This file is indexed.

/usr/lib/python2.7/dist-packages/z3num.py is in python-z3 4.4.1-0.3build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
############################################
# Copyright (c) 2012 Microsoft Corporation
# 
# Z3 Python interface for Z3 numerals
#
# Author: Leonardo de Moura (leonardo)
############################################
from z3 import *
from z3core import *
from z3printer import *
from fractions import Fraction

def _to_numeral(num, ctx=None):
    if isinstance(num, Numeral):
        return num
    else:
        return Numeral(num, ctx)

class Numeral:
    """
    A Z3 numeral can be used to perform computations over arbitrary
    precision integers, rationals and real algebraic numbers.
    It also automatically converts python numeric values.
    
    >>> Numeral(2)
    2
    >>> Numeral("3/2") + 1
    5/2
    >>> Numeral(Sqrt(2))
    1.4142135623?
    >>> Numeral(Sqrt(2)) + 2
    3.4142135623?
    >>> Numeral(Sqrt(2)) + Numeral(Sqrt(3))
    3.1462643699?

    Z3 numerals can be used to perform computations with 
    values in a Z3 model.
    
    >>> s = Solver()
    >>> x = Real('x')
    >>> s.add(x*x == 2)
    >>> s.add(x > 0)
    >>> s.check()
    sat
    >>> m = s.model()
    >>> m[x]
    1.4142135623?
    >>> m[x] + 1
    1.4142135623? + 1
    
    The previous result is a Z3 expression.

    >>> (m[x] + 1).sexpr()
    '(+ (root-obj (+ (^ x 2) (- 2)) 2) 1.0)'
    
    >>> Numeral(m[x]) + 1
    2.4142135623?
    >>> Numeral(m[x]).is_pos()
    True
    >>> Numeral(m[x])**2
    2
    
    We can also isolate the roots of polynomials.

    >>> x0, x1, x2 = RealVarVector(3)
    >>> r0 = isolate_roots(x0**5 - x0 - 1)
    >>> r0
    [1.1673039782?]
    
    In the following example, we are isolating the roots
    of a univariate polynomial (on x1) obtained after substituting
    x0 -> r0[0]
    
    >>> r1 = isolate_roots(x1**2 - x0 + 1, [ r0[0] ])
    >>> r1
    [-0.4090280898?, 0.4090280898?]
    
    Similarly, in the next example we isolate the roots of
    a univariate polynomial (on x2) obtained after substituting
    x0 -> r0[0] and x1 -> r1[0]

    >>> isolate_roots(x1*x2 + x0, [ r0[0], r1[0] ])
    [2.8538479564?]

    """
    def __init__(self, num, ctx=None):
        if isinstance(num, Ast):
            self.ast  = num
            self.ctx  = z3._get_ctx(ctx)
        elif isinstance(num, RatNumRef) or isinstance(num, AlgebraicNumRef):
            self.ast = num.ast
            self.ctx = num.ctx
        elif isinstance(num, ArithRef):
            r = simplify(num)
            self.ast = r.ast
            self.ctx = r.ctx
        else:
            v = RealVal(num, ctx)
            self.ast = v.ast
            self.ctx = v.ctx
        Z3_inc_ref(self.ctx_ref(), self.as_ast())
        assert Z3_algebraic_is_value(self.ctx_ref(), self.ast)
    
    def __del__(self):
        Z3_dec_ref(self.ctx_ref(), self.as_ast())

    def is_integer(self):
        """ Return True if the numeral is integer.
        
        >>> Numeral(2).is_integer()
        True
        >>> (Numeral(Sqrt(2)) * Numeral(Sqrt(2))).is_integer()
        True
        >>> Numeral(Sqrt(2)).is_integer()
        False
        >>> Numeral("2/3").is_integer()
        False
        """
        return self.is_rational() and self.denominator() == 1

    def is_rational(self):
        """ Return True if the numeral is rational.

        >>> Numeral(2).is_rational()
        True
        >>> Numeral("2/3").is_rational()
        True
        >>> Numeral(Sqrt(2)).is_rational()
        False
        
        """
        return Z3_get_ast_kind(self.ctx_ref(), self.as_ast()) == Z3_NUMERAL_AST

    def denominator(self):
        """ Return the denominator if `self` is rational.
        
        >>> Numeral("2/3").denominator()
        3
        """
        assert(self.is_rational())
        return Numeral(Z3_get_denominator(self.ctx_ref(), self.as_ast()), self.ctx)

    def numerator(self):
        """ Return the numerator if `self` is rational.
        
        >>> Numeral("2/3").numerator()
        2
        """
        assert(self.is_rational())
        return Numeral(Z3_get_numerator(self.ctx_ref(), self.as_ast()), self.ctx)


    def is_irrational(self):
        """ Return True if the numeral is irrational.

        >>> Numeral(2).is_irrational()
        False
        >>> Numeral("2/3").is_irrational()
        False
        >>> Numeral(Sqrt(2)).is_irrational()
        True
        """
        return not self.is_rational()

    def as_long(self):
        """ Return a numeral (that is an integer) as a Python long.

        >>> (Numeral(10)**20).as_long()
        100000000000000000000L
        """
        assert(self.is_integer())
        return long(Z3_get_numeral_string(self.ctx_ref(), self.as_ast()))

    def as_fraction(self):
        """ Return a numeral (that is a rational) as a Python Fraction.
        >>> Numeral("1/5").as_fraction()
        Fraction(1, 5)
        """
        assert(self.is_rational())
        return Fraction(self.numerator().as_long(), self.denominator().as_long())

    def approx(self, precision=10):
        """Return a numeral that approximates the numeral `self`. 
        The result `r` is such that |r - self| <= 1/10^precision 
        
        If `self` is rational, then the result is `self`.

        >>> x = Numeral(2).root(2)
        >>> x.approx(20)
        6838717160008073720548335/4835703278458516698824704
        >>> x.approx(5)
        2965821/2097152
        >>> Numeral(2).approx(10)
        2
        """
        return self.upper(precision)

    def upper(self, precision=10):
        """Return a upper bound that approximates the numeral `self`. 
        The result `r` is such that r - self <= 1/10^precision 
        
        If `self` is rational, then the result is `self`.

        >>> x = Numeral(2).root(2)
        >>> x.upper(20)
        6838717160008073720548335/4835703278458516698824704
        >>> x.upper(5)
        2965821/2097152
        >>> Numeral(2).upper(10)
        2
        """
        if self.is_rational():
            return self
        else:
            return Numeral(Z3_get_algebraic_number_upper(self.ctx_ref(), self.as_ast(), precision), self.ctx)

    def lower(self, precision=10):
        """Return a lower bound that approximates the numeral `self`. 
        The result `r` is such that self - r <= 1/10^precision 
        
        If `self` is rational, then the result is `self`.

        >>> x = Numeral(2).root(2)
        >>> x.lower(20)
        1709679290002018430137083/1208925819614629174706176
        >>> Numeral("2/3").lower(10)
        2/3
        """
        if self.is_rational():
            return self
        else:
            return Numeral(Z3_get_algebraic_number_lower(self.ctx_ref(), self.as_ast(), precision), self.ctx)

    def sign(self):
        """ Return the sign of the numeral.
        
        >>> Numeral(2).sign()
        1
        >>> Numeral(-3).sign()
        -1
        >>> Numeral(0).sign()
        0
        """
        return Z3_algebraic_sign(self.ctx_ref(), self.ast)
    
    def is_pos(self):
        """ Return True if the numeral is positive.
        
        >>> Numeral(2).is_pos()
        True
        >>> Numeral(-3).is_pos()
        False
        >>> Numeral(0).is_pos()
        False
        """
        return Z3_algebraic_is_pos(self.ctx_ref(), self.ast)

    def is_neg(self):
        """ Return True if the numeral is negative.
        
        >>> Numeral(2).is_neg()
        False
        >>> Numeral(-3).is_neg()
        True
        >>> Numeral(0).is_neg()
        False
        """
        return Z3_algebraic_is_neg(self.ctx_ref(), self.ast)

    def is_zero(self):
        """ Return True if the numeral is zero.
        
        >>> Numeral(2).is_zero()
        False
        >>> Numeral(-3).is_zero()
        False
        >>> Numeral(0).is_zero()
        True
        >>> sqrt2 = Numeral(2).root(2)
        >>> sqrt2.is_zero()
        False
        >>> (sqrt2 - sqrt2).is_zero()
        True
        """
        return Z3_algebraic_is_zero(self.ctx_ref(), self.ast)

    def __add__(self, other):
        """ Return the numeral `self + other`.

        >>> Numeral(2) + 3
        5
        >>> Numeral(2) + Numeral(4)
        6
        >>> Numeral("2/3") + 1
        5/3
        """
        return Numeral(Z3_algebraic_add(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)

    def __radd__(self, other):
        """ Return the numeral `other + self`.

        >>> 3 + Numeral(2)
        5
        """
        return Numeral(Z3_algebraic_add(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)

    def __sub__(self, other):
        """ Return the numeral `self - other`.

        >>> Numeral(2) - 3
        -1
        """
        return Numeral(Z3_algebraic_sub(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)

    def __rsub__(self, other):
        """ Return the numeral `other - self`.

        >>> 3 - Numeral(2)
        1
        """
        return Numeral(Z3_algebraic_sub(self.ctx_ref(), _to_numeral(other, self.ctx).ast, self.ast), self.ctx)

    def __mul__(self, other):
        """ Return the numeral `self * other`.
        >>> Numeral(2) * 3
        6
        """
        return Numeral(Z3_algebraic_mul(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)

    def __rmul__(self, other):
        """ Return the numeral `other * mul`.
        >>> 3 * Numeral(2)
        6
        """
        return Numeral(Z3_algebraic_mul(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)

    def __div__(self, other):
        """ Return the numeral `self / other`.
        >>> Numeral(2) / 3
        2/3
        >>> Numeral(2).root(2) / 3
        0.4714045207?
        >>> Numeral(Sqrt(2)) / Numeral(Sqrt(3))
        0.8164965809?
        """
        return Numeral(Z3_algebraic_div(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)

    def __rdiv__(self, other):
        """ Return the numeral `other / self`.
        >>> 3 / Numeral(2) 
        3/2
        >>> 3 / Numeral(2).root(2)
        2.1213203435?
        """
        return Numeral(Z3_algebraic_div(self.ctx_ref(), _to_numeral(other, self.ctx).ast, self.ast), self.ctx)

    def root(self, k):
        """ Return the numeral `self^(1/k)`.

        >>> sqrt2 = Numeral(2).root(2)
        >>> sqrt2
        1.4142135623?
        >>> sqrt2 * sqrt2
        2
        >>> sqrt2 * 2 + 1
        3.8284271247?
        >>> (sqrt2 * 2 + 1).sexpr()
        '(root-obj (+ (^ x 2) (* (- 2) x) (- 7)) 2)'
        """
        return Numeral(Z3_algebraic_root(self.ctx_ref(), self.ast, k), self.ctx)

    def power(self, k):
        """ Return the numeral `self^k`.

        >>> sqrt3 = Numeral(3).root(2)
        >>> sqrt3
        1.7320508075?
        >>> sqrt3.power(2)
        3
        """
        return Numeral(Z3_algebraic_power(self.ctx_ref(), self.ast, k), self.ctx)
    
    def __pow__(self, k):
        """ Return the numeral `self^k`.

        >>> sqrt3 = Numeral(3).root(2)
        >>> sqrt3
        1.7320508075?
        >>> sqrt3**2
        3
        """
        return self.power(k)

    def __lt__(self, other):
        """ Return True if `self < other`.

        >>> Numeral(Sqrt(2)) < 2
        True
        >>> Numeral(Sqrt(3)) < Numeral(Sqrt(2))
        False
        >>> Numeral(Sqrt(2)) < Numeral(Sqrt(2))
        False
        """
        return Z3_algebraic_lt(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)

    def __rlt__(self, other):
        """ Return True if `other < self`.

        >>> 2 < Numeral(Sqrt(2)) 
        False
        """
        return self > other

    def __gt__(self, other):
        """ Return True if `self > other`.

        >>> Numeral(Sqrt(2)) > 2
        False
        >>> Numeral(Sqrt(3)) > Numeral(Sqrt(2))
        True
        >>> Numeral(Sqrt(2)) > Numeral(Sqrt(2))
        False
        """
        return Z3_algebraic_gt(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)

    def __rgt__(self, other):
        """ Return True if `other > self`.

        >>> 2 > Numeral(Sqrt(2))
        True
        """
        return self < other


    def __le__(self, other):
        """ Return True if `self <= other`.

        >>> Numeral(Sqrt(2)) <= 2
        True
        >>> Numeral(Sqrt(3)) <= Numeral(Sqrt(2))
        False
        >>> Numeral(Sqrt(2)) <= Numeral(Sqrt(2))
        True
        """
        return Z3_algebraic_le(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)

    def __rle__(self, other):
        """ Return True if `other <= self`.

        >>> 2 <= Numeral(Sqrt(2)) 
        False
        """
        return self >= other

    def __ge__(self, other):
        """ Return True if `self >= other`.

        >>> Numeral(Sqrt(2)) >= 2
        False
        >>> Numeral(Sqrt(3)) >= Numeral(Sqrt(2))
        True
        >>> Numeral(Sqrt(2)) >= Numeral(Sqrt(2))
        True
        """
        return Z3_algebraic_ge(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)

    def __rge__(self, other):
        """ Return True if `other >= self`.

        >>> 2 >= Numeral(Sqrt(2))
        True
        """
        return self <= other

    def __eq__(self, other):
        """ Return True if `self == other`.

        >>> Numeral(Sqrt(2)) == 2
        False
        >>> Numeral(Sqrt(3)) == Numeral(Sqrt(2))
        False
        >>> Numeral(Sqrt(2)) == Numeral(Sqrt(2))
        True
        """
        return Z3_algebraic_eq(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)

    def __ne__(self, other):
        """ Return True if `self != other`.

        >>> Numeral(Sqrt(2)) != 2
        True
        >>> Numeral(Sqrt(3)) != Numeral(Sqrt(2))
        True
        >>> Numeral(Sqrt(2)) != Numeral(Sqrt(2))
        False
        """
        return Z3_algebraic_neq(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)

    def __str__(self):
        if Z3_is_numeral_ast(self.ctx_ref(), self.ast):
            return str(RatNumRef(self.ast, self.ctx))
        else:
            return str(AlgebraicNumRef(self.ast, self.ctx))

    def __repr__(self):
        return self.__str__()

    def sexpr(self):
        return Z3_ast_to_string(self.ctx_ref(), self.as_ast())

    def as_ast(self):
        return self.ast

    def ctx_ref(self):
        return self.ctx.ref()

def eval_sign_at(p, vs):
    """ 
    Evaluate the sign of the polynomial `p` at `vs`.  `p` is a Z3
    Expression containing arithmetic operators: +, -, *, ^k where k is
    an integer; and free variables x that is_var(x) is True. Moreover,
    all variables must be real.
    
    The result is 1 if the polynomial is positive at the given point,
    -1 if negative, and 0 if zero.

    >>> x0, x1, x2 = RealVarVector(3)
    >>> eval_sign_at(x0**2 + x1*x2 + 1, (Numeral(0), Numeral(1), Numeral(2)))
    1
    >>> eval_sign_at(x0**2 - 2, [ Numeral(Sqrt(2)) ])
    0
    >>> eval_sign_at((x0 + x1)*(x0 + x2), (Numeral(0), Numeral(Sqrt(2)), Numeral(Sqrt(3))))
    1
    """
    num = len(vs)
    _vs = (Ast * num)()
    for i in range(num):
        _vs[i] = vs[i].ast
    return Z3_algebraic_eval(p.ctx_ref(), p.as_ast(), num, _vs)

def isolate_roots(p, vs=[]):
    """
    Given a multivariate polynomial p(x_0, ..., x_{n-1}, x_n), returns the 
    roots of the univariate polynomial p(vs[0], ..., vs[len(vs)-1], x_n).
       
    Remarks:
    * p is a Z3 expression that contains only arithmetic terms and free variables.
    * forall i in [0, n) vs is a numeral.
    
    The result is a list of numerals

    >>> x0 = RealVar(0)
    >>> isolate_roots(x0**5 - x0 - 1)
    [1.1673039782?]
    >>> x1 = RealVar(1)
    >>> isolate_roots(x0**2 - x1**4 - 1, [ Numeral(Sqrt(3)) ])
    [-1.1892071150?, 1.1892071150?]
    >>> x2 = RealVar(2)
    >>> isolate_roots(x2**2 + x0 - x1, [ Numeral(Sqrt(3)), Numeral(Sqrt(2)) ])
    []
    """
    num = len(vs)
    _vs = (Ast * num)()
    for i in range(num):
        _vs[i] = vs[i].ast
    _roots = AstVector(Z3_algebraic_roots(p.ctx_ref(), p.as_ast(), num, _vs), p.ctx)
    return [ Numeral(r) for r in _roots ]
        
if __name__ == "__main__":
    import doctest
    if doctest.testmod().failed:
        exit(1)