/usr/lib/python3/dist-packages/astLib/astImages.py is in python3-astlib 0.10.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 | """module for simple .fits image tasks (rotation, clipping out sections, making .pngs etc.)
(c) 2007-2018 Matt Hilton
U{http://astlib.sourceforge.net}
Some routines in this module will fail if, e.g., asked to clip a section from a .fits image at a
position not found within the image (as determined using the WCS). Where this occurs, the function
will return None. An error message will be printed to the console when this happens if
astImages.REPORT_ERRORS=True (the default). Testing if an astImages function returns None can be
used to handle errors in scripts.
"""
REPORT_ERRORS=True
import os
import sys
import math
from astLib import astWCS
from astropy.io import fits as pyfits
try:
from scipy import ndimage
from scipy import interpolate
except ImportError:
print("WARNING: astImages: failed to import scipy.ndimage - some functions will not work.")
import numpy as np
try:
import matplotlib
from matplotlib import pylab
matplotlib.interactive(False)
except ImportError:
print("WARNING: astImages: failed to import matplotlib - some functions will not work.")
#---------------------------------------------------------------------------------------------------
def clipImageSectionWCS(imageData, imageWCS, RADeg, decDeg, clipSizeDeg, returnWCS = True):
"""Clips a square or rectangular section from an image array at the given celestial coordinates.
An updated WCS for the clipped section is optionally returned, as well as the x, y pixel
coordinates in the original image corresponding to the clipped section.
Note that the clip size is specified in degrees on the sky. For projections that have varying
real pixel scale across the map (e.g. CEA), use L{clipUsingRADecCoords} instead.
Similarly, this routine will not work for a WCS that has polynomial distortion coefficients
in the header (e.g., CTYPE1 = 'RA---TAN-SIP' etc.) - again L{clipUsingRADecCoords} can be used
in such cases.
@type imageData: np array
@param imageData: image data array
@type imageWCS: astWCS.WCS
@param imageWCS: astWCS.WCS object
@type RADeg: float
@param RADeg: coordinate in decimal degrees
@type decDeg: float
@param decDeg: coordinate in decimal degrees
@type clipSizeDeg: float or list in format [widthDeg, heightDeg]
@param clipSizeDeg: if float, size of square clipped section in decimal degrees; if list,
size of clipped section in degrees in x, y axes of image respectively
@type returnWCS: bool
@param returnWCS: if True, return an updated WCS for the clipped section
@rtype: dictionary
@return: clipped image section (np array), updated astWCS WCS object for
clipped image section, and coordinates of clipped section in imageData in format
{'data', 'wcs', 'clippedSection'}.
"""
imHeight=imageData.shape[0]
imWidth=imageData.shape[1]
xImScale=imageWCS.getXPixelSizeDeg()
yImScale=imageWCS.getYPixelSizeDeg()
if type(clipSizeDeg) == float:
xHalfClipSizeDeg=clipSizeDeg/2.0
yHalfClipSizeDeg=xHalfClipSizeDeg
elif type(clipSizeDeg) == list or type(clipSizeDeg) == tuple:
xHalfClipSizeDeg=clipSizeDeg[0]/2.0
yHalfClipSizeDeg=clipSizeDeg[1]/2.0
else:
raise Exception("did not understand clipSizeDeg: should be float, or [widthDeg, heightDeg]")
xHalfSizePix=xHalfClipSizeDeg/xImScale
yHalfSizePix=yHalfClipSizeDeg/yImScale
cPixCoords=imageWCS.wcs2pix(RADeg, decDeg)
cTopLeft=[cPixCoords[0]+xHalfSizePix, cPixCoords[1]+yHalfSizePix]
cBottomRight=[cPixCoords[0]-xHalfSizePix, cPixCoords[1]-yHalfSizePix]
X=[int(round(cTopLeft[0])),int(round(cBottomRight[0]))]
Y=[int(round(cTopLeft[1])),int(round(cBottomRight[1]))]
X.sort()
Y.sort()
if X[0] < 0:
X[0]=0
if X[1] > imWidth:
X[1]=imWidth
if Y[0] < 0:
Y[0]=0
if Y[1] > imHeight:
Y[1]=imHeight
clippedData=imageData[Y[0]:Y[1],X[0]:X[1]]
# Update WCS
if returnWCS == True:
try:
oldCRPIX1=imageWCS.header['CRPIX1']
oldCRPIX2=imageWCS.header['CRPIX2']
clippedWCS=imageWCS.copy()
clippedWCS.header['NAXIS1']=clippedData.shape[1]
clippedWCS.header['NAXIS2']=clippedData.shape[0]
clippedWCS.header['CRPIX1']=oldCRPIX1-X[0]
clippedWCS.header['CRPIX2']=oldCRPIX2-Y[0]
clippedWCS.updateFromHeader()
except KeyError:
if REPORT_ERRORS == True:
print("WARNING: astImages.clipImageSectionWCS() : no CRPIX1, CRPIX2 keywords found - not updating clipped image WCS.")
clippedData=imageData[Y[0]:Y[1],X[0]:X[1]]
clippedWCS=imageWCS.copy()
else:
clippedWCS=None
return {'data': clippedData, 'wcs': clippedWCS, 'clippedSection': [X[0], X[1], Y[0], Y[1]]}
#---------------------------------------------------------------------------------------------------
def clipImageSectionPix(imageData, XCoord, YCoord, clipSizePix):
"""Clips a square or rectangular section from an image array at the given pixel coordinates.
@type imageData: np array
@param imageData: image data array
@type XCoord: float
@param XCoord: coordinate in pixels
@type YCoord: float
@param YCoord: coordinate in pixels
@type clipSizePix: float or list in format [widthPix, heightPix]
@param clipSizePix: if float, size of square clipped section in pixels; if list,
size of clipped section in pixels in x, y axes of output image respectively
@rtype: np array
@return: clipped image section
"""
imHeight=imageData.shape[0]
imWidth=imageData.shape[1]
if type(clipSizePix) == float or type(clipSizePix) == int:
xHalfClipSizePix=int(round(clipSizePix/2.0))
yHalfClipSizePix=xHalfClipSizePix
elif type(clipSizePix) == list or type(clipSizePix) == tuple:
xHalfClipSizePix=int(round(clipSizePix[0]/2.0))
yHalfClipSizePix=int(round(clipSizePix[1]/2.0))
else:
raise Exception("did not understand clipSizePix: should be float, or [widthPix, heightPix]")
cTopLeft=[XCoord+xHalfClipSizePix, YCoord+yHalfClipSizePix]
cBottomRight=[XCoord-xHalfClipSizePix, YCoord-yHalfClipSizePix]
X=[int(round(cTopLeft[0])),int(round(cBottomRight[0]))]
Y=[int(round(cTopLeft[1])),int(round(cBottomRight[1]))]
X.sort()
Y.sort()
if X[0] < 0:
X[0]=0
if X[1] > imWidth:
X[1]=imWidth
if Y[0] < 0:
Y[0]=0
if Y[1] > imHeight:
Y[1]=imHeight
return imageData[Y[0]:Y[1],X[0]:X[1]]
#---------------------------------------------------------------------------------------------------
def clipRotatedImageSectionWCS(imageData, imageWCS, RADeg, decDeg, clipSizeDeg, returnWCS = True):
"""Clips a square or rectangular section from an image array at the given celestial coordinates.
The resulting clip is rotated and/or flipped such that North is at the top, and East appears at
the left. An updated WCS for the clipped section is also returned. Note that the alignment
of the rotated WCS is currently not perfect - however, it is probably good enough in most
cases for use with L{ImagePlot} for plotting purposes.
Note that the clip size is specified in degrees on the sky. For projections that have varying
real pixel scale across the map (e.g. CEA), use L{clipUsingRADecCoords} instead.
Similarly, this routine will not work for a WCS that has polynomial distortion coefficients
in the header (e.g., CTYPE1 = 'RA---TAN-SIP' etc.) - again L{clipUsingRADecCoords} can be used
in such cases.
@type imageData: np array
@param imageData: image data array
@type imageWCS: astWCS.WCS
@param imageWCS: astWCS.WCS object
@type RADeg: float
@param RADeg: coordinate in decimal degrees
@type decDeg: float
@param decDeg: coordinate in decimal degrees
@type clipSizeDeg: float
@param clipSizeDeg: if float, size of square clipped section in decimal degrees; if list,
size of clipped section in degrees in RA, dec. axes of output rotated image respectively
@type returnWCS: bool
@param returnWCS: if True, return an updated WCS for the clipped section
@rtype: dictionary
@return: clipped image section (np array), updated astWCS WCS object for
clipped image section, in format {'data', 'wcs'}.
@note: Returns 'None' if the requested position is not found within the image. If the image
WCS does not have keywords of the form CD1_1 etc., the output WCS will not be rotated.
"""
halfImageSize=imageWCS.getHalfSizeDeg()
imageCentre=imageWCS.getCentreWCSCoords()
imScale=imageWCS.getPixelSizeDeg()
if type(clipSizeDeg) == float:
xHalfClipSizeDeg=clipSizeDeg/2.0
yHalfClipSizeDeg=xHalfClipSizeDeg
elif type(clipSizeDeg) == list or type(clipSizeDeg) == tuple:
xHalfClipSizeDeg=clipSizeDeg[0]/2.0
yHalfClipSizeDeg=clipSizeDeg[1]/2.0
else:
raise Exception("did not understand clipSizeDeg: should be float, or [widthDeg, heightDeg]")
diagonalHalfSizeDeg=math.sqrt((xHalfClipSizeDeg*xHalfClipSizeDeg) \
+(yHalfClipSizeDeg*yHalfClipSizeDeg))
diagonalHalfSizePix=diagonalHalfSizeDeg/imScale
if RADeg>imageCentre[0]-halfImageSize[0] and RADeg<imageCentre[0]+halfImageSize[0] \
and decDeg>imageCentre[1]-halfImageSize[1] and decDeg<imageCentre[1]+halfImageSize[1]:
imageDiagonalClip=clipImageSectionWCS(imageData, imageWCS, RADeg,
decDeg, diagonalHalfSizeDeg*2.0)
diagonalClip=imageDiagonalClip['data']
diagonalWCS=imageDiagonalClip['wcs']
rotDeg=diagonalWCS.getRotationDeg()
imageRotated=ndimage.rotate(diagonalClip, rotDeg)
if diagonalWCS.isFlipped() == 1:
imageRotated=pylab.fliplr(imageRotated)
# Handle WCS rotation
rotatedWCS=diagonalWCS.copy()
rotRadians=math.radians(rotDeg)
if returnWCS == True:
try:
CD11=rotatedWCS.header['CD1_1']
CD21=rotatedWCS.header['CD2_1']
CD12=rotatedWCS.header['CD1_2']
CD22=rotatedWCS.header['CD2_2']
if rotatedWCS.isFlipped() == 1:
CD11=CD11*-1
CD12=CD12*-1
CDMatrix=np.array([[CD11, CD12], [CD21, CD22]], dtype=np.float64)
rotRadians=rotRadians
rot11=math.cos(rotRadians)
rot12=math.sin(rotRadians)
rot21=-math.sin(rotRadians)
rot22=math.cos(rotRadians)
rotMatrix=np.array([[rot11, rot12], [rot21, rot22]], dtype=np.float64)
newCDMatrix=np.dot(rotMatrix, CDMatrix)
P1=diagonalWCS.header['CRPIX1']
P2=diagonalWCS.header['CRPIX2']
V1=diagonalWCS.header['CRVAL1']
V2=diagonalWCS.header['CRVAL2']
PMatrix=np.zeros((2,), dtype = np.float64)
PMatrix[0]=P1
PMatrix[1]=P2
# BELOW IS HOW TO WORK OUT THE NEW REF PIXEL
CMatrix=np.array([imageRotated.shape[1]/2.0, imageRotated.shape[0]/2.0])
centreCoords=diagonalWCS.getCentreWCSCoords()
alphaRad=math.radians(centreCoords[0])
deltaRad=math.radians(centreCoords[1])
thetaRad=math.asin(math.sin(deltaRad)*math.sin(math.radians(V2)) + \
math.cos(deltaRad)*math.cos(math.radians(V2))*math.cos(alphaRad-math.radians(V1)))
phiRad=math.atan2(-math.cos(deltaRad)*math.sin(alphaRad-math.radians(V1)), \
math.sin(deltaRad)*math.cos(math.radians(V2)) - \
math.cos(deltaRad)*math.sin(math.radians(V2))*math.cos(alphaRad-math.radians(V1))) + \
math.pi
RTheta=(180.0/math.pi)*(1.0/math.tan(thetaRad))
xy=np.zeros((2,), dtype=np.float64)
xy[0]=RTheta*math.sin(phiRad)
xy[1]=-RTheta*math.cos(phiRad)
newPMatrix=CMatrix - np.dot(np.linalg.inv(newCDMatrix), xy)
# But there's a small offset to CRPIX due to the rotatedImage being rounded to an integer
# number of pixels (not sure this helps much)
#d=np.dot(rotMatrix, [diagonalClip.shape[1], diagonalClip.shape[0]])
#offset=abs(d)-np.array(imageRotated.shape)
rotatedWCS.header['NAXIS1']=imageRotated.shape[1]
rotatedWCS.header['NAXIS2']=imageRotated.shape[0]
rotatedWCS.header['CRPIX1']=newPMatrix[0]
rotatedWCS.header['CRPIX2']=newPMatrix[1]
rotatedWCS.header['CRVAL1']=V1
rotatedWCS.header['CRVAL2']=V2
rotatedWCS.header['CD1_1']=newCDMatrix[0][0]
rotatedWCS.header['CD2_1']=newCDMatrix[1][0]
rotatedWCS.header['CD1_2']=newCDMatrix[0][1]
rotatedWCS.header['CD2_2']=newCDMatrix[1][1]
rotatedWCS.updateFromHeader()
except KeyError:
if REPORT_ERRORS == True:
print("WARNING: astImages.clipRotatedImageSectionWCS() : no CDi_j keywords found - not rotating WCS.")
imageRotated=diagonalClip
rotatedWCS=diagonalWCS
imageRotatedClip=clipImageSectionWCS(imageRotated, rotatedWCS, RADeg, decDeg, clipSizeDeg)
if returnWCS == True:
return {'data': imageRotatedClip['data'], 'wcs': imageRotatedClip['wcs']}
else:
return {'data': imageRotatedClip['data'], 'wcs': None}
else:
if REPORT_ERRORS==True:
print("""ERROR: astImages.clipRotatedImageSectionWCS() :
RADeg, decDeg are not within imageData.""")
return None
#---------------------------------------------------------------------------------------------------
def clipUsingRADecCoords(imageData, imageWCS, RAMin, RAMax, decMin, decMax, returnWCS = True):
"""Clips a section from an image array at the pixel coordinates corresponding to the given
celestial coordinates.
@type imageData: np array
@param imageData: image data array
@type imageWCS: astWCS.WCS
@param imageWCS: astWCS.WCS object
@type RAMin: float
@param RAMin: minimum RA coordinate in decimal degrees
@type RAMax: float
@param RAMax: maximum RA coordinate in decimal degrees
@type decMin: float
@param decMin: minimum dec coordinate in decimal degrees
@type decMax: float
@param decMax: maximum dec coordinate in decimal degrees
@type returnWCS: bool
@param returnWCS: if True, return an updated WCS for the clipped section
@rtype: dictionary
@return: clipped image section (np array), updated astWCS WCS object for
clipped image section, and corresponding pixel coordinates in imageData in format
{'data', 'wcs', 'clippedSection'}.
@note: Returns 'None' if the requested position is not found within the image.
"""
imHeight=imageData.shape[0]
imWidth=imageData.shape[1]
xMin, yMin=imageWCS.wcs2pix(RAMin, decMin)
xMax, yMax=imageWCS.wcs2pix(RAMax, decMax)
xMin=int(round(xMin))
xMax=int(round(xMax))
yMin=int(round(yMin))
yMax=int(round(yMax))
X=[xMin, xMax]
X.sort()
Y=[yMin, yMax]
Y.sort()
if X[0] < 0:
X[0]=0
if X[1] > imWidth:
X[1]=imWidth
if Y[0] < 0:
Y[0]=0
if Y[1] > imHeight:
Y[1]=imHeight
clippedData=imageData[Y[0]:Y[1],X[0]:X[1]]
# Update WCS
if returnWCS == True:
try:
oldCRPIX1=imageWCS.header['CRPIX1']
oldCRPIX2=imageWCS.header['CRPIX2']
clippedWCS=imageWCS.copy()
clippedWCS.header['NAXIS1']=clippedData.shape[1]
clippedWCS.header['NAXIS2']=clippedData.shape[0]
clippedWCS.header['CRPIX1']=oldCRPIX1-X[0]
clippedWCS.header['CRPIX2']=oldCRPIX2-Y[0]
clippedWCS.updateFromHeader()
except KeyError:
if REPORT_ERRORS == True:
print("WARNING: astImages.clipUsingRADecCoords() : no CRPIX1, CRPIX2 keywords found - not updating clipped image WCS.")
clippedData=imageData[Y[0]:Y[1],X[0]:X[1]]
clippedWCS=imageWCS.copy()
else:
clippedWCS=None
return {'data': clippedData, 'wcs': clippedWCS, 'clippedSection': [X[0], X[1], Y[0], Y[1]]}
#---------------------------------------------------------------------------------------------------
def scaleImage(imageData, imageWCS, scaleFactor):
"""Scales image array and WCS by the given scale factor.
@type imageData: np array
@param imageData: image data array
@type imageWCS: astWCS.WCS
@param imageWCS: astWCS.WCS object
@type scaleFactor: float or list or tuple
@param scaleFactor: factor to resize image by - if tuple or list, in format
[x scale factor, y scale factor]
@rtype: dictionary
@return: image data (np array), updated astWCS WCS object for image, in format {'data', 'wcs'}.
"""
if type(scaleFactor) == int or type(scaleFactor) == float:
scaleFactor=[float(scaleFactor), float(scaleFactor)]
scaledData=ndimage.zoom(imageData, scaleFactor)
# Changed below because ndimage.zoom now uses round instead of int (since scipy 0.13.0)
# NOTE: np axes order flips order compared to scaleFactor
trueScaleFactor=np.array(scaledData.shape, dtype = float) / np.array(imageData.shape, dtype = float)
offset=0.
# Rescale WCS
try:
oldCRPIX1=imageWCS.header['CRPIX1']
oldCRPIX2=imageWCS.header['CRPIX2']
CD11=imageWCS.header['CD1_1']
CD21=imageWCS.header['CD2_1']
CD12=imageWCS.header['CD1_2']
CD22=imageWCS.header['CD2_2']
except KeyError:
# Try the older FITS header format
try:
oldCRPIX1=imageWCS.header['CRPIX1']
oldCRPIX2=imageWCS.header['CRPIX2']
CD11=imageWCS.header['CDELT1']
CD21=0
CD12=0
CD22=imageWCS.header['CDELT2']
except KeyError:
if REPORT_ERRORS == True:
print("WARNING: astImages.rescaleImage() : no CDij or CDELT keywords found - not updating WCS.")
scaledWCS=imageWCS.copy()
return {'data': scaledData, 'wcs': scaledWCS}
CDMatrix=np.array([[CD11, CD12], [CD21, CD22]], dtype=np.float64)
scaleFactorMatrix=np.array([[1.0/trueScaleFactor[1], 0], [0, 1.0/trueScaleFactor[0]]])
scaleFactorMatrix=np.array([[1.0/trueScaleFactor[1], 0], [0, 1.0/trueScaleFactor[0]]])
scaledCDMatrix=np.dot(scaleFactorMatrix, CDMatrix)
scaledWCS=imageWCS.copy()
scaledWCS.header['NAXIS1']=scaledData.shape[1]
scaledWCS.header['NAXIS2']=scaledData.shape[0]
scaledWCS.header['CRPIX1']=oldCRPIX1*trueScaleFactor[1]
scaledWCS.header['CRPIX2']=oldCRPIX2*trueScaleFactor[0]
scaledWCS.header['CD1_1']=scaledCDMatrix[0][0]
scaledWCS.header['CD2_1']=scaledCDMatrix[1][0]
scaledWCS.header['CD1_2']=scaledCDMatrix[0][1]
scaledWCS.header['CD2_2']=scaledCDMatrix[1][1]
scaledWCS.updateFromHeader()
return {'data': scaledData, 'wcs': scaledWCS}
#---------------------------------------------------------------------------------------------------
def intensityCutImage(imageData, cutLevels):
"""Creates a matplotlib.pylab plot of an image array with the specified cuts in intensity
applied. This routine is used by L{saveBitmap} and L{saveContourOverlayBitmap}, which both
produce output as .png, .jpg, etc. images.
@type imageData: np array
@param imageData: image data array
@type cutLevels: list
@param cutLevels: sets the image scaling - available options:
- pixel values: cutLevels=[low value, high value].
- histogram equalisation: cutLevels=["histEq", number of bins ( e.g. 1024)]
- relative: cutLevels=["relative", cut per cent level (e.g. 99.5)]
- smart: cutLevels=["smart", cut per cent level (e.g. 99.5)]
["smart", 99.5] seems to provide good scaling over a range of different images.
@rtype: dictionary
@return: image section (np.array), matplotlib image normalisation (matplotlib.colors.Normalize), in the format {'image', 'norm'}.
@note: If cutLevels[0] == "histEq", then only {'image'} is returned.
"""
oImWidth=imageData.shape[1]
oImHeight=imageData.shape[0]
# Optional histogram equalisation
if cutLevels[0]=="histEq":
imageData=histEq(imageData, cutLevels[1])
anorm=pylab.Normalize(imageData.min(), imageData.max())
elif cutLevels[0]=="relative":
# this turns image data into 1D array then sorts
sorted=np.sort(np.ravel(imageData))
maxValue=sorted.max()
minValue=sorted.min()
# want to discard the top and bottom specified
topCutIndex=len(sorted-1) \
-int(math.floor(float((100.0-cutLevels[1])/100.0)*len(sorted-1)))
bottomCutIndex=int(math.ceil(float((100.0-cutLevels[1])/100.0)*len(sorted-1)))
topCut=sorted[topCutIndex]
bottomCut=sorted[bottomCutIndex]
anorm=pylab.Normalize(bottomCut, topCut)
elif cutLevels[0]=="smart":
# this turns image data into 1Darray then sorts
sorted=np.sort(np.ravel(imageData))
maxValue=sorted.max()
minValue=sorted.min()
numBins=10000 # 0.01 per cent accuracy
binWidth=(maxValue-minValue)/float(numBins)
histogram=ndimage.histogram(sorted, minValue, maxValue, numBins)
# Find the bin with the most pixels in it, set that as our minimum
# Then search through the bins until we get to a bin with more/or the same number of
# pixels in it than the previous one.
# We take that to be the maximum.
# This means that we avoid the traps of big, bright, saturated stars that cause
# problems for relative scaling
backgroundValue=histogram.max()
foundBackgroundBin=False
foundTopBin=False
lastBin=-10000
for i in range(len(histogram)):
if histogram[i]>=lastBin and foundBackgroundBin==True:
# Added a fudge here to stop us picking for top bin a bin within
# 10 percent of the background pixel value
if (minValue+(binWidth*i))>bottomBinValue*1.1:
topBinValue=minValue+(binWidth*i)
foundTopBin=True
break
if histogram[i]==backgroundValue and foundBackgroundBin==False:
bottomBinValue=minValue+(binWidth*i)
foundBackgroundBin=True
lastBin=histogram[i]
if foundTopBin==False:
topBinValue=maxValue
#Now we apply relative scaling to this
smartClipped=np.clip(sorted, bottomBinValue, topBinValue)
topCutIndex=len(smartClipped-1) \
-int(math.floor(float((100.0-cutLevels[1])/100.0)*len(smartClipped-1)))
bottomCutIndex=int(math.ceil(float((100.0-cutLevels[1])/100.0)*len(smartClipped-1)))
topCut=smartClipped[topCutIndex]
bottomCut=smartClipped[bottomCutIndex]
anorm=pylab.Normalize(bottomCut, topCut)
else:
# Normalise using given cut levels
anorm=pylab.Normalize(cutLevels[0], cutLevels[1])
if cutLevels[0]=="histEq":
return {'image': imageData.copy()}
else:
return {'image': imageData.copy(), 'norm': anorm}
#---------------------------------------------------------------------------------------------------
def resampleToTanProjection(imageData, imageWCS, outputPixDimensions=[600, 600]):
"""Resamples an image and WCS to a tangent plane projection. Purely for plotting purposes
(e.g., ensuring RA, dec. coordinate axes perpendicular).
@type imageData: np array
@param imageData: image data array
@type imageWCS: astWCS.WCS
@param imageWCS: astWCS.WCS object
@type outputPixDimensions: list
@param outputPixDimensions: [width, height] of output image in pixels
@rtype: dictionary
@return: image data (np array), updated astWCS WCS object for image, in format {'data', 'wcs'}.
"""
RADeg, decDeg=imageWCS.getCentreWCSCoords()
xPixelScale=imageWCS.getXPixelSizeDeg()
yPixelScale=imageWCS.getYPixelSizeDeg()
xSizeDeg, ySizeDeg=imageWCS.getFullSizeSkyDeg()
xSizePix=int(round(outputPixDimensions[0]))
ySizePix=int(round(outputPixDimensions[1]))
xRefPix=xSizePix/2.0
yRefPix=ySizePix/2.0
xOutPixScale=xSizeDeg/xSizePix
yOutPixScale=ySizeDeg/ySizePix
newHead=pyfits.Header()
newHead['NAXIS']=2
newHead['NAXIS1']=xSizePix
newHead['NAXIS2']=ySizePix
newHead['CTYPE1']='RA---TAN'
newHead['CTYPE2']='DEC--TAN'
newHead['CRVAL1']=RADeg
newHead['CRVAL2']=decDeg
newHead['CRPIX1']=xRefPix+1
newHead['CRPIX2']=yRefPix+1
newHead['CDELT1']=-xOutPixScale
newHead['CDELT2']=xOutPixScale # Makes more sense to use same pix scale
newHead['CUNIT1']='DEG'
newHead['CUNIT2']='DEG'
newWCS=astWCS.WCS(newHead, mode='pyfits')
newImage=np.zeros([ySizePix, xSizePix])
tanImage=resampleToWCS(newImage, newWCS, imageData, imageWCS, highAccuracy=True,
onlyOverlapping=False)
return tanImage
#---------------------------------------------------------------------------------------------------
def resampleToWCS(im1Data, im1WCS, im2Data, im2WCS, highAccuracy = False, onlyOverlapping = True):
"""Resamples data corresponding to second image (with data im2Data, WCS im2WCS) onto the WCS
of the first image (im1Data, im1WCS). The output, resampled image is of the pixel same
dimensions of the first image. This routine is for assisting in plotting - performing
photometry on the output is not recommended.
Set highAccuracy == True to sample every corresponding pixel in each image; otherwise only
every nth pixel (where n is the ratio of the image scales) will be sampled, with values
in between being set using a linear interpolation (much faster).
Set onlyOverlapping == True to speed up resampling by only resampling the overlapping
area defined by both image WCSs.
@type im1Data: np array
@param im1Data: image data array for first image
@type im1WCS: astWCS.WCS
@param im1WCS: astWCS.WCS object corresponding to im1Data
@type im2Data: np array
@param im2Data: image data array for second image (to be resampled to match first image)
@type im2WCS: astWCS.WCS
@param im2WCS: astWCS.WCS object corresponding to im2Data
@type highAccuracy: bool
@param highAccuracy: if True, sample every corresponding pixel in each image; otherwise, sample
every nth pixel, where n = the ratio of the image scales.
@type onlyOverlapping: bool
@param onlyOverlapping: if True, only consider the overlapping area defined by both image WCSs
(speeds things up)
@rtype: dictionary
@return: np image data array and associated WCS in format {'data', 'wcs'}
"""
resampledData=np.zeros(im1Data.shape)
# Find overlap - speed things up
# But have a border so as not to require the overlap to be perfect
# There's also no point in oversampling image 1 if it's much higher res than image 2
xPixRatio=(im2WCS.getXPixelSizeDeg()/im1WCS.getXPixelSizeDeg())/2.0
yPixRatio=(im2WCS.getYPixelSizeDeg()/im1WCS.getYPixelSizeDeg())/2.0
xBorder=xPixRatio*10.0
yBorder=yPixRatio*10.0
if highAccuracy == False:
if xPixRatio > 1:
xPixStep=int(math.ceil(xPixRatio))
else:
xPixStep=1
if yPixRatio > 1:
yPixStep=int(math.ceil(yPixRatio))
else:
yPixStep=1
else:
xPixStep=1
yPixStep=1
if onlyOverlapping == True:
overlap=astWCS.findWCSOverlap(im1WCS, im2WCS)
xOverlap=[overlap['wcs1Pix'][0], overlap['wcs1Pix'][1]]
yOverlap=[overlap['wcs1Pix'][2], overlap['wcs1Pix'][3]]
xOverlap.sort()
yOverlap.sort()
xMin=int(math.floor(xOverlap[0]-xBorder))
xMax=int(math.ceil(xOverlap[1]+xBorder))
yMin=int(math.floor(yOverlap[0]-yBorder))
yMax=int(math.ceil(yOverlap[1]+yBorder))
xRemainder=(xMax-xMin) % xPixStep
yRemainder=(yMax-yMin) % yPixStep
if xRemainder != 0:
xMax=xMax+xRemainder
if yRemainder != 0:
yMax=yMax+yRemainder
# Check that we're still within the image boundaries, to be on the safe side
if xMin < 0:
xMin=0
if xMax > im1Data.shape[1]:
xMax=im1Data.shape[1]
if yMin < 0:
yMin=0
if yMax > im1Data.shape[0]:
yMax=im1Data.shape[0]
else:
xMin=0
xMax=im1Data.shape[1]
yMin=0
yMax=im1Data.shape[0]
for x in range(xMin, xMax, xPixStep):
for y in range(yMin, yMax, yPixStep):
RA, dec=im1WCS.pix2wcs(x, y)
x2, y2=im2WCS.wcs2pix(RA, dec)
x2=int(round(x2))
y2=int(round(y2))
if x2 >= 0 and x2 < im2Data.shape[1] and y2 >= 0 and y2 < im2Data.shape[0]:
resampledData[y][x]=im2Data[y2][x2]
# linear interpolation
if highAccuracy == False:
for row in range(resampledData.shape[0]):
vals=resampledData[row, np.arange(xMin, xMax, xPixStep)]
index2data=interpolate.interp1d(np.arange(0, vals.shape[0], 1), vals)
interpedVals=index2data(np.arange(0, vals.shape[0]-1, 1.0/xPixStep))
resampledData[row, xMin:xMin+interpedVals.shape[0]]=interpedVals
for col in range(resampledData.shape[1]):
vals=resampledData[np.arange(yMin, yMax, yPixStep), col]
index2data=interpolate.interp1d(np.arange(0, vals.shape[0], 1), vals)
interpedVals=index2data(np.arange(0, vals.shape[0]-1, 1.0/yPixStep))
resampledData[yMin:yMin+interpedVals.shape[0], col]=interpedVals
# Note: should really just copy im1WCS keywords into im2WCS and return that
# Only a problem if we're using this for anything other than plotting
return {'data': resampledData, 'wcs': im1WCS.copy()}
#---------------------------------------------------------------------------------------------------
def generateContourOverlay(backgroundImageData, backgroundImageWCS, contourImageData, contourImageWCS, \
contourLevels, contourSmoothFactor = 0, highAccuracy = False):
"""Rescales an image array to be used as a contour overlay to have the same dimensions as the
background image, and generates a set of contour levels. The image array from which the contours
are to be generated will be resampled to the same dimensions as the background image data, and
can be optionally smoothed using a Gaussian filter. The sigma of the Gaussian filter
(contourSmoothFactor) is specified in arcsec.
@type backgroundImageData: np array
@param backgroundImageData: background image data array
@type backgroundImageWCS: astWCS.WCS
@param backgroundImageWCS: astWCS.WCS object of the background image data array
@type contourImageData: np array
@param contourImageData: image data array from which contours are to be generated
@type contourImageWCS: astWCS.WCS
@param contourImageWCS: astWCS.WCS object corresponding to contourImageData
@type contourLevels: list
@param contourLevels: sets the contour levels - available options:
- values: contourLevels=[list of values specifying each level]
- linear spacing: contourLevels=['linear', min level value, max level value, number
of levels] - can use "min", "max" to automatically set min, max levels from image data
- log spacing: contourLevels=['log', min level value, max level value, number of
levels] - can use "min", "max" to automatically set min, max levels from image data
@type contourSmoothFactor: float
@param contourSmoothFactor: standard deviation (in arcsec) of Gaussian filter for
pre-smoothing of contour image data (set to 0 for no smoothing)
@type highAccuracy: bool
@param highAccuracy: if True, sample every corresponding pixel in each image; otherwise, sample
every nth pixel, where n = the ratio of the image scales.
"""
# For compromise between speed and accuracy, scale a copy of the background
# image down to a scale that is one pixel = 1/5 of a pixel in the contour image
# But only do this if it has CDij keywords as we know how to scale those
if ("CD1_1" in backgroundImageWCS.header) == True:
xScaleFactor=backgroundImageWCS.getXPixelSizeDeg()/(contourImageWCS.getXPixelSizeDeg()/5.0)
yScaleFactor=backgroundImageWCS.getYPixelSizeDeg()/(contourImageWCS.getYPixelSizeDeg()/5.0)
scaledBackground=scaleImage(backgroundImageData, backgroundImageWCS, (xScaleFactor, yScaleFactor))
scaled=resampleToWCS(scaledBackground['data'], scaledBackground['wcs'],
contourImageData, contourImageWCS, highAccuracy = highAccuracy)
scaledContourData=scaled['data']
scaledContourWCS=scaled['wcs']
scaledBackground=True
else:
scaled=resampleToWCS(backgroundImageData, backgroundImageWCS,
contourImageData, contourImageWCS, highAccuracy = highAccuracy)
scaledContourData=scaled['data']
scaledContourWCS=scaled['wcs']
scaledBackground=False
if contourSmoothFactor != None and contourSmoothFactor > 0:
sigmaPix=(contourSmoothFactor/3600.0)/scaledContourWCS.getPixelSizeDeg()
scaledContourData=ndimage.gaussian_filter(scaledContourData, sigmaPix)
# Various ways of setting the contour levels
# If just a list is passed in, use those instead
if contourLevels[0] == "linear":
if contourLevels[1] == "min":
xMin=contourImageData.flatten().min()
else:
xMin=float(contourLevels[1])
if contourLevels[2] == "max":
xMax=contourImageData.flatten().max()
else:
xMax=float(contourLevels[2])
nLevels=contourLevels[3]
xStep=(xMax-xMin)/(nLevels-1)
cLevels=[]
for j in range(nLevels+1):
level=xMin+j*xStep
cLevels.append(level)
elif contourLevels[0] == "log":
if contourLevels[1] == "min":
xMin=contourImageData.flatten().min()
else:
xMin=float(contourLevels[1])
if contourLevels[2] == "max":
xMax=contourImageData.flatten().max()
else:
xMax=float(contourLevels[2])
if xMin <= 0.0:
raise Exception("minimum contour level set to <= 0 and log scaling chosen.")
xLogMin=math.log10(xMin)
xLogMax=math.log10(xMax)
nLevels=contourLevels[3]
xLogStep=(xLogMax-xLogMin)/(nLevels-1)
cLevels=[]
prevLevel=0
for j in range(nLevels+1):
level=math.pow(10, xLogMin+j*xLogStep)
cLevels.append(level)
else:
cLevels=contourLevels
# Now blow the contour image data back up to the size of the original image
if scaledBackground == True:
scaledBack=scaleImage(scaledContourData, scaledContourWCS, (1.0/xScaleFactor, 1.0/yScaleFactor))['data']
else:
scaledBack=scaledContourData
return {'scaledImage': scaledBack, 'contourLevels': cLevels}
#---------------------------------------------------------------------------------------------------
def saveBitmap(outputFileName, imageData, cutLevels, size, colorMapName):
"""Makes a bitmap image from an image array; the image format is specified by the
filename extension. (e.g. ".jpg" =JPEG, ".png"=PNG).
@type outputFileName: string
@param outputFileName: filename of output bitmap image
@type imageData: np array
@param imageData: image data array
@type cutLevels: list
@param cutLevels: sets the image scaling - available options:
- pixel values: cutLevels=[low value, high value].
- histogram equalisation: cutLevels=["histEq", number of bins ( e.g. 1024)]
- relative: cutLevels=["relative", cut per cent level (e.g. 99.5)]
- smart: cutLevels=["smart", cut per cent level (e.g. 99.5)]
["smart", 99.5] seems to provide good scaling over a range of different images.
@type size: int
@param size: size of output image in pixels
@type colorMapName: string
@param colorMapName: name of a standard matplotlib colormap, e.g. "hot", "cool", "gray"
etc. (do "help(pylab.colormaps)" in the Python interpreter to see available options)
"""
cut=intensityCutImage(imageData, cutLevels)
# Make plot
aspectR=float(cut['image'].shape[0])/float(cut['image'].shape[1])
pylab.figure(figsize=(10,10*aspectR))
pylab.axes([0,0,1,1])
try:
colorMap=pylab.cm.get_cmap(colorMapName)
except AssertionError:
raise Exception(colorMapName+" is not a defined matplotlib colormap.")
if cutLevels[0]=="histEq":
pylab.imshow(cut['image'], interpolation="bilinear", origin='lower', cmap=colorMap)
else:
pylab.imshow(cut['image'], interpolation="bilinear", norm=cut['norm'], origin='lower',
cmap=colorMap)
pylab.axis("off")
pylab.savefig("out_astImages.png")
pylab.close("all")
try:
from PIL import Image
except:
raise Exception("astImages.saveBitmap requires the Python Imaging Library to be installed.")
im=Image.open("out_astImages.png")
im.thumbnail((int(size),int(size)))
im.save(outputFileName)
os.remove("out_astImages.png")
#---------------------------------------------------------------------------------------------------
def saveContourOverlayBitmap(outputFileName, backgroundImageData, backgroundImageWCS, cutLevels, \
size, colorMapName, contourImageData, contourImageWCS, \
contourSmoothFactor, contourLevels, contourColor, contourWidth):
"""Makes a bitmap image from an image array, with a set of contours generated from a
second image array overlaid. The image format is specified by the file extension
(e.g. ".jpg"=JPEG, ".png"=PNG). The image array from which the contours are to be generated
can optionally be pre-smoothed using a Gaussian filter.
@type outputFileName: string
@param outputFileName: filename of output bitmap image
@type backgroundImageData: np array
@param backgroundImageData: background image data array
@type backgroundImageWCS: astWCS.WCS
@param backgroundImageWCS: astWCS.WCS object of the background image data array
@type cutLevels: list
@param cutLevels: sets the image scaling - available options:
- pixel values: cutLevels=[low value, high value].
- histogram equalisation: cutLevels=["histEq", number of bins ( e.g. 1024)]
- relative: cutLevels=["relative", cut per cent level (e.g. 99.5)]
- smart: cutLevels=["smart", cut per cent level (e.g. 99.5)]
["smart", 99.5] seems to provide good scaling over a range of different images.
@type size: int
@param size: size of output image in pixels
@type colorMapName: string
@param colorMapName: name of a standard matplotlib colormap, e.g. "hot", "cool", "gray"
etc. (do "help(pylab.colormaps)" in the Python interpreter to see available options)
@type contourImageData: np array
@param contourImageData: image data array from which contours are to be generated
@type contourImageWCS: astWCS.WCS
@param contourImageWCS: astWCS.WCS object corresponding to contourImageData
@type contourSmoothFactor: float
@param contourSmoothFactor: standard deviation (in pixels) of Gaussian filter for
pre-smoothing of contour image data (set to 0 for no smoothing)
@type contourLevels: list
@param contourLevels: sets the contour levels - available options:
- values: contourLevels=[list of values specifying each level]
- linear spacing: contourLevels=['linear', min level value, max level value, number
of levels] - can use "min", "max" to automatically set min, max levels from image data
- log spacing: contourLevels=['log', min level value, max level value, number of
levels] - can use "min", "max" to automatically set min, max levels from image data
@type contourColor: string
@param contourColor: color of the overlaid contours, specified by the name of a standard
matplotlib color, e.g., "black", "white", "cyan"
etc. (do "help(pylab.colors)" in the Python interpreter to see available options)
@type contourWidth: int
@param contourWidth: width of the overlaid contours
"""
cut=intensityCutImage(backgroundImageData, cutLevels)
# Make plot of just the background image
aspectR=float(cut['image'].shape[0])/float(cut['image'].shape[1])
pylab.figure(figsize=(10,10*aspectR))
pylab.axes([0,0,1,1])
try:
colorMap=pylab.cm.get_cmap(colorMapName)
except AssertionError:
raise Exception(colorMapName+" is not a defined matplotlib colormap.")
if cutLevels[0]=="histEq":
pylab.imshow(cut['image'], interpolation="bilinear", origin='lower', cmap=colorMap)
else:
pylab.imshow(cut['image'], interpolation="bilinear", norm=cut['norm'], origin='lower',
cmap=colorMap)
pylab.axis("off")
# Add the contours
contourData=generateContourOverlay(backgroundImageData, backgroundImageWCS, contourImageData, \
contourImageWCS, contourLevels, contourSmoothFactor)
pylab.contour(contourData['scaledImage'], contourData['contourLevels'], colors=contourColor,
linewidths=contourWidth)
pylab.savefig("out_astImages.png")
pylab.close("all")
try:
from PIL import Image
except:
raise Exception("astImages.saveContourOverlayBitmap requires the Python Imaging Library to be installed")
im=Image.open("out_astImages.png")
im.thumbnail((int(size),int(size)))
im.save(outputFileName)
os.remove("out_astImages.png")
#---------------------------------------------------------------------------------------------------
def saveFITS(outputFileName, imageData, imageWCS = None):
"""Writes an image array to a new .fits file.
@type outputFileName: string
@param outputFileName: filename of output FITS image
@type imageData: np array
@param imageData: image data array
@type imageWCS: astWCS.WCS object
@param imageWCS: image WCS object
@note: If imageWCS=None, the FITS image will be written with a rudimentary header containing
no meta data.
"""
if os.path.exists(outputFileName):
os.remove(outputFileName)
# There a fudge here for handling both pyfits and astropy.io.fits headers
# Removed from version 0.10.0+ (supporting astropy only)
if imageWCS != None:
hdu=pyfits.PrimaryHDU(None, imageWCS.header)
else:
hdu=pyfits.PrimaryHDU(None, None)
newImg=pyfits.HDUList()
hdu.data=imageData
newImg.append(hdu)
newImg.writeto(outputFileName)
newImg.close()
#---------------------------------------------------------------------------------------------------
def histEq(inputArray, numBins):
"""Performs histogram equalisation of the input np array.
@type inputArray: np array
@param inputArray: image data array
@type numBins: int
@param numBins: number of bins in which to perform the operation (e.g. 1024)
@rtype: np array
@return: image data array
"""
imageData=inputArray
# histogram equalisation: we want an equal number of pixels in each intensity range
sortedDataIntensities=np.sort(np.ravel(imageData))
median=np.median(sortedDataIntensities)
# Make cumulative histogram of data values, simple min-max used to set bin sizes and range
dataCumHist=np.zeros(numBins)
minIntensity=sortedDataIntensities.min()
maxIntensity=sortedDataIntensities.max()
histRange=maxIntensity-minIntensity
binWidth=histRange/float(numBins-1)
for i in range(len(sortedDataIntensities)):
binNumber=int(math.ceil((sortedDataIntensities[i]-minIntensity)/binWidth))
addArray=np.zeros(numBins)
onesArray=np.ones(numBins-binNumber)
onesRange=list(range(binNumber, numBins))
np.put(addArray, onesRange, onesArray)
dataCumHist=dataCumHist+addArray
# Make ideal cumulative histogram
idealValue=dataCumHist.max()/float(numBins)
idealCumHist=np.arange(idealValue, dataCumHist.max()+idealValue, idealValue)
# Map the data to the ideal
for y in range(imageData.shape[0]):
for x in range(imageData.shape[1]):
# Get index corresponding to dataIntensity
intensityBin=int(math.ceil((imageData[y][x]-minIntensity)/binWidth))
# Guard against rounding errors (happens rarely I think)
if intensityBin<0:
intensityBin=0
if intensityBin>len(dataCumHist)-1:
intensityBin=len(dataCumHist)-1
# Get the cumulative frequency corresponding intensity level in the data
dataCumFreq=dataCumHist[intensityBin]
# Get the index of the corresponding ideal cumulative frequency
idealBin=np.searchsorted(idealCumHist, dataCumFreq)
idealIntensity=(idealBin*binWidth)+minIntensity
imageData[y][x]=idealIntensity
return imageData
#---------------------------------------------------------------------------------------------------
def normalise(inputArray, clipMinMax):
"""Clips the inputArray in intensity and normalises the array such that minimum and maximum
values are 0, 1. Clip in intensity is specified by clipMinMax, a list in the format
[clipMin, clipMax]
Used for normalising image arrays so that they can be turned into RGB arrays that matplotlib
can plot (see L{astPlots.ImagePlot}).
@type inputArray: np array
@param inputArray: image data array
@type clipMinMax: list
@param clipMinMax: [minimum value of clipped array, maximum value of clipped array]
@rtype: np array
@return: normalised array with minimum value 0, maximum value 1
"""
clipped=inputArray.clip(clipMinMax[0], clipMinMax[1])
slope=1.0/(clipMinMax[1]-clipMinMax[0])
intercept=-clipMinMax[0]*slope
clipped=clipped*slope+intercept
return clipped
|