/usr/lib/python2.7/dist-packages/z3num.py is in python-z3 4.4.1-0.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 | ############################################
# Copyright (c) 2012 Microsoft Corporation
#
# Z3 Python interface for Z3 numerals
#
# Author: Leonardo de Moura (leonardo)
############################################
from z3 import *
from z3core import *
from z3printer import *
from fractions import Fraction
def _to_numeral(num, ctx=None):
if isinstance(num, Numeral):
return num
else:
return Numeral(num, ctx)
class Numeral:
"""
A Z3 numeral can be used to perform computations over arbitrary
precision integers, rationals and real algebraic numbers.
It also automatically converts python numeric values.
>>> Numeral(2)
2
>>> Numeral("3/2") + 1
5/2
>>> Numeral(Sqrt(2))
1.4142135623?
>>> Numeral(Sqrt(2)) + 2
3.4142135623?
>>> Numeral(Sqrt(2)) + Numeral(Sqrt(3))
3.1462643699?
Z3 numerals can be used to perform computations with
values in a Z3 model.
>>> s = Solver()
>>> x = Real('x')
>>> s.add(x*x == 2)
>>> s.add(x > 0)
>>> s.check()
sat
>>> m = s.model()
>>> m[x]
1.4142135623?
>>> m[x] + 1
1.4142135623? + 1
The previous result is a Z3 expression.
>>> (m[x] + 1).sexpr()
'(+ (root-obj (+ (^ x 2) (- 2)) 2) 1.0)'
>>> Numeral(m[x]) + 1
2.4142135623?
>>> Numeral(m[x]).is_pos()
True
>>> Numeral(m[x])**2
2
We can also isolate the roots of polynomials.
>>> x0, x1, x2 = RealVarVector(3)
>>> r0 = isolate_roots(x0**5 - x0 - 1)
>>> r0
[1.1673039782?]
In the following example, we are isolating the roots
of a univariate polynomial (on x1) obtained after substituting
x0 -> r0[0]
>>> r1 = isolate_roots(x1**2 - x0 + 1, [ r0[0] ])
>>> r1
[-0.4090280898?, 0.4090280898?]
Similarly, in the next example we isolate the roots of
a univariate polynomial (on x2) obtained after substituting
x0 -> r0[0] and x1 -> r1[0]
>>> isolate_roots(x1*x2 + x0, [ r0[0], r1[0] ])
[2.8538479564?]
"""
def __init__(self, num, ctx=None):
if isinstance(num, Ast):
self.ast = num
self.ctx = z3._get_ctx(ctx)
elif isinstance(num, RatNumRef) or isinstance(num, AlgebraicNumRef):
self.ast = num.ast
self.ctx = num.ctx
elif isinstance(num, ArithRef):
r = simplify(num)
self.ast = r.ast
self.ctx = r.ctx
else:
v = RealVal(num, ctx)
self.ast = v.ast
self.ctx = v.ctx
Z3_inc_ref(self.ctx_ref(), self.as_ast())
assert Z3_algebraic_is_value(self.ctx_ref(), self.ast)
def __del__(self):
Z3_dec_ref(self.ctx_ref(), self.as_ast())
def is_integer(self):
""" Return True if the numeral is integer.
>>> Numeral(2).is_integer()
True
>>> (Numeral(Sqrt(2)) * Numeral(Sqrt(2))).is_integer()
True
>>> Numeral(Sqrt(2)).is_integer()
False
>>> Numeral("2/3").is_integer()
False
"""
return self.is_rational() and self.denominator() == 1
def is_rational(self):
""" Return True if the numeral is rational.
>>> Numeral(2).is_rational()
True
>>> Numeral("2/3").is_rational()
True
>>> Numeral(Sqrt(2)).is_rational()
False
"""
return Z3_get_ast_kind(self.ctx_ref(), self.as_ast()) == Z3_NUMERAL_AST
def denominator(self):
""" Return the denominator if `self` is rational.
>>> Numeral("2/3").denominator()
3
"""
assert(self.is_rational())
return Numeral(Z3_get_denominator(self.ctx_ref(), self.as_ast()), self.ctx)
def numerator(self):
""" Return the numerator if `self` is rational.
>>> Numeral("2/3").numerator()
2
"""
assert(self.is_rational())
return Numeral(Z3_get_numerator(self.ctx_ref(), self.as_ast()), self.ctx)
def is_irrational(self):
""" Return True if the numeral is irrational.
>>> Numeral(2).is_irrational()
False
>>> Numeral("2/3").is_irrational()
False
>>> Numeral(Sqrt(2)).is_irrational()
True
"""
return not self.is_rational()
def as_long(self):
""" Return a numeral (that is an integer) as a Python long.
>>> (Numeral(10)**20).as_long()
100000000000000000000L
"""
assert(self.is_integer())
return long(Z3_get_numeral_string(self.ctx_ref(), self.as_ast()))
def as_fraction(self):
""" Return a numeral (that is a rational) as a Python Fraction.
>>> Numeral("1/5").as_fraction()
Fraction(1, 5)
"""
assert(self.is_rational())
return Fraction(self.numerator().as_long(), self.denominator().as_long())
def approx(self, precision=10):
"""Return a numeral that approximates the numeral `self`.
The result `r` is such that |r - self| <= 1/10^precision
If `self` is rational, then the result is `self`.
>>> x = Numeral(2).root(2)
>>> x.approx(20)
6838717160008073720548335/4835703278458516698824704
>>> x.approx(5)
2965821/2097152
>>> Numeral(2).approx(10)
2
"""
return self.upper(precision)
def upper(self, precision=10):
"""Return a upper bound that approximates the numeral `self`.
The result `r` is such that r - self <= 1/10^precision
If `self` is rational, then the result is `self`.
>>> x = Numeral(2).root(2)
>>> x.upper(20)
6838717160008073720548335/4835703278458516698824704
>>> x.upper(5)
2965821/2097152
>>> Numeral(2).upper(10)
2
"""
if self.is_rational():
return self
else:
return Numeral(Z3_get_algebraic_number_upper(self.ctx_ref(), self.as_ast(), precision), self.ctx)
def lower(self, precision=10):
"""Return a lower bound that approximates the numeral `self`.
The result `r` is such that self - r <= 1/10^precision
If `self` is rational, then the result is `self`.
>>> x = Numeral(2).root(2)
>>> x.lower(20)
1709679290002018430137083/1208925819614629174706176
>>> Numeral("2/3").lower(10)
2/3
"""
if self.is_rational():
return self
else:
return Numeral(Z3_get_algebraic_number_lower(self.ctx_ref(), self.as_ast(), precision), self.ctx)
def sign(self):
""" Return the sign of the numeral.
>>> Numeral(2).sign()
1
>>> Numeral(-3).sign()
-1
>>> Numeral(0).sign()
0
"""
return Z3_algebraic_sign(self.ctx_ref(), self.ast)
def is_pos(self):
""" Return True if the numeral is positive.
>>> Numeral(2).is_pos()
True
>>> Numeral(-3).is_pos()
False
>>> Numeral(0).is_pos()
False
"""
return Z3_algebraic_is_pos(self.ctx_ref(), self.ast)
def is_neg(self):
""" Return True if the numeral is negative.
>>> Numeral(2).is_neg()
False
>>> Numeral(-3).is_neg()
True
>>> Numeral(0).is_neg()
False
"""
return Z3_algebraic_is_neg(self.ctx_ref(), self.ast)
def is_zero(self):
""" Return True if the numeral is zero.
>>> Numeral(2).is_zero()
False
>>> Numeral(-3).is_zero()
False
>>> Numeral(0).is_zero()
True
>>> sqrt2 = Numeral(2).root(2)
>>> sqrt2.is_zero()
False
>>> (sqrt2 - sqrt2).is_zero()
True
"""
return Z3_algebraic_is_zero(self.ctx_ref(), self.ast)
def __add__(self, other):
""" Return the numeral `self + other`.
>>> Numeral(2) + 3
5
>>> Numeral(2) + Numeral(4)
6
>>> Numeral("2/3") + 1
5/3
"""
return Numeral(Z3_algebraic_add(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
def __radd__(self, other):
""" Return the numeral `other + self`.
>>> 3 + Numeral(2)
5
"""
return Numeral(Z3_algebraic_add(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
def __sub__(self, other):
""" Return the numeral `self - other`.
>>> Numeral(2) - 3
-1
"""
return Numeral(Z3_algebraic_sub(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
def __rsub__(self, other):
""" Return the numeral `other - self`.
>>> 3 - Numeral(2)
1
"""
return Numeral(Z3_algebraic_sub(self.ctx_ref(), _to_numeral(other, self.ctx).ast, self.ast), self.ctx)
def __mul__(self, other):
""" Return the numeral `self * other`.
>>> Numeral(2) * 3
6
"""
return Numeral(Z3_algebraic_mul(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
def __rmul__(self, other):
""" Return the numeral `other * mul`.
>>> 3 * Numeral(2)
6
"""
return Numeral(Z3_algebraic_mul(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
def __div__(self, other):
""" Return the numeral `self / other`.
>>> Numeral(2) / 3
2/3
>>> Numeral(2).root(2) / 3
0.4714045207?
>>> Numeral(Sqrt(2)) / Numeral(Sqrt(3))
0.8164965809?
"""
return Numeral(Z3_algebraic_div(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
def __rdiv__(self, other):
""" Return the numeral `other / self`.
>>> 3 / Numeral(2)
3/2
>>> 3 / Numeral(2).root(2)
2.1213203435?
"""
return Numeral(Z3_algebraic_div(self.ctx_ref(), _to_numeral(other, self.ctx).ast, self.ast), self.ctx)
def root(self, k):
""" Return the numeral `self^(1/k)`.
>>> sqrt2 = Numeral(2).root(2)
>>> sqrt2
1.4142135623?
>>> sqrt2 * sqrt2
2
>>> sqrt2 * 2 + 1
3.8284271247?
>>> (sqrt2 * 2 + 1).sexpr()
'(root-obj (+ (^ x 2) (* (- 2) x) (- 7)) 2)'
"""
return Numeral(Z3_algebraic_root(self.ctx_ref(), self.ast, k), self.ctx)
def power(self, k):
""" Return the numeral `self^k`.
>>> sqrt3 = Numeral(3).root(2)
>>> sqrt3
1.7320508075?
>>> sqrt3.power(2)
3
"""
return Numeral(Z3_algebraic_power(self.ctx_ref(), self.ast, k), self.ctx)
def __pow__(self, k):
""" Return the numeral `self^k`.
>>> sqrt3 = Numeral(3).root(2)
>>> sqrt3
1.7320508075?
>>> sqrt3**2
3
"""
return self.power(k)
def __lt__(self, other):
""" Return True if `self < other`.
>>> Numeral(Sqrt(2)) < 2
True
>>> Numeral(Sqrt(3)) < Numeral(Sqrt(2))
False
>>> Numeral(Sqrt(2)) < Numeral(Sqrt(2))
False
"""
return Z3_algebraic_lt(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
def __rlt__(self, other):
""" Return True if `other < self`.
>>> 2 < Numeral(Sqrt(2))
False
"""
return self > other
def __gt__(self, other):
""" Return True if `self > other`.
>>> Numeral(Sqrt(2)) > 2
False
>>> Numeral(Sqrt(3)) > Numeral(Sqrt(2))
True
>>> Numeral(Sqrt(2)) > Numeral(Sqrt(2))
False
"""
return Z3_algebraic_gt(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
def __rgt__(self, other):
""" Return True if `other > self`.
>>> 2 > Numeral(Sqrt(2))
True
"""
return self < other
def __le__(self, other):
""" Return True if `self <= other`.
>>> Numeral(Sqrt(2)) <= 2
True
>>> Numeral(Sqrt(3)) <= Numeral(Sqrt(2))
False
>>> Numeral(Sqrt(2)) <= Numeral(Sqrt(2))
True
"""
return Z3_algebraic_le(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
def __rle__(self, other):
""" Return True if `other <= self`.
>>> 2 <= Numeral(Sqrt(2))
False
"""
return self >= other
def __ge__(self, other):
""" Return True if `self >= other`.
>>> Numeral(Sqrt(2)) >= 2
False
>>> Numeral(Sqrt(3)) >= Numeral(Sqrt(2))
True
>>> Numeral(Sqrt(2)) >= Numeral(Sqrt(2))
True
"""
return Z3_algebraic_ge(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
def __rge__(self, other):
""" Return True if `other >= self`.
>>> 2 >= Numeral(Sqrt(2))
True
"""
return self <= other
def __eq__(self, other):
""" Return True if `self == other`.
>>> Numeral(Sqrt(2)) == 2
False
>>> Numeral(Sqrt(3)) == Numeral(Sqrt(2))
False
>>> Numeral(Sqrt(2)) == Numeral(Sqrt(2))
True
"""
return Z3_algebraic_eq(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
def __ne__(self, other):
""" Return True if `self != other`.
>>> Numeral(Sqrt(2)) != 2
True
>>> Numeral(Sqrt(3)) != Numeral(Sqrt(2))
True
>>> Numeral(Sqrt(2)) != Numeral(Sqrt(2))
False
"""
return Z3_algebraic_neq(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
def __str__(self):
if Z3_is_numeral_ast(self.ctx_ref(), self.ast):
return str(RatNumRef(self.ast, self.ctx))
else:
return str(AlgebraicNumRef(self.ast, self.ctx))
def __repr__(self):
return self.__str__()
def sexpr(self):
return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
def as_ast(self):
return self.ast
def ctx_ref(self):
return self.ctx.ref()
def eval_sign_at(p, vs):
"""
Evaluate the sign of the polynomial `p` at `vs`. `p` is a Z3
Expression containing arithmetic operators: +, -, *, ^k where k is
an integer; and free variables x that is_var(x) is True. Moreover,
all variables must be real.
The result is 1 if the polynomial is positive at the given point,
-1 if negative, and 0 if zero.
>>> x0, x1, x2 = RealVarVector(3)
>>> eval_sign_at(x0**2 + x1*x2 + 1, (Numeral(0), Numeral(1), Numeral(2)))
1
>>> eval_sign_at(x0**2 - 2, [ Numeral(Sqrt(2)) ])
0
>>> eval_sign_at((x0 + x1)*(x0 + x2), (Numeral(0), Numeral(Sqrt(2)), Numeral(Sqrt(3))))
1
"""
num = len(vs)
_vs = (Ast * num)()
for i in range(num):
_vs[i] = vs[i].ast
return Z3_algebraic_eval(p.ctx_ref(), p.as_ast(), num, _vs)
def isolate_roots(p, vs=[]):
"""
Given a multivariate polynomial p(x_0, ..., x_{n-1}, x_n), returns the
roots of the univariate polynomial p(vs[0], ..., vs[len(vs)-1], x_n).
Remarks:
* p is a Z3 expression that contains only arithmetic terms and free variables.
* forall i in [0, n) vs is a numeral.
The result is a list of numerals
>>> x0 = RealVar(0)
>>> isolate_roots(x0**5 - x0 - 1)
[1.1673039782?]
>>> x1 = RealVar(1)
>>> isolate_roots(x0**2 - x1**4 - 1, [ Numeral(Sqrt(3)) ])
[-1.1892071150?, 1.1892071150?]
>>> x2 = RealVar(2)
>>> isolate_roots(x2**2 + x0 - x1, [ Numeral(Sqrt(3)), Numeral(Sqrt(2)) ])
[]
"""
num = len(vs)
_vs = (Ast * num)()
for i in range(num):
_vs[i] = vs[i].ast
_roots = AstVector(Z3_algebraic_roots(p.ctx_ref(), p.as_ast(), num, _vs), p.ctx)
return [ Numeral(r) for r in _roots ]
if __name__ == "__main__":
import doctest
if doctest.testmod().failed:
exit(1)
|