/usr/lib/python3/dist-packages/astLib/astPlots.py is in python3-astlib 0.10.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 | """module for producing astronomical plots
(c) 2007-2016 Matt Hilton
U{http://astlib.sourceforge.net}
This module provides the matplotlib powered ImagePlot class, which is designed to be flexible.
ImagePlots can have RA, Dec. coordinate axes, contour overlays, and have objects marked in them,
using WCS coordinates. RGB plots are supported too.
@var DEC_TICK_STEPS: Defines the possible coordinate label steps on the delination axis in
sexagesimal mode. Dictionary format: {'deg', 'unit'}
@type DEC_TICK_STEPS: dictionary list
@var RA_TICK_STEPS: Defines the possible coordinate label steps on the right ascension axis in
sexagesimal mode. Dictionary format: {'deg', 'unit'}
@type RA_TICK_STEPS: dictionary list
@var DECIMAL_TICK_STEPS: Defines the possible coordinate label steps on both coordinate axes in
decimal degrees mode.
@type DECIMAL_TICK_STEPS: list
@var DEG: Variable to stand in for the degrees symbol.
@type DEG: string
@var PRIME: Variable to stand in for the prime symbol.
@type PRIME: string
@var DOUBLE_PRIME: Variable to stand in for the double prime symbol.
@type DOUBLE_PRIME: string
"""
import math
from . import astImages
from . import astWCS
from . import astCoords
import numpy
import pyfits
from scipy import interpolate
import pylab
import matplotlib.patches as patches
import sys
# Handle unicode python 2 and 3
if sys.version < '3':
import codecs
def u(x):
return codecs.unicode_escape_decode(x)[0]
else:
def u(x):
return x
DEC_TICK_STEPS=[{'deg': 1.0/60.0/60.0, 'unit': "s"},
{'deg': 2.0/60.0/60.0, 'unit': "s"},
{'deg': 5.0/60.0/60.0, 'unit': "s"},
{'deg': 10.0/60.0/60.0, 'unit': "s"},
{'deg': 30.0/60.0/60.0, 'unit': "s"},
{'deg': 1.0/60.0, 'unit': "m"},
{'deg': 2.0/60.0, 'unit': "m"},
{'deg': 5.0/60.0, 'unit': "m"},
{'deg': 15.0/60.0, 'unit': "m"},
{'deg': 30.0/60.0, 'unit': "m"},
{'deg': 1.0, 'unit': "d"},
{'deg': 2.0, 'unit': "d"},
{'deg': 4.0, 'unit': "d"},
{'deg': 5.0, 'unit': "d"},
{'deg': 10.0, 'unit': "d"},
{'deg': 20.0, 'unit': "d"},
{'deg': 30.0, 'unit': "d"}]
RA_TICK_STEPS=[ {'deg': (0.5/60.0/60.0/24.0)*360.0, 'unit': "s"},
{'deg': (1.0/60.0/60.0/24.0)*360.0, 'unit': "s"},
{'deg': (2.0/60.0/60.0/24.0)*360.0, 'unit': "s"},
{'deg': (4.0/60.0/60.0/24.0)*360.0, 'unit': "s"},
{'deg': (5.0/60.0/60.0/24.0)*360.0, 'unit': "s"},
{'deg': (10.0/60.0/60.0/24.0)*360.0, 'unit': "s"},
{'deg': (20.0/60.0/60.0/24.0)*360.0, 'unit': "s"},
{'deg': (30.0/60.0/60.0/24.0)*360.0, 'unit': "s"},
{'deg': (1.0/60.0/24.0)*360.0, 'unit': "m"},
{'deg': (2.0/60.0/24.0)*360.0, 'unit': "m"},
{'deg': (5.0/60.0/24.0)*360.0, 'unit': "m"},
{'deg': (10.0/60.0/24.0)*360.0, 'unit': "m"},
{'deg': (20.0/60.0/24.0)*360.0, 'unit': "m"},
{'deg': (30.0/60.0/24.0)*360.0, 'unit': "m"},
{'deg': (1.0/24.0)*360.0, 'unit': "h"},
{'deg': (3.0/24.0)*360.0, 'unit': "h"},
{'deg': (6.0/24.0)*360.0, 'unit': "h"},
{'deg': (12.0/24.0)*360.0, 'unit': "h"}]
DECIMAL_TICK_STEPS=[0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 2.0, 2.5, 5.0, 10.0, 30.0, 90.0]
DEG = u("\N{DEGREE SIGN}")
PRIME = "$^\prime$"
DOUBLE_PRIME = "$^{\prime\prime}$"
#---------------------------------------------------------------------------------------------------
class ImagePlot:
"""This class describes a matplotlib image plot containing an astronomical image with an
associated WCS.
Objects within the image boundaries can be marked by passing their WCS coordinates to
L{ImagePlot.addPlotObjects}.
Other images can be overlaid using L{ImagePlot.addContourOverlay}.
For images rotated with North at the top, East at the left (as can be done using
L{astImages.clipRotatedImageSectionWCS} or L{astImages.resampleToTanProjection}, WCS coordinate
axes can be plotted, with tick marks set appropriately for the image size. Otherwise, a compass
can be plotted showing the directions of North and East in the image.
RGB images are also supported.
The plot can of course be tweaked further after creation using matplotlib/pylab commands.
"""
def __init__(self, imageData, imageWCS, axes = [0.1,0.1,0.8,0.8], \
cutLevels = ["smart", 99.5], colorMapName = "gray", title = None, axesLabels = "sexagesimal", \
axesFontFamily="serif", axesFontSize=12.0, RATickSteps="auto", decTickSteps="auto",
colorBar = False, interpolation = "bilinear"):
"""Makes an ImagePlot from the given image array and astWCS. For coordinate axes to work, the
image and WCS should have been rotated such that East is at the left, North is at the top
(see e.g. L{astImages.clipRotatedImageSectionWCS}, or L{astImages.resampleToTanProjection}).
If imageData is given as a list in the format [r, g, b], a color RGB plot will be made. However,
in this case the cutLevels must be specified manually for each component as a list -
i.e. cutLevels = [[r min, r max], [g min, g max], [b min, b max]]. In this case of course, the
colorMap will be ignored. All r, g, b image arrays must have the same dimensions.
Set axesLabels = None to make a plot without coordinate axes plotted.
The axes can be marked in either sexagesimal or decimal celestial coordinates. If RATickSteps
or decTickSteps are set to "auto", the appropriate axis scales will be determined automatically
from the size of the image array and associated WCS. The tick step sizes can be overidden.
If the coordinate axes are in sexagesimal format a dictionary in the format {'deg', 'unit'} is
needed (see L{RA_TICK_STEPS} and L{DEC_TICK_STEPS} for examples). If the coordinate axes are in
decimal format, the tick step size is specified simply in RA, dec decimal degrees.
@type imageData: numpy array or list
@param imageData: image data array or list of numpy arrays [r, g, b]
@type imageWCS: astWCS.WCS
@param imageWCS: astWCS.WCS object
@type axes: list
@param axes: specifies where in the current figure to draw the finder chart (see pylab.axes)
@type cutLevels: list
@param cutLevels: sets the image scaling - available options:
- pixel values: cutLevels=[low value, high value].
- histogram equalisation: cutLevels=["histEq", number of bins ( e.g. 1024)]
- relative: cutLevels=["relative", cut per cent level (e.g. 99.5)]
- smart: cutLevels=["smart", cut per cent level (e.g. 99.5)]
["smart", 99.5] seems to provide good scaling over a range of different images.
Note that for RGB images, cut levels must be specified manually i.e. as a list:
[[r min, rmax], [g min, g max], [b min, b max]]
@type colorMapName: string
@param colorMapName: name of a standard matplotlib colormap, e.g. "hot", "cool", "gray"
etc. (do "help(pylab.colormaps)" in the Python interpreter to see available options)
@type title: string
@param title: optional title for the plot
@type axesLabels: string
@param axesLabels: either "sexagesimal" (for H:M:S, D:M:S), "decimal" (for decimal degrees)
or None (for no coordinate axes labels)
@type axesFontFamily: string
@param axesFontFamily: matplotlib fontfamily, e.g. 'serif', 'sans-serif' etc.
@type axesFontSize: float
@param axesFontSize: font size of axes labels and titles (in points)
@type colorBar: bool
@param colorBar: if True, plot a vertical color bar at the side of the image indicating the intensity
scale.
@type interpolation: string
@param interpolation: interpolation to apply to the image plot (see the documentation for
the matplotlib.pylab.imshow command)
"""
self.RADeg, self.decDeg=imageWCS.getCentreWCSCoords()
self.wcs=imageWCS
# Handle case where imageData is [r, g, b]
if type(imageData) == list:
if len(imageData) == 3:
if len(cutLevels) == 3:
r=astImages.normalise(imageData[0], cutLevels[0])
g=astImages.normalise(imageData[1], cutLevels[1])
b=astImages.normalise(imageData[2], cutLevels[2])
rgb=numpy.array([r.transpose(), g.transpose(), b.transpose()])
rgb=rgb.transpose()
self.data=rgb
self.rgbImage=True
else:
raise Exception("tried to create a RGB array, but cutLevels is not a list of 3 lists")
else:
raise Exception("tried to create a RGB array but imageData is not a list of 3 arrays")
else:
self.data=imageData
self.rgbImage=False
self.axes=pylab.axes(axes)
self.cutLevels=cutLevels
self.colorMapName=colorMapName
self.title=title
self.axesLabels=axesLabels
self.colorBar=colorBar
self.axesFontSize=axesFontSize
self.axesFontFamily=axesFontFamily
self.flipXAxis=False
self.flipYAxis=False
self.interpolation=interpolation
if self.axesLabels != None:
# Allow user to override the automatic coord tick spacing
if self.axesLabels == "sexagesimal":
if RATickSteps != "auto":
if type(RATickSteps) != dict or "deg" not in list(RATickSteps.keys()) \
or "unit" not in list(RATickSteps.keys()):
raise Exception("RATickSteps needs to be in format {'deg', 'unit'} for sexagesimal axes labels")
if decTickSteps != "auto":
if type(decTickSteps) != dict or "deg" not in list(decTickSteps.keys()) \
or "unit" not in list(decTickSteps.keys()):
raise Exception("decTickSteps needs to be in format {'deg', 'unit'} for sexagesimal axes labels")
elif self.axesLabels == "decimal":
if RATickSteps != "auto":
if type(RATickSteps) != float:
raise Exception("RATickSteps needs to be a float (if not 'auto') for decimal axes labels")
if decTickSteps != "auto":
if type(decTickSteps) != float:
raise Exception("decTickSteps needs to be a float (if not 'auto') for decimal axes labels")
self.RATickSteps=RATickSteps
self.decTickSteps=decTickSteps
self.calcWCSAxisLabels(axesLabels = self.axesLabels)
# this list stores objects to overplot, add to it using addPlotObjects()
self.plotObjects=[]
# this list stores image data to overlay as contours, add to it using addContourOverlay()
self.contourOverlays=[]
self.draw()
def draw(self):
"""Redraws the ImagePlot.
"""
pylab.axes(self.axes)
pylab.cla()
if self.title != None:
pylab.title(self.title)
try:
colorMap=pylab.cm.get_cmap(self.colorMapName)
except AssertionError:
raise Exception(self.colorMapName+"is not a defined matplotlib colormap.")
if self.rgbImage == False:
self.cutImage=astImages.intensityCutImage(self.data, self.cutLevels)
if self.cutLevels[0]=="histEq":
pylab.imshow(self.cutImage['image'], interpolation=self.interpolation, origin='lower', cmap=colorMap)
else:
pylab.imshow(self.cutImage['image'], interpolation=self.interpolation, norm=self.cutImage['norm'], \
origin='lower', cmap=colorMap)
else:
pylab.imshow(self.data, interpolation="bilinear", origin='lower')
if self.colorBar == True:
pylab.colorbar(shrink=0.8)
for c in self.contourOverlays:
pylab.contour(c['contourData']['scaledImage'], c['contourData']['contourLevels'],
colors=c['color'], linewidths=c['width'])
for p in self.plotObjects:
for x, y, l in zip(p['x'], p['y'], p['objLabels']):
if p['symbol'] == "circle":
c=patches.Circle((x, y), radius=p['sizePix']/2.0, fill=False, edgecolor=p['color'],
linewidth=p['width'])
self.axes.add_patch(c)
elif p['symbol'] == "box":
c=patches.Rectangle((x-p['sizePix']/2, y-p['sizePix']/2), p['sizePix'], p['sizePix'],
fill=False, edgecolor=p['color'], linewidth=p['width'])
self.axes.add_patch(c)
elif p['symbol'] == "cross":
pylab.plot([x-p['sizePix']/2, x+p['sizePix']/2], [y, y], linestyle='-',
linewidth=p['width'], color= p['color'])
pylab.plot([x, x], [y-p['sizePix']/2, y+p['sizePix']/2], linestyle='-',
linewidth=p['width'], color= p['color'])
elif p['symbol'] == "diamond":
c=patches.RegularPolygon([x, y], 4, radius=p['sizePix']/2, orientation=0,
edgecolor=p['color'], fill=False, linewidth=p['width'])
self.axes.add_patch(c)
if l != None:
pylab.text(x, y+p['sizePix']/1.5, l, horizontalalignment='center', \
fontsize=p['objLabelSize'], color=p['color'])
if p['symbol'] == "compass":
x=p['x'][0]
y=p['y'][0]
ra=p['RA'][0]
dec=p['dec'][0]
westPoint,eastPoint,southPoint,northPoint=astCoords.calcRADecSearchBox(ra, dec, p['sizeArcSec']/3600.0/2.0)
northPix=self.wcs.wcs2pix(ra, northPoint)
eastPix=self.wcs.wcs2pix(eastPoint, dec)
edx=eastPix[0]-x
edy=eastPix[1]-y
ndx=northPix[0]-x
ndy=northPix[1]-y
nArrow=patches.Arrow(x, y, ndx, ndy, edgecolor=p['color'], facecolor=p['color'], width=p['width'])
eArrow=patches.Arrow(x, y, edx, edy, edgecolor=p['color'], facecolor=p['color'], width=p['width'])
self.axes.add_patch(nArrow)
self.axes.add_patch(eArrow)
pylab.text(x+ndx+ndx*0.2, y+ndy+ndy*0.2, "N", horizontalalignment='center',
verticalalignment='center', fontsize=p['objLabelSize'], color=p['color'])
pylab.text(x+edx+edx*0.2, y+edy+edy*0.2, "E", horizontalalignment='center',
verticalalignment='center', fontsize=p['objLabelSize'], color=p['color'])
if p['symbol'] == "scaleBar":
x=p['x'][0]
y=p['y'][0]
ra=p['RA'][0]
dec=p['dec'][0]
westPoint,eastPoint,southPoint,northPoint=astCoords.calcRADecSearchBox(ra, dec, p['sizeArcSec']/3600.0/2.0)
northPix=self.wcs.wcs2pix(ra, northPoint)
eastPix=self.wcs.wcs2pix(eastPoint, dec)
edx=eastPix[0]-x
edy=eastPix[1]-y
ndx=northPix[0]-x
ndy=northPix[1]-y
if p['style'] == "arrows":
eArrow=patches.Arrow(x, y, edx, edy, edgecolor=p['color'], facecolor=p['color'], width=p['width'])
wArrow=patches.Arrow(x, y, -edx, edy, edgecolor=p['color'], facecolor=p['color'], width=p['width'])
self.axes.add_patch(eArrow)
self.axes.add_patch(wArrow)
elif p['style'] == "whiskers":
ewArrow=patches.FancyArrowPatch(posA = (x+edx, y), posB = (x-edx,y+edy), edgecolor=p['color'], facecolor=p['color'], linewidth = p['width'], arrowstyle = '|-|')
self.axes.add_patch(ewArrow)
# Work out label
if p['scaleBarLabel'] == None:
scaleLabel=None
if p['sizeArcSec'] < 60.0:
scaleLabel="%.0f %s" % (p['sizeArcSec'], DOUBLE_PRIME)
elif p['sizeArcSec'] >= 60.0 and p['sizeArcSec'] < 3600.0:
scaleLabel="%.0f %s" % (p['sizeArcSec']/60.0, PRIME)
else:
scaleLabel="%.0f %s" % (p['sizeArcSec']/3600.0, DEG)
else:
scaleLabel=p['scaleBarLabel']
pylab.text(x, y+0.025*self.data.shape[1], scaleLabel, horizontalalignment='center',
verticalalignment='center', fontsize=p['objLabelSize'], color=p['color'])
if self.axesLabels != None:
pylab.xticks(self.ticsRA[0], self.ticsRA[1], weight='normal', family=self.axesFontFamily, \
fontsize=self.axesFontSize)
pylab.yticks(self.ticsDec[0], self.ticsDec[1], weight='normal', family=self.axesFontFamily, \
fontsize=self.axesFontSize)
pylab.xlabel(self.RAAxisLabel, family=self.axesFontFamily, fontsize=self.axesFontSize)
pylab.ylabel(self.decAxisLabel, family=self.axesFontFamily, fontsize=self.axesFontSize)
else:
pylab.xticks([], [])
pylab.yticks([], [])
pylab.xlabel("")
pylab.ylabel("")
if self.flipXAxis == False:
pylab.xlim(0, self.data.shape[1]-1)
else:
pylab.xlim(self.data.shape[1]-1, 0)
if self.flipYAxis == False:
pylab.ylim(0, self.data.shape[0]-1)
else:
pylab.ylim(self.data.shape[0]-1, 0)
def addContourOverlay(self, contourImageData, contourWCS, tag, levels = ["linear", "min", "max", 5],
width = 1, color = "white", smooth = 0, highAccuracy = False):
"""Adds image data to the ImagePlot as a contour overlay. The contours can be removed using
L{removeContourOverlay}. If a contour overlay already exists with this tag, it will be replaced.
@type contourImageData: numpy array
@param contourImageData: image data array from which contours are to be generated
@type contourWCS: astWCS.WCS
@param contourWCS: astWCS.WCS object for the image to be contoured
@type tag: string
@param tag: identifying tag for this set of contours
@type levels: list
@param levels: sets the contour levels - available options:
- values: contourLevels=[list of values specifying each level]
- linear spacing: contourLevels=['linear', min level value, max level value, number
of levels] - can use "min", "max" to automatically set min, max levels from image data
- log spacing: contourLevels=['log', min level value, max level value, number of
levels] - can use "min", "max" to automatically set min, max levels from image data
@type width: int
@param width: width of the overlaid contours
@type color: string
@param color: color of the overlaid contours, specified by the name of a standard
matplotlib color, e.g., "black", "white", "cyan"
etc. (do "help(pylab.colors)" in the Python interpreter to see available options)
@type smooth: float
@param smooth: standard deviation (in arcsec) of Gaussian filter for
pre-smoothing of contour image data (set to 0 for no smoothing)
@type highAccuracy: bool
@param highAccuracy: if True, sample every corresponding pixel in each image; otherwise, sample
every nth pixel, where n = the ratio of the image scales.
"""
if self.rgbImage == True:
backgroundData=self.data[:,:,0]
else:
backgroundData=self.data
contourData=astImages.generateContourOverlay(backgroundData, self.wcs, contourImageData, \
contourWCS, levels, smooth, highAccuracy = highAccuracy)
alreadyGot=False
for c in self.contourOverlays:
if c['tag'] == tag:
c['contourData']=contourData
c['tag']=tag
c['color']=color
c['width']=width
alreadyGot=True
if alreadyGot == False:
self.contourOverlays.append({'contourData': contourData, 'tag': tag, 'color': color, \
'width': width})
self.draw()
def removeContourOverlay(self, tag):
"""Removes the contourOverlay from the ImagePlot corresponding to the tag.
@type tag: string
@param tag: tag for contour overlay in ImagePlot.contourOverlays to be removed
"""
index=0
for p in self.contourOverlays:
if p['tag'] == tag:
self.plotObjects.remove(self.plotObjects[index])
index=index+1
self.draw()
def addPlotObjects(self, objRAs, objDecs, tag, symbol="circle", size=4.0, width=1.0, color="yellow",
objLabels = None, objLabelSize = 12.0):
"""Add objects with RA, dec coords objRAs, objDecs to the ImagePlot. Only objects that fall within
the image boundaries will be plotted.
symbol specifies the type of symbol with which to mark the object in the image. The following
values are allowed:
- "circle"
- "box"
- "cross"
- "diamond"
size specifies the diameter in arcsec of the symbol (if plotSymbol == "circle"), or the width
of the box in arcsec (if plotSymbol == "box")
width specifies the thickness of the symbol lines in pixels
color can be any valid matplotlib color (e.g. "red", "green", etc.)
The objects can be removed from the plot by using removePlotObjects(), and then calling
draw(). If the ImagePlot already has a set of plotObjects with the same tag, they will be
replaced.
@type objRAs: numpy array or list
@param objRAs: object RA coords in decimal degrees
@type objDecs: numpy array or list
@param objDecs: corresponding object Dec. coords in decimal degrees
@type tag: string
@param tag: identifying tag for this set of objects
@type symbol: string
@param symbol: either "circle", "box", "cross", or "diamond"
@type size: float
@param size: size of symbols to plot (radius in arcsec, or width of box)
@type width: float
@param width: width of symbols in pixels
@type color: string
@param color: any valid matplotlib color string, e.g. "red", "green" etc.
@type objLabels: list
@param objLabels: text labels to plot next to objects in figure
@type objLabelSize: float
@param objLabelSize: size of font used for object labels (in points)
"""
pixCoords=self.wcs.wcs2pix(objRAs, objDecs)
xMax=self.data.shape[1]
yMax=self.data.shape[0]
if objLabels == None:
objLabels=[None]*len(objRAs)
xInPlot=[]
yInPlot=[]
RAInPlot=[]
decInPlot=[]
labelInPlot=[]
for p, r, d, l in zip(pixCoords, objRAs, objDecs, objLabels):
if p[0] >= 0 and p[0] < xMax and p[1] >= 0 and p[1] < yMax:
xInPlot.append(p[0])
yInPlot.append(p[1])
RAInPlot.append(r)
decInPlot.append(d)
labelInPlot.append(l)
xInPlot=numpy.array(xInPlot)
yInPlot=numpy.array(yInPlot)
RAInPlot=numpy.array(RAInPlot)
decInPlot=numpy.array(decInPlot)
# Size of symbols in pixels in plot - converted from arcsec
sizePix=(size/3600.0)/self.wcs.getPixelSizeDeg()
alreadyGot=False
for p in self.plotObjects:
if p['tag'] == tag:
p['x']=xInPlot
p['y']=yInPlot
p['RA']=RAInPlot
p['dec']=decInPlot
p['tag']=tag
p['objLabels']=objLabels
p['symbol']=symbol
p['sizePix']=sizePix
p['sizeArcSec']=size
p['width']=width
p['color']=color
p['objLabelSize']=objLabelSize
alreadyGot=True
if alreadyGot == False:
self.plotObjects.append({'x': xInPlot, 'y': yInPlot, 'RA': RAInPlot, 'dec': decInPlot,
'tag': tag, 'objLabels': labelInPlot, 'symbol': symbol,
'sizePix': sizePix, 'width': width, 'color': color,
'objLabelSize': objLabelSize, 'sizeArcSec': size})
self.draw()
def removePlotObjects(self, tag):
"""Removes the plotObjects from the ImagePlot corresponding to the tag. The plot must be redrawn
for the change to take effect.
@type tag: string
@param tag: tag for set of objects in ImagePlot.plotObjects to be removed
"""
index=0
for p in self.plotObjects:
if p['tag'] == tag:
self.plotObjects.remove(self.plotObjects[index])
index=index+1
self.draw()
def addCompass(self, location, sizeArcSec, color = "white", fontSize = 12, \
width = 20.0):
"""Adds a compass to the ImagePlot at the given location ('N', 'NE', 'E', 'SE', 'S',
'SW', 'W', or 'NW'). Note these aren't directions on the WCS coordinate grid, they are
relative positions on the plot - so N is top centre, NE is top right, SW is bottom right etc..
Alternatively, pixel coordinates (x, y) in the image can be given.
@type location: string or tuple
@param location: location in the plot where the compass is drawn:
- string: N, NE, E, SE, S, SW, W or NW
- tuple: (x, y)
@type sizeArcSec: float
@param sizeArcSec: length of the compass arrows on the plot in arc seconds
@type color: string
@param color: any valid matplotlib color string
@type fontSize: float
@param fontSize: size of font used to label N and E, in points
@type width: float
@param width: width of arrows used to mark compass
"""
if type(location) == str:
cRADeg, cDecDeg=self.wcs.getCentreWCSCoords()
RAMin, RAMax, decMin, decMax=self.wcs.getImageMinMaxWCSCoords()
westPoint,eastPoint,southPoint,northPoint=astCoords.calcRADecSearchBox(cRADeg, cDecDeg, sizeArcSec/3600.0/2.0)
sizeRADeg=eastPoint-westPoint
sizeDecDeg=northPoint-southPoint
xSizePix=(sizeArcSec/3600.0)/self.wcs.getXPixelSizeDeg()
ySizePix=(sizeArcSec/3600.0)/self.wcs.getYPixelSizeDeg()
X=self.data.shape[1]
Y=self.data.shape[0]
xBufferPix=0.5*xSizePix
yBufferPix=0.5*ySizePix
cx, cy=self.wcs.wcs2pix(cRADeg, cDecDeg)
foundLocation=False
x=cy
y=cx
if self.wcs.isFlipped() == False:
if location.find("N") != -1:
y=Y-2*yBufferPix
foundLocation=True
if location.find("S") != -1:
y=yBufferPix
foundLocation=True
if location.find("E") != -1:
x=xBufferPix*2
foundLocation=True
if location.find("W") != -1:
x=X-xBufferPix
foundLocation=True
else:
if location.find("S") != -1:
y=Y-2*yBufferPix
foundLocation=True
if location.find("N") != -1:
y=yBufferPix
foundLocation=True
if location.find("W") != -1:
x=xBufferPix*2
foundLocation=True
if location.find("E") != -1:
x=X-xBufferPix
foundLocation=True
if foundLocation == False:
raise Exception("didn't understand location string for scale bar (should be e.g. N, S, E, W).")
RADeg, decDeg=self.wcs.pix2wcs(x, y)
elif type(location) == tuple or type(location) == list:
x, y=location
RADeg, decDeg=self.wcs.pix2wcs(x, y)
else:
raise Exception("didn't understand location for scale bar - should be string or tuple.")
alreadyGot=False
for p in self.plotObjects:
if p['tag'] == "compass":
p['x']=[x]
p['y']=[y]
p['RA']=[RADeg]
p['dec']=[decDeg]
p['tag']="compass"
p['objLabels']=[None]
p['symbol']="compass"
p['sizeArcSec']=sizeArcSec
p['width']=width
p['color']=color
p['objLabelSize']=fontSize
alreadyGot=True
if alreadyGot == False:
self.plotObjects.append({'x': [x], 'y': [y], 'RA': [RADeg], 'dec': [decDeg],
'tag': "compass", 'objLabels': [None], 'symbol': "compass",
'width': width, 'color': color,
'objLabelSize': fontSize, 'sizeArcSec': sizeArcSec})
self.draw()
def addScaleBar(self, location, sizeArcSec, color = "white", fontSize = 12, \
width = 20.0, label = None, style = "whiskers"):
"""Adds a scale bar to the ImagePlot at the given location ('N', 'NE', 'E', 'SE', 'S',
'SW', 'W', or 'NW'). Note these aren't directions on the WCS coordinate grid, they are
relative positions on the plot - so N is top centre, NE is top right, SW is bottom right etc..
Alternatively, pixel coordinates (x, y) in the image can be given.
@type location: string or tuple
@param location: location in the plot where the compass is drawn:
- string: N, NE, E, SE, S, SW, W or NW
- tuple: (x, y)
@type sizeArcSec: float
@param sizeArcSec: scale length to indicate on the plot in arc seconds
@type color: string
@param color: any valid matplotlib color string
@type fontSize: float
@param fontSize: size of font used to label N and E, in points
@type width: float
@param width: width of arrow used to mark scale
@type label: string
@param label: overrides the displayed label if not None (if None, label is the angular size)
@type style: string
@param style: either "whiskers" or "arrows"
"""
# Work out where the scale bar is going in WCS coords from the relative location given
if type(location) == str:
cRADeg, cDecDeg=self.wcs.getCentreWCSCoords()
RAMin, RAMax, decMin, decMax=self.wcs.getImageMinMaxWCSCoords()
westPoint,eastPoint,southPoint,northPoint=astCoords.calcRADecSearchBox(cRADeg, cDecDeg, sizeArcSec/3600.0/2.0)
sizeRADeg=eastPoint-westPoint
sizeDecDeg=northPoint-southPoint
xSizePix=(sizeArcSec/3600.0)/self.wcs.getXPixelSizeDeg()
ySizePix=(sizeArcSec/3600.0)/self.wcs.getYPixelSizeDeg()
X=self.data.shape[1]
Y=self.data.shape[0]
xBufferPix=0.6*ySizePix
yBufferPix=0.05*Y
cx, cy=self.wcs.wcs2pix(cRADeg, cDecDeg)
foundLocation=False
x=cy
y=cx
if self.wcs.isFlipped() == False:
if location.find("N") != -1:
y=Y-1.5*yBufferPix
foundLocation=True
if location.find("S") != -1:
y=yBufferPix
foundLocation=True
if location.find("E") != -1:
x=xBufferPix
foundLocation=True
if location.find("W") != -1:
x=X-xBufferPix
foundLocation=True
else:
if location.find("S") != -1:
y=Y-1.5*yBufferPix
foundLocation=True
if location.find("N") != -1:
y=yBufferPix
foundLocation=True
if location.find("W") != -1:
x=xBufferPix
foundLocation=True
if location.find("E") != -1:
x=X-xBufferPix
foundLocation=True
if foundLocation == False:
raise Exception("didn't understand location string for scale bar (should be e.g. N, S, E, W).")
RADeg, decDeg=self.wcs.pix2wcs(x, y)
elif type(location) == tuple or type(location) == list:
x, y=location
RADeg, decDeg=self.wcs.pix2wcs(x, y)
else:
raise Exception("didn't understand location for scale bar - should be string or tuple.")
alreadyGot=False
for p in self.plotObjects:
if p['tag'] == "scaleBar":
p['x']=[x]
p['y']=[y]
p['RA']=[RADeg]
p['dec']=[decDeg]
p['tag']="scaleBar"
p['objLabels']=[None]
p['symbol']="scaleBar"
p['sizeArcSec']=sizeArcSec
p['width']=width
p['color']=color
p['objLabelSize']=fontSize
p['scaleBarLabel']=label
p['style']=style
alreadyGot=True
if alreadyGot == False:
self.plotObjects.append({'x': [x], 'y': [y], 'RA': [RADeg], 'dec': [decDeg],
'tag': "scaleBar", 'objLabels': [None], 'symbol': "scaleBar",
'width': width, 'color': color,
'objLabelSize': fontSize, 'sizeArcSec': sizeArcSec,
'scaleBarLabel': label, 'style': style})
self.draw()
def calcWCSAxisLabels(self, axesLabels = "decimal"):
"""This function calculates the positions of coordinate labels for the RA and Dec axes of the
ImagePlot. The tick steps are calculated automatically unless self.RATickSteps,
self.decTickSteps are set to values other than "auto" (see L{ImagePlot.__init__}).
The ImagePlot must be redrawn for changes to be applied.
@type axesLabels: string
@param axesLabels: either "sexagesimal" (for H:M:S, D:M:S), "decimal" (for decimal degrees),
or None for no coordinate axes labels
"""
# Label equinox on axes
equinox=self.wcs.getEquinox()
if equinox<1984:
equinoxLabel="B"+str(int(equinox))
else:
equinoxLabel="J"+str(int(equinox))
self.axesLabels=axesLabels
ticsDict=self.getTickSteps()
# Manual override - note: no minor tick marks anymore, but may want to bring them back
if self.RATickSteps != "auto":
ticsDict['major']['RA']=self.RATickSteps
if self.decTickSteps != "auto":
ticsDict['major']['dec']=self.decTickSteps
RALocs=[]
decLocs=[]
RALabels=[]
decLabels=[]
key="major"
#for key in ticsDict.keys(): # key is major or minor
if self.axesLabels == "sexagesimal":
self.RAAxisLabel="R.A. ("+equinoxLabel+")"
self.decAxisLabel="Dec. ("+equinoxLabel+")"
RADegStep=ticsDict[key]['RA']['deg']
decDegStep=ticsDict[key]['dec']['deg']
elif self.axesLabels == "decimal":
self.RAAxisLabel="R.A. Degrees ("+equinoxLabel+")"
self.decAxisLabel="Dec. Degrees ("+equinoxLabel+")"
RADegStep=ticsDict[key]['RA']
decDegStep=ticsDict[key]['dec']
else:
raise Exception("axesLabels must be either 'sexagesimal' or 'decimal'")
xArray=numpy.arange(0, self.data.shape[1], 1)
yArray=numpy.arange(0, self.data.shape[0], 1)
xWCS=self.wcs.pix2wcs(xArray, numpy.zeros(xArray.shape[0], dtype=float))
yWCS=self.wcs.pix2wcs(numpy.zeros(yArray.shape[0], dtype=float), yArray)
xWCS=numpy.array(xWCS)
yWCS=numpy.array(yWCS)
ras=xWCS[:,0]
decs=yWCS[:,1]
RAEdges=numpy.array([ras[0], ras[-1]])
RAMin=RAEdges.min()
RAMax=RAEdges.max()
decMin=decs.min()
decMax=decs.max()
# Work out if wrapped around
midRAPix, midDecPix=self.wcs.wcs2pix((RAEdges[1]+RAEdges[0])/2.0, (decMax+decMin)/2.0)
if midRAPix < 0 or midRAPix > self.wcs.header['NAXIS1']:
wrappedRA=True
else:
wrappedRA=False
# Note RA, dec work in opposite sense below because E at left
if ras[1] < ras[0]:
self.flipXAxis=False
ra2x=interpolate.interp1d(ras[::-1], xArray[::-1], kind='linear')
else:
self.flipXAxis=True
ra2x=interpolate.interp1d(ras, xArray, kind='linear')
if decs[1] < decs[0]:
self.flipYAxis=True
dec2y=interpolate.interp1d(decs[::-1], yArray[::-1], kind='linear')
else:
self.flipYAxis=False
dec2y=interpolate.interp1d(decs, yArray, kind='linear')
if wrappedRA == False:
RAPlotMin=RADegStep*math.modf(RAMin/RADegStep)[1]
RAPlotMax=RADegStep*math.modf(RAMax/RADegStep)[1]
if RAPlotMin < RAMin:
RAPlotMin=RAPlotMin+RADegStep
if RAPlotMax >= RAMax:
RAPlotMax=RAPlotMax-RADegStep
RADegs=numpy.arange(RAPlotMin, RAPlotMax+0.0001, RADegStep)
else:
RAPlotMin=RADegStep*math.modf(RAMin/RADegStep)[1]
RAPlotMax=RADegStep*math.modf(RAMax/RADegStep)[1]
if RAPlotMin > RAMin:
RAPlotMin=RAPlotMin-RADegStep
if RAPlotMax <= RAMax:
RAPlotMax=RAPlotMax+RADegStep
for i in range(ras.shape[0]):
if ras[i] >= RAMax and ras[i] <= 360.0:
ras[i]=ras[i]-360.0
if ras[1] < ras[0]:
ra2x=interpolate.interp1d(ras[::-1], xArray[::-1], kind='linear')
else:
ra2x=interpolate.interp1d(ras, xArray, kind='linear')
RADegs=numpy.arange(RAPlotMin, RAPlotMax-360.0-0.0001, -RADegStep)
decPlotMin=decDegStep*math.modf(decMin/decDegStep)[1]
decPlotMax=decDegStep*math.modf(decMax/decDegStep)[1]
if decPlotMin < decMin:
decPlotMin=decPlotMin+decDegStep
if decPlotMax >= decMax:
decPlotMax=decPlotMax-decDegStep
decDegs=numpy.arange(decPlotMin, decPlotMax+0.0001, decDegStep)
if key == "major":
if axesLabels == "sexagesimal":
for r in RADegs:
if r < 0:
r=r+360.0
h, m, s=astCoords.decimal2hms(r, ":").split(":")
hInt=int(round(float(h)))
if ticsDict[key]['RA']['unit'] == 'h' and (60.0-float(m)) < 0.01: # Check for rounding error
hInt=hInt+1
if hInt < 10:
hString="0"+str(hInt)
else:
hString=str(hInt)
mInt=int(round(float(m)))
if ticsDict[key]['RA']['unit'] == 'm' and (60.0-float(s)) < 0.01: # Check for rounding error
mInt=mInt+1
if mInt < 10:
mString="0"+str(mInt)
else:
mString=str(mInt)
sInt=int(round(float(s)))
if sInt < 10:
sString="0"+str(sInt)
else:
sString=str(sInt)
if ticsDict[key]['RA']['unit'] == 'h':
rString=hString+"$^{\sf{h}}$"
elif ticsDict[key]['RA']['unit'] == 'm':
rString=hString+"$^{\sf{h}}$"+mString+"$^{\sf{m}}$"
else:
rString=hString+"$^{\sf{h}}$"+mString+"$^{\sf{m}}$"+sString+"$^{\sf{s}}$"
RALabels.append(rString)
for D in decDegs:
d, m, s=astCoords.decimal2dms(D, ":").split(":")
dInt=int(round(float(d)))
if ticsDict[key]['dec']['unit'] == 'd' and (60.0-float(m)) < 0.01: # Check for rounding error
dInt=dInt+1
if dInt < 10 and dInt >= 0 and D > 0:
dString="+0"+str(dInt)
elif dInt > -10 and dInt <= 0 and D < 0:
dString="-0"+str(abs(dInt))
elif dInt >= 10:
dString="+"+str(dInt)
else:
dString=str(dInt)
mInt=int(round(float(m)))
if ticsDict[key]['dec']['unit'] == 'm' and (60.0-float(s)) < 0.01: # Check for rounding error
mInt=mInt+1
if mInt < 10:
mString="0"+str(mInt)
else:
mString=str(mInt)
sInt=int(round(float(s)))
if sInt < 10:
sString="0"+str(sInt)
else:
sString=str(sInt)
if ticsDict[key]['dec']['unit'] == 'd':
dString=dString+DEG
elif ticsDict[key]['dec']['unit'] == 'm':
dString=dString+DEG+mString+PRIME
else:
dString=dString+DEG+mString+PRIME+sString+DOUBLE_PRIME
decLabels.append(dString)
elif axesLabels == "decimal":
if wrappedRA == False:
RALabels=RALabels+RADegs.tolist()
else:
nonNegativeLabels=[]
for r in RADegs:
if r < 0:
r=r+360.0
nonNegativeLabels.append(r)
RALabels=RALabels+nonNegativeLabels
decLabels=decLabels+decDegs.tolist()
# Format RALabels, decLabels to same number of d.p.
dpNumRA=len(str(ticsDict['major']['RA']).split(".")[-1])
dpNumDec=len(str(ticsDict['major']['dec']).split(".")[-1])
for i in range(len(RALabels)):
fString="%."+str(dpNumRA)+"f"
RALabels[i]=fString % (RALabels[i])
for i in range(len(decLabels)):
fString="%."+str(dpNumDec)+"f"
decLabels[i]=fString % (decLabels[i])
if key == 'minor':
RALabels=RALabels+RADegs.shape[0]*['']
decLabels=decLabels+decDegs.shape[0]*['']
RALocs=RALocs+ra2x(RADegs).tolist()
decLocs=decLocs+dec2y(decDegs).tolist()
self.ticsRA=[RALocs, RALabels]
self.ticsDec=[decLocs, decLabels]
def save(self, fileName):
"""Saves the ImagePlot in any format that matplotlib can understand, as determined from the
fileName extension.
@type fileName: string
@param fileName: path where plot will be written
"""
pylab.draw()
pylab.savefig(fileName)
def getTickSteps(self):
"""Chooses the appropriate WCS coordinate tick steps for the plot based on its size.
Whether the ticks are decimal or sexagesimal is set by self.axesLabels.
Note: minor ticks not used at the moment.
@rtype: dictionary
@return: tick step sizes for major, minor plot ticks, in format {'major', 'minor'}
"""
# Aim for 5 major tick marks on a plot
xArray=numpy.arange(0, self.data.shape[1], 1)
yArray=numpy.arange(0, self.data.shape[0], 1)
xWCS=self.wcs.pix2wcs(xArray, numpy.zeros(xArray.shape[0], dtype=float))
yWCS=self.wcs.pix2wcs(numpy.zeros(yArray.shape[0], dtype=float), yArray)
xWCS=numpy.array(xWCS)
yWCS=numpy.array(yWCS)
ras=xWCS[:,0]
decs=yWCS[:,1]
RAEdges=numpy.array([ras[0], ras[-1]])
RAMin=RAEdges.min()
RAMax=RAEdges.max()
decMin=decs.min()
decMax=decs.max()
# Work out if wrapped around
midRAPix, midDecPix=self.wcs.wcs2pix((RAEdges[1]+RAEdges[0])/2.0, (decMax+decMin)/2.0)
if midRAPix < 0 or midRAPix > self.wcs.header['NAXIS1']:
wrappedRA=True
else:
wrappedRA=False
if wrappedRA == False:
RAWidthDeg=RAMax-RAMin
else:
RAWidthDeg=(360.0-RAMax)+RAMin
decHeightDeg=decMax-decMin
ticsDict={}
ticsDict['major']={}
ticsDict['minor']={}
if self.axesLabels == "sexagesimal":
matchIndex = 0
for i in range(len(RA_TICK_STEPS)):
if RAWidthDeg/2.5 > RA_TICK_STEPS[i]['deg']:
matchIndex = i
ticsDict['major']['RA']=RA_TICK_STEPS[matchIndex]
ticsDict['minor']['RA']=RA_TICK_STEPS[matchIndex-1]
matchIndex = 0
for i in range(len(DEC_TICK_STEPS)):
if decHeightDeg/2.5 > DEC_TICK_STEPS[i]['deg']:
matchIndex = i
ticsDict['major']['dec']=DEC_TICK_STEPS[matchIndex]
ticsDict['minor']['dec']=DEC_TICK_STEPS[matchIndex-1]
return ticsDict
elif self.axesLabels == "decimal":
matchIndex = 0
for i in range(len(DECIMAL_TICK_STEPS)):
if RAWidthDeg/2.5 > DECIMAL_TICK_STEPS[i]:
matchIndex = i
ticsDict['major']['RA']=DECIMAL_TICK_STEPS[matchIndex]
ticsDict['minor']['RA']=DECIMAL_TICK_STEPS[matchIndex-1]
matchIndex = 0
for i in range(len(DECIMAL_TICK_STEPS)):
if decHeightDeg/2.5 > DECIMAL_TICK_STEPS[i]:
matchIndex = i
ticsDict['major']['dec']=DECIMAL_TICK_STEPS[matchIndex]
ticsDict['minor']['dec']=DECIMAL_TICK_STEPS[matchIndex-1]
return ticsDict
else:
raise Exception("axesLabels must be either 'sexagesimal' or 'decimal'")
|