`order definitions <array-order-parameter>` for details).
        For example, when axistags are 'x y c', the innerNonchannelIndex is 0.
        '''
        return self.axistags.innerNonchannelIndex

    @property
    def channels(self):
        '''
        The number of channels in this array (shape of the 'c' axis).
        If the axistags contain no channel axis, the number of channels is implicitly 1.
        '''
        i = self.channelIndex
        if i < self.ndim:
            return self.shape[i]
        else:
            return 1

    @property
    def width(self):
        '''
        The width of the array (shape of the 'x' axis).
        If the axistags contain no 'x' axis, RuntimeError will be raised.
        '''
        i = self.axistags.index('x')
        if i < self.ndim:
            return self.shape[i]
        else:
            raise RuntimeError("VigraArray.width(): axistag 'x' does not exist.")

    @property
    def height(self):
        '''
        The height of the array (shape of the 'y' axis).
        If the axistags contain no 'y' axis, RuntimeError will be raised.
        '''
        i = self.axistags.index('y')
        if i < self.ndim:
            return self.shape[i]
        else:
            raise RuntimeError("VigraArray.height(): axistag 'y' does not exist.")

    @property
    def depth(self):
        '''
        The depth of the array (shape of the 'z' axis).
        If the axistags contain no 'z' axis, RuntimeError will be raised.
        '''
        i = self.axistags.index('z')
        if i < self.ndim:
            return self.shape[i]
        else:
            raise RuntimeError("VigraArray.depth(): axistag 'z' does not exist.")

    @property
    def duration(self):
        '''
        The number of time steps in the array (shape of the 't' axis).
        If the axistags contain no 't' axis, RuntimeError will be raised.
        '''
        i = self.axistags.index('t')
        if i < self.ndim:
            return self.shape[i]
        else:
            raise RuntimeError("VigraArray.duration(): axistag 't' does not exist.")

    @property
    def spatialDimensions(self):
        '''
        The number of spatial axes in the array.
        That is, the number of entries in the axistags where the flag 'AxisType.Space'
        is set.
        '''
        return self.axistags.axisTypeCount(AxisType.Space)

    def iterImpl(self, type):
        axes = [k for k in xrange(self.ndim) if self.axistags[k].isType(type)]
        if axes:
            axes.sort(key=lambda x: self.axistags[x], reverse=True)
            slices = [slice(None)]*self.ndim
            for point in numpy.ndindex(*(self.shape[k] for k in axes)):
                for j in xrange(len(point)):
                    slices[axes[j]] = point[j]
                yield self[tuple(slices)]
        else:
            yield self

    def channelIter(self):
        '''
        Create an iterator over the channels of the array.
        In each iteration, you get the array corresponding to a single channel.
        If the axistags contain no channel axis, there is only one iteration
        which yields the entire array. Example::

            >>> rgb = vigra.RGBImage((200, 100))
            >>> rgb.axistags
            x y c
            >>> red, green, blue = rgb.channelIter()
            >>> red.axistags
            x y
            >>> red.shape
            (200, 100)
        '''
        return self.iterImpl(AxisType.Channels)

    def spaceIter(self):
        '''
        Create an iterator over all the spatial coordinates in the array.
        In each iteration, you get the value corresponding to a single
        coordinate location. If the axistags contain no spatial axes,
        there is only one iteration which yields the entire array. Example::

            >>> s = vigra.ScalarImage((2,2))
            >>> s.ravel()[...] = range(4)
            >>> for p in s.spaceIter():
            ....    print(p)
            0.0
            1.0
            2.0
            3.0
        '''
        return self.iterImpl(AxisType.Space)

    def timeIter(self):
        '''
        Create an iterator over the time points of the array.
        In each iteration, you get the array corresponding to a single time point.
        If the axistags contain no time axis, there is only one iteration
        which yields the entire array. Example::

            >>> from vigra import *
            >>> axistags = AxisTags(AxisInfo.t, AxisInfo.x, AxisInfo.y)
            >>> timesteps, width, height = 2, 200, 100
            >>> image_sequence = Image((timesteps, width, height), axistags=axistags)
            >>> step1, step2 = image_sequence.timeIter()
        '''
        return self.iterImpl(AxisType.Time)

    def sliceIter(self, key='z'):
        '''
        Create an iterator over a single spatial axis of the array.
        In each iteration, you get the array corresponding to one coordinate
        along the axis given by 'key'. For example, to iterate along the z-axis
        to get all x-y-slices in turn, you write::

            >>> volume = vigra.Volume((width, height, depth))
            >>> for slice in volume.sliceIter('z'):
            ...     processSlice(slice)
        '''
        i = self.axistags.index(key)
        if i < self.ndim:
            if not self.axistags[i].isSpatial():
                raise RuntimeError("VigraArray.sliceIter(): %s is not a spatial axis." % key)
            for k in xrange(self.shape[i]):
                yield self.bindAxis(i, k)
        else:
            yield self

    def bindAxis(self, which, index=0):
        '''
        Bind the axis identified by 'which' to the given 'index'.
        This is similar to::

            array[:, index, ...]

        but you do not need to know the position of the axis when you use the
        axis key (according to axistags). For example, to get the green channel
        of an RGBImage, you write::

            >>> rgb = vigra.RGBImage((200, 100))
            >>> green = rgb.bindAxis('c', 1)

        This gives the correct result irrespective of the axis ordering.
        '''
        if type(which) == str:
            which = self.axistags.index(which)
        return self[(slice(None),)*which + (index,) + (slice(None),)*(self.ndim-which-1)]

    def dropChannelAxis(self, ignoreMultiChannel=False):
        '''
        Drop the channel axis when it is a singleton.
        This function is for easy transformation of an array shaped
        (width, height, 1) into (width, height). A RuntimeError
        is raised when there is more than one channel, unless ignoreMultiChannel=True,
        in which case 'self' is returned.
        '''
        ci = self.channelIndex
        if ci == self.ndim:
            return self

        if self.shape[ci] != 1:
            if ignoreMultiChannel:
                return self
            raise RuntimeError("dropChannelAxis(): only allowed when there is a single channel.")
        return self.bindAxis(ci, 0)

    def insertChannelAxis(self, order=None):
        '''
        Insert a singleton channel axis.
        This function is for easy transformation of an array shaped
        (width, height) into (width, height, 1). The 'order' parameter
        determines the position of the new axis: when order is 'F', it
        will become the first axis, otherwise it will become the last
        one. A RuntimeError is raised when the array already contains a
        channel axis.
        '''
        ci = self.channelIndex
        if ci != self.ndim:
            return self

        if order == 'F':
            res = self[numpy.newaxis,...]
            res.axistags[0] = AxisInfo.c
        else:
            res = self[..., numpy.newaxis]
            res.axistags[-1] = AxisInfo.c
        return res

    def noTags(self):
        '''
        Drop the axistags. This is a shorthand for ``array.view(numpy.ndarray)``.
        '''
        return self.view(numpy.ndarray)

    def withAxes(self, *axistags, **kw):
        '''
        This function creates a view whose axistags are standardized in a
        desired way. The standardization can be specified in two forms:

        1. Provide ``axistags`` explicitly in any format understood by
           :func:`vigra.makeAxistags`. The original axistags are then
           transposed into the given order. When the original array contains
           axes not listed in the new specification, these axes are dropped
           if they are singletons (otherwise, an exception is raised).
           If requested axes is not present in the original array,
           singleton axes are inserted at the appropriate positions, provided
           the axis keys are among the predefined standard keys ('x', 'y', 'z',
           't', 'c', 'n', 'e', 'fx', 'fy', 'fz', 'ft'). The function fails if
           the original array contains axes of unknown type (key '?')::

                >>> array.axistags
                x y c
                >>> array.shape
                (100, 50, 1)
                >>> view = array.withAxes('tzyx')
                >>> view.axistags
                t z y x
                >>> view.shape
                (1, 1, 50, 100)

        2. Provide keyword arguments ``order`` and (optionally) ``noChannels``.
           The array is then transposed into the desired order ('C', 'F', or 'V').
           If ``noChannels=True``, the channel axis is dropped if it is a
           singleton, otherwise an exception is raised::

                >>> array.axistags
                x y c
                >>> array.shape
                (100, 50, 1)
                >>> view = array.withAxes(order='F')
                >>> view.axistags
                c x y
                >>> view.shape
                (1, 100, 50)
                >>> view = array.withAxes(order='C', noChannels=True)
                >>> view.axistags
                y x
                >>> view.shape
                (50, 100)

        The parameters ``axistags`` and ``order`` cannot be specified simultaneously.
        '''
        if len(axistags) == 1:
            axistags = axistags[0]
        if axistags and kw.get('order'):
            raise RuntimeError("vigra.withAxes(): you cannot specify 'axistags' and 'order' at the same time.")
        if axistags:
            axistags = makeAxistags(axistags)
            if self.axistags.compatible(axistags):
                return self
            axisinfo = []
            slicing = [0]*self.ndim
            for tag in axistags:
                index = self.axistags.index(tag.key)
                if index < self.ndim:
                    axisinfo.append(self.axistags[index])
                    slicing[index] = slice(None)
                else:
                    axisinfo.append(tag)
                    slicing.append(axisinfo[-1])
            for k in xrange(self.ndim):
                if self.axistags[k].isType(AxisType.UnknownAxisType):
                    raise RuntimeError("VigraArray.withAxes(): array must not contain axes of unknown type (key '?').")
                if slicing[k] == 0 and self.shape[k] != 1:
                    raise RuntimeError("VigraArray.withAxes(): cannot drop non-singleton axis '%s'." % self.axistags[k].key)
            permutation = AxisTags(axisinfo).permutationFromNumpyOrder()
            res = self[slicing].transposeToNumpyOrder().transpose(permutation)
        else:
            res = self.transposeToOrder(kw.get('order'))
            if kw.get('noChannels'):
                res = res.dropChannelAxis()
        return res

    def view5D(self, order='C'):
        '''
            Create a 5-dimensional view containing the standard tags
            'x', 'y', 'z', 't', 'c' in the desired 'order' (which can be
            'C', 'F', and 'V' with the usual meaning). If 'self' has an
            axis key that is not among the five admissible keys, an
            exception is raised. Axes missing in 'self' are added as
            singleton axes with the appropriate tags.
        '''
        stdTags = ['x', 'y', 'z', 't', 'c']
        for tag in self.axistags:
            try:
                del stdTags[stdTags.index(tag.key)]
            except:
                raise RuntimeError("VigraArray.view5D(): array contains unsuitable axis key '%s'." % tag.key)
        index = [Ellipsis] + [newaxis(eval('AxisInfo.' + k)) for k in stdTags]
        return self[index].transposeToOrder(order)

    def permutationToOrder(self, order):
        '''Create the permutation that would transpose this array into
           an array view with the given order (where order can be 'A',
           'C', 'F', 'V' with the usual meaning).
        '''
        return list(self.axistags.permutationToOrder(order))

    def permutationToNormalOrder(self, types=AxisType.AllAxes):
        '''Create the permutation that would transpose this array to
           normal order (that is, from the current axis order into
           ascending order, e.g. 'x y c' into 'c x y').
           If 'types' is not 'AxisType.AllAxes', only the axes with the
           desired types are considered.
        '''
        return list(self.axistags.permutationToNormalOrder(types))

    def permutationFromNormalOrder(self):
        '''Create the permutation that would transpose an array that is
           in normal (ascending) order into the axis order of this array.
           (e.g. 'c x y' into 'x y c').
        '''
        return list(self.axistags.permutationFromNormalOrder())

    def permutationToNumpyOrder(self):
        '''Create the permutation that would transpose this array to
           numpy order (that is, from the current axis order into
           descending order, e.g. 'x y c' into 'y x c').
        '''
        return list(self.axistags.permutationToNumpyOrder())

    def permutationFromNumpyOrder(self):
        '''Create the permutation that would transpose an array that is
           in numpy (descending) order into the axis order of this array.
           (e.g.  'y x c' into 'x y c').
        '''
        return list(self.axistags.permutationFromNumpyOrder())

    def permutationToVigraOrder(self):
        '''Create the permutation that would transpose this array to
           VIGRA order (that is, from the current axis order into
           ascending spatial order, but with the channel axis at the
           last position, e.g. 'c x y' into 'x y c').
        '''
        return list(self.axistags.permutationToVigraOrder())

    def permutationFromVigraOrder(self):
        '''Create the permutation that would transpose an array that is
           in VIGRA order (ascending spatial order, but with the channel
           axis at the last position) into the axis order of this array.
           (e.g.  'x y c' into 'c x y').
        '''
        return list(self.axistags.permutationFromVigraOrder())

    def transposeToOrder(self, order):
        '''
        Get a transposed view onto this array according to the given 'order'.
        Possible orders are:

        'A' or '' or None:
            return the array unchanged
        'C':
            transpose to descending axis order (e.g. 'z y x c')
        'F':
            transpose to ascending axis order (e.g. 'c x y z')
        'V':
            transpose to VIGRA order, i.e. ascending spatial axes, but
            the channel axis is last (e.g. 'x y z c')
        '''
        if not order or order == 'A':
            return self
        permutation = self.permutationToOrder(order)
        return self.transpose(permutation)

    def transposeToDefaultOrder(self):
        '''Equivalent to self.transposeToOrder(VigraArray.defaultOrder).
        '''
        return self.transposeToOrder(VigraArray.defaultOrder)

    def transposeToNormalOrder(self):
        '''Equivalent to self.transposeToOrder('F').
        '''
        return self.transposeToOrder('F')

    def transposeToVigraOrder(self):
        '''Equivalent to self.transposeToOrder('V').
        '''
        return self.transposeToOrder('V')

    def transposeToNumpyOrder(self):
        '''Equivalent to self.transposeToOrder('C').
        '''
        return self.transposeToOrder('C')

    @property
    def T(self):
        '''
        Equivalent to self.transpose()
        '''
        return self.transpose()

    def __getitem__(self, index):
        '''
        ``array.__getitem__(index)`` implements the indexing operator ``array[index]``.
        In addition to the usual numpy.ndarray indexing functionality, this function
        also updates the axistags of the result array. There are three cases:

            * getitem creates a scalar value => no axistags are required
            * getitem creates an array view => axistags are transferred from the
              corresponding axes of the base array
            * getitem creates a copy of an array (fancy indexing) => all axistags are '?'

        If the index contains 'numpy.newaxis', a new singleton axis is inserted at the
        appropriate position, whose axisinfo is set to '?' (unknown). If the index contains
        'vigra.newaxis(axisinfo)', the singleton axis will get the given axisinfo.
        '''
        try:
            res = numpy.ndarray.__getitem__(self, index)
        except:
            if not isinstance(index, collections.Iterable):
                raise
            #create temporary index without AxisInfor in order to use np.ndarray.__getitem__
            tmpindex = [None if isinstance(x, AxisInfo) else x for x in index]
            res = numpy.ndarray.__getitem__(self, tmpindex)
        if res is not self and hasattr(res, 'axistags'):
            if res.base is self or res.base is self.base:
                res.axistags = res._transform_axistags(index)
            else:
                res.axistags = res._empty_axistags(res.ndim)
        return res

    def subarray(self, p1, p2=None):
        '''
        Construct a subarray view from a pair of points. The first point denotes the start
        of the subarray (inclusive), the second its end (exclusive). For example,

            a.subarray((1,2,3), (4,5,6))  # equivalent to a[1:4, 2:5, 3:6]

        The given points must have the same dimension, otherwise an IndexError is raised.
        If only one point is given, it refers to the subarray's end, and the start is set
        to the point (0, 0, ...) with appropriate dimension, for example

            a.subarray((4,5,6))           # equivalent to a[:4, :5, :6]

        The function transforms the given point pair into a tuple of slices and calls
        self.__getitem__() in it. If the points have lower dimension than the array, an
        Ellipsis ('...') is implicitly appended to the slicing, so that missing axes
        are left unaltered.
        '''
        if p2 is not None:
            if len(p1) != len(p2):
                raise IndexError('VigraArray.subarray(): points must have the same dimension.')
            return self.__getitem__(tuple(map(lambda x,y: slice(x.__int__(), y.__int__()), p1, p2)))
        else:
            return self.__getitem__(tuple(map(lambda x: slice(x.__int__()), p1)))

    ###############################################################
    #                                                             #
    #      re-implement ndarray methods to handle axistags        #
    #                                                             #
    ###############################################################

    @_finalize_reduce_result
    @_preserve_doc
    def all(self, axis=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        return numpy.ndarray.all(self, axis, out)

    @_finalize_reduce_result
    @_preserve_doc
    def any(self, axis=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        return numpy.ndarray.any(self, axis, out)

    @_finalize_reduce_result
    @_preserve_doc
    def argmax(self, axis=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        return numpy.ndarray.argmax(self, axis, out)

    @_finalize_reduce_result
    @_preserve_doc
    def argmin(self, axis=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        return numpy.ndarray.argmin(self, axis, out)

    @_preserve_doc
    def copy(self, order='A'):
        return self.__class__(self, dtype=self.dtype, order=order)

    @_preserve_doc
    def cumprod(self, axis=None, dtype=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        res = numpy.ndarray.cumprod(self, axis, dtype, out)
        if axis is None and out is None:
            res.axistags = res._empty_axistags(res.ndim)
        return res

    @_preserve_doc
    def cumsum(self, axis=None, dtype=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        res = numpy.ndarray.cumsum(self, axis, dtype, out)
        if axis is None and out is None:
            res.axistags = res._empty_axistags(res.ndim)
        return res

    @property
    def flat(self):
        '''
        The array is always transposed to 'C' order before flattening.
        '''
        return self.transposeToNumpyOrder().view(numpy.ndarray).flat

    @_preserve_doc
    def flatten(self, order='C'):
        '''
        The array is always transposed to 'C' order before flattening.
        '''
        res = self.transposeToNumpyOrder().view(numpy.ndarray).flatten(order)
        return taggedView(res, self._empty_axistags(1))

    @_finalize_reduce_result
    @_preserve_doc
    def max(self, axis=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        return numpy.ndarray.max(self, axis, out)

    @_preserve_doc
    def mean(self, axis=None, dtype=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        return _numpyarray_overloaded_function(numpy.ndarray.mean, self, axis, dtype, out)

    @_finalize_reduce_result
    @_preserve_doc
    def min(self, axis=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        return numpy.ndarray.min(self, axis, out)

    @_preserve_doc
    def nonzero(self):
        res = tuple(k.view(type(self)) for k in numpy.ndarray.nonzero(self))
        for k in xrange(len(res)):
            res[k].axistags = AxisTags(AxisInfo(self.axistags[k]))
        return res

    @property
    def order(self):
        if self.flags.c_contiguous:
            return 'C'
        elif self.flags.f_contiguous:
            return 'F'
        elif self.channelIndex == self.ndim-1 and self.itemsize == self.strides[-1] and \
             reduce(lambda x, y: y if y >= x and x >= 0 else -1, self.strides[:-1], 0) >= 0:
            return 'V'
        return 'A'

    @_preserve_doc
    def prod(self, axis=None, dtype=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        return _numpyarray_overloaded_function(numpy.ndarray.prod, self, axis, dtype, out)

    @_preserve_doc
    def ptp(self, axis=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        if axis is None:
            return self.transposeToOrder('C').view(numpy.ndarray).ptp(out=out)
        else:
            res = self.view(numpy.ndarray).ptp(axis, out)
            if out is None:
                res = res.view(VigraArray)
                res.axistags = self._copy_axistags()
                del res.axistags[axis]
            return res

    @_preserve_doc
    def ravel(self, order='C'):
        '''
        The array is always transposed to 'C' order before flattening.
        '''
        res = self.transposeToNumpyOrder().view(numpy.ndarray).ravel(order)
        return taggedView(res, self._empty_axistags(1))

    @_preserve_doc
    def repeat(self, repeats, axis=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        if axis is None:
            return numpy.ndarray.repeat(self.ravel(), repeats)
        else:
            return numpy.ndarray.repeat(self, repeats, axis)

    @_preserve_doc
    def reshape(self, shape, order='C', axistags=None):
        '''
        An additional keyword argument 'axistags' can be used to determine
        the result's axistags. If not given, all axes of the result will
        have type 'unknown'.
        '''
        if axistags is not None and len(shape) != len(axistags):
            raise RuntimeError("VigraArray.reshape(): size mismatch between shape and axistags.")
        res = numpy.ndarray.reshape(self, shape, order=order)
        if axistags is not None:
            res.axistags = copy.copy(axistags)
        else:
            res.axistags = res._empty_axistags(res.ndim)
        return res

    @_preserve_doc
    def resize(self, new_shape, refcheck=True, order=False, axistags=None):
        '''
        An additional keyword argument 'axistags' can be used to determine
        the self's axistags after the resize. If not given, all axes will have
        type 'unknown'.
        '''
        # ndarray.resize() internally checks for refcount <= 2
        # We need to increase the threshold because we have two
        # additional references ('self' and the argument to 'sys.getrefcount')
        if sys.getrefcount(self) <= 4:
            refcheck = False
        if axistags is not None and len(new_shape) != len(axistags):
            raise RuntimeError("VigraArray.resize(): size mismatch between shape and axistags.")
        numpy.ndarray.resize(self, new_shape, refcheck=refcheck)
        if axistags is not None:
            self.axistags = copy.copy(axistags)
        else:
            self.axistags = self._empty_axistags(self.ndim)

    @_preserve_doc
    def squeeze(self):
        res = numpy.ndarray.squeeze(self)
        if self.ndim != res.ndim:
            res.axistags = res._copy_axistags()
            for k in xrange(self.ndim-1, -1, -1):
                if self.shape[k] == 1:
                    del res.axistags[k]
        return res

    @_preserve_doc
    def std(self, axis=None, dtype=None, out=None, ddof=0):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        return _numpyarray_overloaded_function(numpy.ndarray.std, self, axis, dtype, out)

    @_preserve_doc
    def sum(self, axis=None, dtype=None, out=None):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        return _numpyarray_overloaded_function(numpy.ndarray.sum, self, axis, dtype, out)

    @_preserve_doc
    def swapaxes(self, i, j, keepTags=False):
        '''
        Parameters 'i' and 'j' can also be ints (axis positions) or strings (axis keys).

        If 'keepsTags' is False, axistags are swapped like the axes, otherwise they remain
        unchanged such that the swapped axes aquire a new meaning.
        '''
        if type(i) == str:
            i = self.axistags.index(i)
        if type(j) == str:
            j = self.axistags.index(j)
        res = numpy.ndarray.swapaxes(self, i, j)
        res.axistags = res._copy_axistags()
        if not keepTags:
            try:
                res.axistags.swapaxes(i, j)
            except:
                res.axistags[i], res.axistags[j] = res.axistags[j], res.axistags[i]
        return res

    @_preserve_doc
    def take(self, indices, axis=None, out=None, mode='raise'):
        '''
        The array is always transposed to 'C' order before flattening.
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        if type(axis) == str:
            axis = self.axistags.index(axis)
        if axis is None:
            return numpy.ndarray.take(self.ravel(), indices, axis, out, mode)
        else:
            return numpy.ndarray.take(self, indices, axis, out, mode)

    @_preserve_doc
    def transpose(self, *axes, **keepTags):
        '''
        An additional keyword parameter 'keepTags' can be provided (it has to be passed as an explicit
        keyword parameter). If it is True, the axistags will remain unchanged such that the transposed
        axes aquire a new meaning.
        '''
        keepTags = keepTags.get('keepTags', False)
        res = numpy.ndarray.transpose(self, *axes)
        if not keepTags:
            res.axistags = res._transpose_axistags(*axes)
        return res

    @_preserve_doc
    def var(self, axis=None, dtype=None, out=None, ddof=0):
        '''
        The 'axis' parameter can be an int (axis position) or string (axis key).
        '''
        return _numpyarray_overloaded_function(numpy.ndarray.var, self, axis, dtype, out)

    ###############################################################
    #                                                             #
    #        reimplement the numerical operators to make          #
    #             sure that array order is preserved              #
    #                                                             #
    ###############################################################

    def __abs__(self):
        return ufunc.absolute(self)

    def __add__(self, other):
        return ufunc.add(self, other)

    def __and__(self, other):
        return ufunc.bitwise_and(self, other)

    def __div__(self, other):
        return ufunc.divide(self, other)

    def __divmod__(self, other):
        return ufunc.floor_divide(self, other), ufunc.remainder(self, other)

    def __eq__(self, other):
        return ufunc.equal(self, other)

    def __floordiv__(self, other):
        return ufunc.floor_divide(self, other)

    def __ge__(self, other):
        return ufunc.greater_equal(self, other)

    def __gt__(self, other):
        return ufunc.greater(self, other)

    def __invert__(self):
        return ufunc.invert(self)

    def __le__(self, other):
        return ufunc.less_equal(self, other)

    def __lshift__(self, other):
        return ufunc.left_shift(self, other)

    def __lt__(self, other):
        return ufunc.less(self, other)

    def __mod__(self, other):
        return ufunc.remainder(self, other)

    def __mul__(self, other):
        return ufunc.multiply(self, other)

    def __ne__(self, other):
        return ufunc.not_equal(self, other)

    def __neg__(self):
        return ufunc.negative(self)

    def __or__(self, other):
        return ufunc.bitwise_or(self, other)

    def __pos__(self):
        return self

    def __pow__(self, other):
        return ufunc.power(self, other)

    def __radd__(self, other):
        return ufunc.add(other, self)

    def __radd__(self, other):
        return ufunc.add(other, self)

    def __rand__(self, other):
        return ufunc.bitwise_and(other, self)

    def __rdiv__(self, other):
        return ufunc.divide(other, self)

    def __rdivmod__(self, other):
        return ufunc.floor_divide(other, self), ufunc.remainder(other, self)

    def __rfloordiv__(self, other):
        return ufunc.floor_divide(other, self)

    def __rlshift__(self, other):
        return ufunc.left_shoft(other, self)

    def __rmod__(self, other):
        return ufunc.remainder(other, self)

    def __rmul__(self, other):
        return ufunc.multiply(other, self)

    def __ror__(self, other):
        return ufunc.bitwise_or(other, self)

    def __rpow__(self, other):
        return ufunc.power(other, self)

    def __rrshift__(self, other):
        return ufunc.right_shift(other, self)

    def __rshift__(self, other):
        return ufunc.right_shift(self, other)

    def __rsub__(self, other):
        return ufunc.subtract(other, self)

    def __rtruediv__(self, other):
        return ufunc.true_divide(other, self)

    def __rxor__(self, other):
        return ufunc.bitwise_xor(other, self)

    def __sub__(self, other):
        return ufunc.subtract(self, other)

    def __truediv__(self, other):
        return ufunc.true_divide(self, other)

    def __xor__(self, other):
        return ufunc.bitwise_xor(self, other)


##################################################################

# channelCount == None: array must not have channels
# channelCount == 0:    array can have arbitrary number of channels (including None)
def _adjustShape(shape, order, spatialDimensions, channelCount, axistags, name):
    if order is None:
        order = VigraArray.defaultOrder
    if len(shape) == spatialDimensions:
        if channelCount is not None and channelCount == 0:
            channelCount = 1
        if channelCount:
            if order == 'F':
                shape = (channelCount,) + shape
            else:
                shape = shape + (channelCount,)
    else:
        if channelCount is None or len(shape) != spatialDimensions + 1:
            raise RuntimeError("%s: input shape has wrong length." % name)
        if channelCount > 0:
            if order == 'F':
                if shape[0] != channelCount:
                    raise RuntimeError("%s: input shape has wrong number of channels." % name)
            else:
                if shape[-1] != channelCount:
                    raise RuntimeError("%s: input shape has wrong number of channels." % name)
    if axistags is None:
        axistags = VigraArray.defaultAxistags(spatialDimensions+1, order)
    if len(shape) == spatialDimensions:
        axistags.dropChannelAxis()
    if len(shape) != len(axistags):
        raise RuntimeError("%s: size mismatch between shape and axistags." % name)
    return shape, axistags

def _adjustArray(array, order, spatialDimensions, channelCount, axistags, name):
    if order is None:
        order = VigraArray.defaultOrder
    if array.ndim == spatialDimensions:
        if channelCount is not None and channelCount > 1:
            raise RuntimeError("%s: input array has too few dimensions." % name)
        if hasattr(array, 'axistags'):
            if array.channelIndex != array.ndim:
                raise RuntimeError("%s: input array has too few non-channel axes." % name)
        if channelCount:
            if hasattr(array, 'axistags'):
                array = array.insertChannelAxis(order)
            elif order == 'F':
                array = array[numpy.newaxis,...]
            else:
                array = array[...,numpy.newaxis]
    else:
        if channelCount is None or array.ndim != spatialDimensions+1:
            raise RuntimeError("%s: input array has wrong number of dimensions." % name)
        if hasattr(array, 'axistags'):
            channelIndex = array.channelIndex
            if channelIndex == array.ndim:
                raise RuntimeError("%s: input array has no channel axis." % name)
            if channelCount > 0 and array.shape[channelIndex] != channelCount:
                raise RuntimeError("%s: input array has wrong number of channels." % name)
    if axistags is None:
        if hasattr(array, 'axistags'):
            axistags = copy.copy(array.axistags)
        else:
            axistags = VigraArray.defaultAxistags(spatialDimensions+1, order)
    if array.ndim == spatialDimensions:
        axistags.dropChannelAxis()
    if array.ndim != len(axistags):
        raise RuntimeError("%s: axistags have wrong number of axes." % name)
    return array, axistags

def _adjustInput(obj, order, spatialDimensions, channelCount, axistags, name):
    if isinstance(obj, numpy.ndarray):
        return _adjustArray(obj, order, spatialDimensions, channelCount, axistags, name)
    else:
        return _adjustShape(obj, order, spatialDimensions, channelCount, axistags, name)

#################################################################

def Image(obj, dtype=numpy.float32, order=None,
          init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing an image (i.e. an array with
    two spatial axes 'x' and 'y' and optionally a channel axis 'c').
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are not image-like.
    '''
    obj, axistags = _adjustInput(obj, order, 2, 0, axistags, "vigra.Image()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def ScalarImage(obj, dtype=numpy.float32, order=None,
                init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a single-band image (i.e. an
    array with two spatial axes 'x' and 'y' and no channel axis).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a single-band image.
    '''
    obj, axistags = _adjustInput(obj, order, 2, None, axistags, "vigra.ScalarImage()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def Vector2Image(obj, dtype=numpy.float32, order=None,
                 init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a 2-band image (i.e. an
    array with two spatial axes 'x' and 'y' and channel axis 'c' with 2 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a 2-band image.
    '''
    obj, axistags = _adjustInput(obj, order, 2, 2, axistags, "vigra.Vector2Image()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def Vector3Image(obj, dtype=numpy.float32, order=None,
                 init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a 3-band image (i.e. an
    array with two spatial axes 'x' and 'y' and channel axis 'c' with 3 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a 3-band image.
    '''
    obj, axistags = _adjustInput(obj, order, 2, 3, axistags, "vigra.Vector3Image()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def Vector4Image(obj, dtype=numpy.float32, order=None,
                 init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a 4-band image (i.e. an
    array with two spatial axes 'x' and 'y' and channel axis 'c' with 4 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a 4-band image.
    '''
    obj, axistags = _adjustInput(obj, order, 2, 4, axistags, "vigra.Vector4Image()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def RGBImage(obj, dtype=numpy.float32, order=None,
             init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a RGB image (i.e. an
    array with two spatial axes 'x' and 'y' and channel axis 'c' with 3 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for an RGB image.
    '''
    obj, axistags = _adjustInput(obj, order, 2, 3, axistags, "vigra.RGBImage()")
    res = VigraArray(obj, dtype, None, init, value, axistags)
    res.axistags['c'].description = 'RGB'
    return res

#################################################################

def Volume(obj, dtype=numpy.float32, order=None,
           init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a volume (i.e. an array with
    three spatial axes 'x', 'y' and 'z' and optionally a channel axis 'c').
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are not volume-like.
    '''
    obj, axistags = _adjustInput(obj, order, 3, 0, axistags, "vigra.Volume()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def ScalarVolume(obj, dtype=numpy.float32, order=None,
                 init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a single-band volume (i.e. an
    array with three spatial axes 'x', 'y' and 'z' and no channel axis).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a single-band volume.
    '''
    obj, axistags = _adjustInput(obj, order, 3, None, axistags, "vigra.ScalarVolume()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def Vector2Volume(obj, dtype=numpy.float32, order=None,
                  init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a 2-band volume (i.e. an
    array with three spatial axes 'x', 'y' and 'z' and channel axis 'c' with 2 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a 2-band volume.
    '''
    obj, axistags = _adjustInput(obj, order, 3, 2, axistags, "vigra.Vector2Volume()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def Vector3Volume(obj, dtype=numpy.float32, order=None,
                  init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a 3-band volume (i.e. an
    array with three spatial axes 'x', 'y' and 'z' and channel axis 'c' with 3 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a 3-band volume.
    '''
    obj, axistags = _adjustInput(obj, order, 3, 3, axistags, "vigra.Vector3Volume()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def Vector4Volume(obj, dtype=numpy.float32, order=None,
                  init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a 4-band volume (i.e. an
    array with three spatial axes 'x', 'y' and 'z' and channel axis 'c' with 4 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a 4-band volume.
    '''
    obj, axistags = _adjustInput(obj, order, 3, 4, axistags, "vigra.Vector4Volume()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def Vector6Volume(obj, dtype=numpy.float32, order=None,
                  init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing a 6-band volume (i.e. an
    array with three spatial axes 'x', 'y' and 'z' and channel axis 'c' with 6 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for a 6-band volume.
    '''
    obj, axistags = _adjustInput(obj, order, 3, 6, axistags, "vigra.Vector6Volume()")
    return VigraArray(obj, dtype, None, init, value, axistags)

def RGBVolume(obj, dtype=numpy.float32, order=None,
              init=True, value=None, axistags=None):
    '''
    Factory function for a :class:`~vigra.VigraArray` representing an RGB volume (i.e. an
    array with three spatial axes 'x', 'y' and 'z' and channel axis 'c' with 3 channels).
    Paramters are interpreted as in the VigraArray constructor, but an exception
    will be raised if the shape or axistags are unsuitable for an RGB volume.
    '''
    obj, axistags = _adjustInput(obj, order, 3, 3, axistags, "vigra.RGBVolume()")
    res = VigraArray(obj, dtype, None, init, value, axistags)
    res.axistags['c'].description = 'RGB'
    return res

#################################################################

class ImagePyramid(list):
    def __init__(self, image, copyImageToLevel = 0, lowestLevel = 0, highestLevel = 0):
        ''' Create a new pyramid.
            The new pyramid levels range from 'lowestLevel' to 'highestLevel' (inclusive),
            and the given 'image' is copied to 'copyImageToLevel'. The images at other
            levels are filled with zeros and sized so that the shape is reduced by half
            when going up (to higher levels), and doubled when going down.

            This class can handle multi-channel images, but only when image.channelIndex
            exists and returns image.ndim-1 (i.e. the image must have axistags, and the
            channel axis must correspond to the last index, as in C- or V-order).
        '''
        if lowestLevel > copyImageToLevel or highestLevel < copyImageToLevel:
            raise ValueError('ImagePyramid(): copyImageToLevel must be between lowestLevel and highestLevel (inclusive)')

        import copy
        list.__init__(self, [copy.deepcopy(image)])
        self._lowestLevel = copyImageToLevel
        self._highestLevel = copyImageToLevel
        self.createLevel(lowestLevel)
        self.createLevel(highestLevel)

    @property
    def lowestLevel(self):
        '''The pyramids lowest level.
        '''
        return self._lowestLevel

    @property
    def highestLevel(self):
        '''The pyramids highest level (inclusive).
        '''
        return self._highestLevel

    @property
    def ndim(self):
        '''The dimension of the images in this pyramid.
        '''
        return self[self._highestLevel].ndim

    @property
    def dtype(self):
        '''The pixel type of the images in this pyramid.
        '''
        return self[self._highestLevel].dtype

    @property
    def channelIndex(self):
        '''The channel dimension of the images in this pyramid.
           If the images have no axistags, or no channel axis is
           specified, this defaults to 'ndim'.
        '''
        return getattr(self[self._highestLevel], 'channelIndex', self.ndim)

    @property
    def axistags(self):
        '''The axistags of the images in this pyramid.
        '''
        return getattr(self[self._highestLevel], 'axistags', None)

    def __getitem__(self, level):
        '''Get the image at 'level'.
           Raises IndexError when the level does not exist.
        '''
        if level < self.lowestLevel or level > self.highestLevel:
            raise IndexError("ImagePyramid[level]: level out of range.")
        return list.__getitem__(self, level - self.lowestLevel)

    def __setitem__(self, level, image):
        '''Copy the data of the given 'image' to the image at 'level'.
           Raises IndexError when the level does not exist.
        '''
        self[level][...] = image[...]

    def expandImpl(self, src, dest, centerValue):
        import vigra.filters as filters

        ss, ds = src.shape, dest.shape
        s = [ss[k] if 2*ss[k] == ds[k] else -1 for k in range(len(ss))]

        smooth1 = filters.explictKernel(-1, 1, numpy.array([0.5 - centerValue, 2.0*centerValue, 0.5 - centerValue]))
        smooth2 = filters.explictKernel(-1, 0, numpy.array([0.5, 0.5]));

        filters.convolve(src, (smooth1, smooth1), out=dest[::2,::2])
        filters.convolve(src[:,:s[1]], (smooth1, smooth2), out=dest[::2,1::2])
        filters.convolve(src[:s[0],:], (smooth2, smooth1), out=dest[1::2,::2])
        filters.convolve(src[:s[0],:s[1]], (smooth2, smooth2), out=dest[1::2,1::2])

    def reduce(self, srcLevel, destLevel, centerValue = 0.42):
        '''Reduce the image at 'srcLevel' to 'destLevel', using the Burt smoothing filter
           with the given 'centerValue'. srcLevel must be smaller than destLevel.

           For more details, see pyramidReduceBurtFilter_ in the C++ documentation.
        '''
        # FIXME: This should be implemented in C++
        # FIXME: This should be implemented for arbitrary dimensions
        import vigra.filters as filters

        if srcLevel > destLevel:
            raise RuntimeError("ImagePyramid::reduce(): srcLevel <= destLevel required.")
        if srcLevel < self.lowestLevel or srcLevel > self.highestLevel:
            raise RuntimeError("ImagePyramid::reduce(): srcLevel does not exist.")
        self.createLevel(destLevel)

        smooth = filters.burtFilterKernel(0.25 - 0.5*centerValue)
        for k in range(srcLevel, destLevel):
            i = filters.convolve(self[k], smooth)
            self[k+1] = i[::2,::2]

    def expand(self, srcLevel, destLevel, centerValue = 0.42):
        '''Expand the image at 'srcLevel' to 'destLevel', using the Burt smoothing filter
           with the given 'centerValue'. srcLevel must be larger than destLevel.

           For more details, see pyramidExpandBurtFilter_ in the C++ documentation.
        '''
        # FIXME: This should be implemented in C++
        # FIXME: This should be implemented for arbitrary dimensions
        if srcLevel < destLevel:
            raise RuntimeError("ImagePyramid::expand(): srcLevel >= destLevel required.")
        if srcLevel < self.lowestLevel or srcLevel > self.highestLevel:
            raise RuntimeError("ImagePyramid::expand(): srcLevel does not exist.")
        self.createLevel(destLevel)

        for k in range(srcLevel, destLevel, -1):
            self.expandImpl(self[k], self[k-1], centerValue)

    def reduceLaplacian(self, srcLevel, destLevel, centerValue = 0.42):
        '''Reduce the image at 'srcLevel' to 'destLevel', using the Burt smoothing filter
           with the given 'centerValue', and compute Laplacian images for the levels
           srcLevel ... destLevel-1. srcLevel must be smaller than destLevel.

           For more details, see pyramidReduceBurtLaplacian_ in the C++ documentation.
        '''
        # FIXME: This should be implemented in C++
        # FIXME: This should be implemented for arbitrary dimensions
        import vigra.filters as filters

        if srcLevel > destLevel:
            raise RuntimeError("ImagePyramid::reduceLaplacian(): srcLevel <= destLevel required.")
        if srcLevel < self.lowestLevel or srcLevel > self.highestLevel:
            raise RuntimeError("ImagePyramid::reduceLaplacian(): srcLevel does not exist.")
        self.createLevel(destLevel)

        smooth = filters.burtFilterKernel(0.25 - 0.5*centerValue)
        for k in range(srcLevel, destLevel):
            i = filters.convolve(self[k], smooth)
            self[k+1] = i[::2,::2]
            self.expandImpl(self[k+1], i, centerValue)
            self[k] = i - self[k]

    def expandLaplacian(self, srcLevel, destLevel, centerValue = 0.42):
        '''Expand the image at 'srcLevel' to 'destLevel', using the Burt smoothing filter
           with the given 'centerValue', and reconstruct the images for the levels
           srcLevel-1 ... destLevel from their Laplacian images. srcLevel must be larger than destLevel.

           For more details, see pyramidExpandBurtLaplacian_ in the C++ documentation.
        '''
        # FIXME: This should be implemented in C++
        # FIXME: This should be implemented for arbitrary dimensions
        import vigra.filters as filters

        if srcLevel < destLevel:
            raise RuntimeError("ImagePyramid::expandLaplacian(): srcLevel >= destLevel required.")
        if srcLevel < self.lowestLevel or srcLevel > self.highestLevel:
            raise RuntimeError("ImagePyramid::expandLaplacian(): srcLevel does not exist.")
        self.createLevel(destLevel)

        smooth1 = filters.explictKernel(-1, 1, numpy.array([0.5 - centerValue, 2.0*centerValue, 0.5 - centerValue]))
        smooth2 = filters.explictKernel(-1, 0, numpy.array([0.5, 0.5]));
        for k in range(srcLevel, destLevel, -1):
            i = self[k-1].__class__(self[k-1].shape, dtype = self[k-1].dtype)
            self.expandImpl(self[k], i, centerValue)
            self[k-1] = i - self[k-1]

    def createLevel(self, level):
        ''' Make sure that 'level' exists. If 'level' is outside the current range of levels,
            empty images of the appropriate shape are inserted into the pyramid.
        '''
        channelIndex = self.channelIndex
        hasChannels = channelIndex < self.ndim
        axistags = self.axistags
        if level > self.highestLevel:
            image = list.__getitem__(self, -1)
            for i in range(self.highestLevel, level):
                newShape = [int((k + 1) // 2) for k in image.shape]
                if hasChannels:
                    newShape[channelIndex] = image.shape[channelIndex]
                if axistags:
                    image = image.__class__(newShape, dtype=image.dtype, axistags=axistags)
                else:
                    image = image.__class__(newShape, dtype=image.dtype)
                    image[...] = 0
                self.append(image)
            self._highestLevel = level
        elif level < self.lowestLevel:
            image = list.__getitem__(self, 0)
            for i in range(self.lowestLevel, level, -1):
                newShape = [2*k-1 for k in image.shape]
                if hasChannels:
                    newShape[channelIndex] = image.shape[channelIndex]
                if axistags:
                    image = image.__class__(newShape, dtype=image.dtype, axistags=axistags)
                else:
                    image = image.__class__(newShape, dtype=image.dtype)
                    image[...] = 0
                self.insert(0, image)
            self._lowestLevel = level