This file is indexed.

/usr/lib/python3/dist-packages/astLib/astSED.py is in python3-astlib 0.10.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
"""module for performing calculations on Spectral Energy Distributions (SEDs)

(c) 2007-2013 Matt Hilton 

U{http://astlib.sourceforge.net}

This module provides classes for manipulating SEDs, in particular the Bruzual & Charlot 2003, Maraston
2005, and Percival et al 2009 stellar population synthesis models are currently supported. Functions are 
provided for calculating the evolution of colours and magnitudes in these models with redshift etc., and 
for fitting broadband photometry using these models.

@var VEGA: The SED of Vega, used for calculation of magnitudes on the Vega system.
@type VEGA: L{SED} object
@var AB: Flat spectrum SED, used for calculation of magnitudes on the AB system.
@type AB: L{SED} object
@var SOL: The SED of the Sun.
@type SOL: L{SED} object

"""

#------------------------------------------------------------------------------------------------------------
import sys
import numpy
import math
import operator
try:
    from scipy import interpolate
    from scipy import ndimage
    from scipy import optimize
except:
    print("WARNING: astSED: failed to import scipy modules - some functions will not work.")
import astLib
from astLib import astCalc
import os
try:
    import matplotlib
    from matplotlib import pylab
    matplotlib.interactive(False)
except:
    print("WARNING: astSED: failed to import matplotlib - some functions will not work.")
import glob

#------------------------------------------------------------------------------------------------------------
class Passband:
    """This class describes a filter transmission curve. Passband objects are created by loading data from
    from text files containing wavelength in angstroms in the first column, relative transmission efficiency
    in the second column (whitespace delimited). For example, to create a Passband object for the 2MASS J 
    filter:
    
    passband=astSED.Passband("J_2MASS.res")
    
    where "J_2MASS.res" is a file in the current working directory that describes the filter.
    
    Wavelength units can be specified as 'angstroms', 'nanometres' or 'microns'; if either of the latter,
    they will be converted to angstroms.
    
    """
    def __init__(self, fileName, normalise = True, inputUnits = 'angstroms', wavelengthColumn = 0, transmissionColumn = 1):
        
        inFile=open(fileName, "r")
        lines=inFile.readlines()
        
        wavelength=[]
        transmission=[]
        for line in lines:
            
            if line[0] != "#" and len(line) > 3:
    
                bits=line.split()
                transmission.append(float(bits[transmissionColumn]))
                wavelength.append(float(bits[wavelengthColumn]))
            
        self.wavelength=numpy.array(wavelength)
        self.transmission=numpy.array(transmission)
        
        if inputUnits == 'angstroms':
            pass
        elif inputUnits == 'nanometres':
            self.wavelength=self.wavelength*10.0
        elif inputUnits == 'microns':
            self.wavelength=self.wavelength*10000.0
        elif inputUnits == 'mm':
            self.wavelength=self.wavelength*1e7
        elif inputUnits == 'GHz':
            self.wavelength=3e8/(self.wavelength*1e9)
            self.wavelength=self.wavelength*1e10
        else:
            raise Exception("didn't understand passband input units")
    
        # Sort into ascending order of wavelength otherwise normalisation will be wrong
        merged=numpy.array([self.wavelength, self.transmission]).transpose()
        sortedMerged=numpy.array(sorted(merged, key=operator.itemgetter(0)))
        self.wavelength=sortedMerged[:, 0]
        self.transmission=sortedMerged[:, 1]
        
        if normalise == True:
            self.transmission=self.transmission/numpy.trapz(self.transmission, self.wavelength)
        
        # Store a ready-to-go interpolation object to speed calculation of fluxes up
        self.interpolator=interpolate.interp1d(self.wavelength, self.transmission, kind='linear')

    def asList(self):
        """Returns a two dimensional list of [wavelength, transmission], suitable for plotting by gnuplot.
        
        @rtype: list
        @return: list in format [wavelength, transmission]
        
        """
        
        listData=[]
        for l, f in zip(self.wavelength, self.transmission):
            listData.append([l, f])
        
        return listData
    
    def rescale(self, maxTransmission):
        """Rescales the passband so that maximum value of the transmission is equal to maxTransmission.
        Useful for plotting.
        
        @type maxTransmission: float
        @param maxTransmission: maximum value of rescaled transmission curve
        
        """
        
        self.transmission=self.transmission*(maxTransmission/self.transmission.max())

    def plot(self, xmin = 'min', xmax = 'max', maxTransmission = None):
        """Plots the passband, rescaling the maximum of the tranmission curve to maxTransmission if
        required.
        
        @type xmin: float or 'min'
        @param xmin: minimum of the wavelength range of the plot
        @type xmax: float or 'max'
        @param xmax: maximum of the wavelength range of the plot
        @type maxTransmission: float
        @param maxTransmission: maximum value of rescaled transmission curve
        
        """
        
        if maxTransmission != None:
            self.rescale(maxTransmission)
        
        pylab.matplotlib.interactive(True)
        pylab.plot(self.wavelength, self.transmission)
        
        if xmin == 'min':
            xmin=self.wavelength.min()
        if xmax == 'max':
            xmax=self.wavelength.max()
            
        pylab.xlim(xmin, xmax)
        pylab.xlabel("Wavelength")
        pylab.ylabel("Relative Flux")

    def effectiveWavelength(self):
        """Calculates effective wavelength for the passband. This is the same as equation (3) of
        Carter et al. 2009.
        
        @rtype: float
        @return: effective wavelength of the passband, in Angstroms
        
        """
        
        a=numpy.trapz(self.transmission*self.wavelength, self.wavelength)
        b=numpy.trapz(self.transmission/self.wavelength, self.wavelength)
        effWavelength=numpy.sqrt(a/b)
        
        return effWavelength

#------------------------------------------------------------------------------------------------------------
class TopHatPassband(Passband):
    """This class generates a passband with a top hat response between the given wavelengths.
    
    """
    
    def __init__(self, wavelengthMin, wavelengthMax, normalise = True):
        """Generates a passband object with top hat response between wavelengthMin, wavelengthMax.
        Units are assumed to be Angstroms.
        
        @type wavelengthMin: float
        @param wavelengthMin: minimum of the wavelength range of the passband
        @type wavelengthMax: float
        @param wavelengthMax: maximum of the wavelength range of the passband
        @type normalise: bool
        @param normalise: if True, scale such that total area under the passband over the wavelength 
        range is 1.
        
        """
        
        self.wavelength=numpy.arange(wavelengthMin, wavelengthMax+10, 10, dtype = float)
        self.transmission=numpy.ones(self.wavelength.shape, dtype = float)
        
        if normalise == True:
            self.transmission=self.transmission/numpy.trapz(self.transmission, self.wavelength)
        
        # Store a ready-to-go interpolation object to speed calculation of fluxes up
        self.interpolator=interpolate.interp1d(self.wavelength, self.transmission, kind='linear')
        
    
#------------------------------------------------------------------------------------------------------------
class SED:
    """This class describes a Spectral Energy Distribution (SED).
     
    To create a SED object, lists (or numpy arrays) of wavelength and relative flux must be provided. The SED
    can optionally be redshifted. The wavelength units of SEDs are assumed to be Angstroms - flux 
    calculations using Passband and SED objects specified with different wavelength units will be incorrect.
    
    The L{StellarPopulation} class (and derivatives) can be used to extract SEDs for specified ages from e.g.
    the Bruzual & Charlot 2003 or Maraston 2005 models.
    
    """
    
    def __init__(self, wavelength = [], flux = [], z = 0.0, ageGyr = None, normalise = False, label = None):
        
        # We keep a copy of the wavelength, flux at z = 0, as it's more robust to copy that
        # to self.wavelength, flux and redshift it, rather than repeatedly redshifting the same
        # arrays back and forth
        self.z0wavelength=numpy.array(wavelength)
        self.z0flux=numpy.array(flux)
        self.wavelength=numpy.array(wavelength)
        self.flux=numpy.array(flux)
        self.z=z
        self.label=label    # plain text label, handy for using in photo-z codes
        
        # Store the intrinsic (i.e. unextincted) flux in case we change extinction
        self.EBMinusV=0.0
        self.intrinsic_z0flux=numpy.array(flux)
        
        if normalise == True:
            self.normalise()
            
        if z != 0.0:
            self.redshift(z)

        self.ageGyr=ageGyr


    def copy(self):
        """Copies the SED, returning a new SED object
        
        @rtype: L{SED} object
        @return: SED
        
        """
        
        newSED=SED(wavelength = self.z0wavelength, flux = self.z0flux, z = self.z, ageGyr = self.ageGyr, 
                   normalise = False, label = self.label)
        
        return newSED
        
        
    def loadFromFile(self, fileName):
        """Loads SED from a white space delimited file in the format wavelength, flux. Lines beginning with
        # are ignored.
        
        @type fileName: string
        @param fileName: path to file containing wavelength, flux data
        
        """
        
        inFile=open(fileName, "r")
        lines=inFile.readlines()
        inFile.close()
        wavelength=[]
        flux=[]
        wholeLines=[]
        for line in lines:
            if line[0] != "#" and len(line) > 3:
                bits=line.split()
                wavelength.append(float(bits[0]))
                flux.append(float(bits[1]))
        
        # Sort SED so wavelength is in ascending order
        if wavelength[0] > wavelength[-1]:
            wavelength.reverse()
            flux.reverse()
        
        self.z0wavelength=numpy.array(wavelength)
        self.z0flux=numpy.array(flux)
        self.wavelength=numpy.array(wavelength)
        self.flux=numpy.array(flux)

    def writeToFile(self, fileName):
        """Writes SED to a white space delimited file in the format wavelength, flux.
        
        @type fileName: string
        @param fileName: path to file
        
        """
        
        outFile=open(fileName, "w")
        for l, f in zip(self.wavelength, self.flux):
            outFile.write(str(l)+" "+str(f)+"\n")
        outFile.close()
    
    def asList(self):
        """Returns a two dimensional list of [wavelength, flux], suitable for plotting by gnuplot.
        
        @rtype: list
        @return: list in format [wavelength, flux]
        
        """
        
        listData=[]
        for l, f in zip(self.wavelength, self.flux):
            listData.append([l, f])
        
        return listData
        
    def plot(self, xmin = 'min', xmax = 'max'):
        """Produces a simple (wavelength, flux) plot of the SED.
        
        @type xmin: float or 'min'
        @param xmin: minimum of the wavelength range of the plot
        @type xmax: float or 'max'
        @param xmax: maximum of the wavelength range of the plot
        
        """
        
        pylab.matplotlib.interactive(True)
        pylab.plot(self.wavelength, self.flux)
        
        if xmin == 'min':
            xmin=self.wavelength.min()
        if xmax == 'max':
            xmax=self.wavelength.max()
        
        # Sensible y scale
        plotMask=numpy.logical_and(numpy.greater(self.wavelength, xmin), numpy.less(self.wavelength, xmax))
        plotMax=self.flux[plotMask].max()
        pylab.ylim(0, plotMax*1.1)
        pylab.xlim(xmin, xmax)
        pylab.xlabel("Wavelength")
        pylab.ylabel("Relative Flux")
    
    def integrate(self, wavelengthMin = 'min', wavelengthMax = 'max'):
        """Calculates flux in SED within given wavelength range.
        
        @type wavelengthMin: float or 'min'
        @param wavelengthMin: minimum of the wavelength range
        @type wavelengthMax: float or 'max'
        @param wavelengthMax: maximum of the wavelength range
        @rtype: float
        @return: relative flux
        
        """

        if wavelengthMin == 'min':
            wavelengthMin=self.wavelength.min()
        if wavelengthMax == 'max':
            wavelengthMax=self.wavelength.max()
        
        mask=numpy.logical_and(numpy.greater(self.wavelength, wavelengthMin), \
                               numpy.less(self.wavelength, wavelengthMax))
        flux=numpy.trapz(self.flux[mask], self.wavelength[mask])
        
        return flux
        
    def smooth(self, smoothPix):
        """Smooths SED.flux with a uniform (boxcar) filter of width smoothPix. Cannot be undone.
        
        @type smoothPix: int
        @param smoothPix: size of uniform filter applied to SED, in pixels
        
        """
        smoothed=ndimage.uniform_filter1d(self.flux, smoothPix)
        self.flux=smoothed
    
    def redshift(self, z):
        """Redshifts the SED to redshift z.
        
        @type z: float
        @param z: redshift
        
        """
        
        # We have to conserve energy so the area under the redshifted SED has to be equal to
        # the area under the unredshifted SED, otherwise magnitude calculations will be wrong
        # when comparing SEDs at different zs
        self.wavelength=numpy.zeros(self.z0wavelength.shape[0])
        self.flux=numpy.zeros(self.z0flux.shape[0])
        self.wavelength=self.wavelength+self.z0wavelength
        self.flux=self.flux+self.z0flux
        
        z0TotalFlux=numpy.trapz(self.z0wavelength, self.z0flux)
        self.wavelength=self.wavelength*(1.0+z)
        zTotalFlux=numpy.trapz(self.wavelength, self.flux)
        self.flux=self.flux*(z0TotalFlux/zTotalFlux)
        self.z=z
        
    def normalise(self, minWavelength = 'min', maxWavelength = 'max'):
        """Normalises the SED such that the area under the specified wavelength range is equal to 1.
        
        @type minWavelength: float or 'min'
        @param minWavelength: minimum wavelength of range over which to normalise SED
        @type maxWavelength: float or 'max'
        @param maxWavelength: maximum wavelength of range over which to normalise SED
        
        """
        if minWavelength == 'min':
            minWavelength=self.wavelength.min()
        if maxWavelength == 'max':
            maxWavelength=self.wavelength.max()
            
        lowCut=numpy.greater(self.wavelength, minWavelength)
        highCut=numpy.less(self.wavelength, maxWavelength)
        totalCut=numpy.logical_and(lowCut, highCut)
        sedFluxSlice=self.flux[totalCut]
        sedWavelengthSlice=self.wavelength[totalCut]
        
        self.flux=self.flux/numpy.trapz(abs(sedFluxSlice), sedWavelengthSlice)#self.wavelength)

    def normaliseToMag(self, ABMag, passband):
        """Normalises the SED to match the flux equivalent to the given AB magnitude in the given passband.
        
        @type ABMag: float
        @param ABMag: AB magnitude to which the SED is to be normalised at the given passband
        @type passband: an L{Passband} object
        @param passband: passband at which normalisation to AB magnitude is calculated
        
        """
        
        magFlux=mag2Flux(ABMag, 0.0, passband)
        sedFlux=self.calcFlux(passband)
        norm=magFlux[0]/sedFlux
        self.flux=self.flux*norm
        self.z0flux=self.z0flux*norm
        
    def matchFlux(self, matchSED, minWavelength, maxWavelength):
        """Matches the flux in the wavelength range given by minWavelength, maxWavelength to the
        flux in the same region in matchSED. Useful for plotting purposes.
        
        @type matchSED: L{SED} object
        @param matchSED: SED to match flux to
        @type minWavelength: float
        @param minWavelength: minimum of range in which to match flux of current SED to matchSED
        @type maxWavelength: float
        @param maxWavelength: maximum of range in which to match flux of current SED to matchSED
        
        """
        
        interpMatch=interpolate.interp1d(matchSED.wavelength, matchSED.flux, kind='linear')
        interpSelf=interpolate.interp1d(self.wavelength, self.flux, kind='linear')
        
        wavelengthRange=numpy.arange(minWavelength, maxWavelength, 5.0)
        
        matchFlux=numpy.trapz(interpMatch(wavelengthRange), wavelengthRange)
        selfFlux=numpy.trapz(interpSelf(wavelengthRange), wavelengthRange)
        
        self.flux=self.flux*(matchFlux/selfFlux)

        
    def calcFlux(self, passband):
        """Calculates flux in the given passband.
        
        @type passband: L{Passband} object
        @param passband: filter passband through which to calculate the flux from the SED
        @rtype: float
        @return: flux
        
        """
        lowCut=numpy.greater(self.wavelength, passband.wavelength.min())
        highCut=numpy.less(self.wavelength, passband.wavelength.max())
        totalCut=numpy.logical_and(lowCut, highCut)
        sedFluxSlice=self.flux[totalCut]
        sedWavelengthSlice=self.wavelength[totalCut]
    
        # Use linear interpolation to rebin the passband to the same dimensions as the 
        # part of the SED we're interested in
        sedInBand=passband.interpolator(sedWavelengthSlice)*sedFluxSlice   
        totalFlux=numpy.trapz(sedInBand*sedWavelengthSlice, sedWavelengthSlice)        
        totalFlux=totalFlux/numpy.trapz(passband.interpolator(sedWavelengthSlice)\
                            *sedWavelengthSlice, sedWavelengthSlice)
                            
        return totalFlux      
    
    def calcMag(self, passband, addDistanceModulus = True, magType = "Vega"):
        """Calculates magnitude in the given passband. If addDistanceModulus == True,
        then the distance modulus (5.0*log10*(dl*1e5), where dl is the luminosity distance
        in Mpc at the redshift of the L{SED}) is added.
               
        @type passband: L{Passband} object
        @param passband: filter passband through which to calculate the magnitude from the SED
        @type addDistanceModulus: bool
        @param addDistanceModulus: if True, adds 5.0*log10*(dl*1e5) to the mag returned, where
                                   dl is the luminosity distance (Mpc) corresponding to the SED z
        @type magType: string
        @param magType: either "Vega" or "AB"
        @rtype: float
        @return: magnitude through the given passband on the specified magnitude system
        
        """
        f1=self.calcFlux(passband)
        if magType == "Vega":
            f2=VEGA.calcFlux(passband)
        elif magType == "AB":
            f2=AB.calcFlux(passband)
        
        mag=-2.5*math.log10(f1/f2)
        if magType == "Vega":
            mag=mag+0.026               # Add 0.026 because Vega has V=0.026 (e.g. Bohlin & Gilliland 2004)
                    
        if self.z > 0.0 and addDistanceModulus == True:
            appMag=5.0*math.log10(astCalc.dl(self.z)*1e5)+mag
        else:
            appMag=mag
        
        return appMag
    
    def calcColour(self, passband1, passband2, magType = "Vega"):
        """Calculates the colour passband1-passband2.
        
        @type passband1: L{Passband} object
        @param passband1: filter passband through which to calculate the first magnitude
        @type passband2: L{Passband} object
        @param passband1: filter passband through which to calculate the second magnitude
        @type magType: string
        @param magType: either "Vega" or "AB"
        @rtype: float
        @return: colour defined by passband1 - passband2 on the specified magnitude system

        """
        mag1=self.calcMag(passband1, magType = magType, addDistanceModulus = True)
        mag2=self.calcMag(passband2, magType = magType, addDistanceModulus = True)
        
        colour=mag1-mag2
        return colour
    
    def getSEDDict(self, passbands):
        """This is a convenience function for pulling out fluxes from a SED for a given set of passbands
        in the same format as made by L{mags2SEDDict} - designed to make fitting code simpler.
        
        @type passbands: list of L{Passband} objects
        @param passbands: list of passbands through which fluxes will be calculated
        
        """
        
        flux=[]
        wavelength=[]
        for p in passbands:
            flux.append(self.calcFlux(p))
            wavelength.append(p.effectiveWavelength())
            
        SEDDict={}
        SEDDict['flux']=numpy.array(flux)
        SEDDict['wavelength']=numpy.array(wavelength)
        
        return SEDDict
    
    def extinctionCalzetti(self, EBMinusV):
        """Applies the Calzetti et al. 2000 (ApJ, 533, 682) extinction law to the SED with the given
        E(B-V) amount of extinction. R_v' = 4.05 is assumed (see equation (5) of Calzetti et al.).
        
        @type EBMinusV: float
        @param EBMinusV: extinction E(B-V), in magnitudes
        
        """
        
        self.EBMinusV=EBMinusV
        
        # All done in rest frame
        self.z0flux=self.intrinsic_z0flux
        
        # Allow us to set EBMinusV == 0 to turn extinction off
        if EBMinusV > 0:
            # Note that EBMinusV is assumed to be Es as in equations (2) - (5)
            # Note here wavelength units have to be microns for constants to make sense
            RvPrime=4.05    # equation (5) of Calzetti et al. 2000
            shortWavelengthMask=numpy.logical_and(numpy.greater_equal(self.z0wavelength, 1200), \
                                                 numpy.less(self.z0wavelength, 6300))
            longWavelengthMask=numpy.logical_and(numpy.greater_equal(self.z0wavelength, 6300), \
                                                numpy.less_equal(self.z0wavelength, 22000))
            wavelengthMicrons=numpy.array(self.z0wavelength/10000.0, dtype=numpy.float64)
            kPrime=numpy.zeros(self.z0wavelength.shape[0], dtype=numpy.float64)
            kPrimeLong=(2.659*(-1.857 \
                                +1.040/wavelengthMicrons \
                               ))+RvPrime
            kPrimeShort=(2.659*(-2.156 \
                                +1.509/wavelengthMicrons \
                                -0.198/wavelengthMicrons**2 \
                                +0.011/wavelengthMicrons**3 \
                               ))+RvPrime
            kPrime[longWavelengthMask]=kPrimeLong[longWavelengthMask]
            kPrime[shortWavelengthMask]=kPrimeShort[shortWavelengthMask]

            # Here we extrapolate kPrime in similar way to what HYPERZ does
            # Short wavelengths
            try:
                interpolator=interpolate.interp1d(self.z0wavelength, kPrimeShort, kind='linear')
                slope=(interpolator(1100.0)-interpolator(1200.0))/(1100.0-1200.0)
                intercept=interpolator(1200.0)-(slope*1200.0)
                mask=numpy.less(self.z0wavelength, 1200.0)
                kPrime[mask]=slope*self.z0wavelength[mask]+intercept
                
                # Long wavelengths
                interpolator=interpolate.interp1d(self.z0wavelength, kPrimeLong, kind='linear')
                slope=(interpolator(21900.0)-interpolator(22000.0))/(21900.0-22000.0)
                intercept=interpolator(21900.0)-(slope*21900.0)
                mask=numpy.greater(self.z0wavelength, 22000.0)
                kPrime[mask]=slope*self.z0wavelength[mask]+intercept
            except:
                raise Exception("This SED has a wavelength range that doesn't cover ~1200-22000 Angstroms")
                            
            # Never let go negative
            kPrime[numpy.less_equal(kPrime, 0.0)]=1e-6
                
            reddening=numpy.power(10, 0.4*EBMinusV*kPrime)
            self.z0flux=self.z0flux/reddening

        self.redshift(self.z)
        
#------------------------------------------------------------------------------------------------------------
class VegaSED(SED):
    """This class stores the SED of Vega, used for calculation of magnitudes on the Vega system.
    
    The Vega SED used is taken from Bohlin 2007 (http://adsabs.harvard.edu/abs/2007ASPC..364..315B), and is
    available from the STScI CALSPEC library (http://www.stsci.edu/hst/observatory/cdbs/calspec.html).
    
    """
    
    def __init__(self, normalise = False):
        
        VEGA_SED_PATH=astLib.__path__[0]+os.path.sep+"data"+os.path.sep+"bohlin2006_Vega.sed" # from HST CALSPEC

        inFile=open(VEGA_SED_PATH, "r")
        lines=inFile.readlines()
        
        wavelength=[]
        flux=[]
        for line in lines:
            
            if line[0] != "#" and len(line) > 3:
        
                bits=line.split()
                flux.append(float(bits[1]))
                wavelength.append(float(bits[0]))
        
        self.wavelength=numpy.array(wavelength)
        self.flux=numpy.array(flux, dtype=numpy.float64)
        
        # We may want to redshift reference SEDs to calculate rest-frame colors from SEDs at different zs
        self.z0wavelength=numpy.array(wavelength)
        self.z0flux=numpy.array(flux, dtype=numpy.float64)
        self.z=0.0
        
        #if normalise == True:
            #self.flux=self.flux/numpy.trapz(self.flux, self.wavelength)
            #self.z0flux=self.z0flux/numpy.trapz(self.z0flux, self.z0wavelength)
        
#------------------------------------------------------------------------------------------------------------
class StellarPopulation:
    """This class describes a stellar population model, either a Simple Stellar Population (SSP) or a
    Composite Stellar Population (CSP), such as the models of Bruzual & Charlot 2003 or Maraston 2005.
    
    The constructor for this class can be used for generic SSPs or CSPs stored in white space delimited text
    files, containing columns for age, wavelength, and flux. Columns are counted from 0 ... n. Lines starting
    with # are ignored.
    
    The classes L{M05Model} (for Maraston 2005 models), L{BC03Model} (for Bruzual & Charlot 2003 models), and
    L{P09Model} (for Percival et al. 2009 models) are derived from this class. The only difference between 
    them is the code used to load in the model data.
   
    """
    def __init__(self, fileName, ageColumn = 0, wavelengthColumn = 1, fluxColumn = 2):
       
        inFile=open(fileName, "r")
        lines=inFile.readlines()
        inFile.close()

        self.fileName=fileName

        # Extract a list of model ages and valid wavelengths from the file
        self.ages=[]
        self.wavelengths=[]
        for line in lines:
            if line[0] !="#" and len(line) > 3:
                bits=line.split()
                age=float(bits[ageColumn])
                wavelength=float(bits[wavelengthColumn])
                if age not in self.ages:
                    self.ages.append(age)
                if wavelength not in self.wavelengths:
                    self.wavelengths.append(wavelength)
        
        # Construct a grid of flux - rows correspond to each wavelength, columns to age
        self.fluxGrid=numpy.zeros([len(self.ages), len(self.wavelengths)])
        for line in lines:
            if line[0] !="#" and len(line) > 3:
                bits=line.split()
                sedAge=float(bits[ageColumn])
                sedWavelength=float(bits[wavelengthColumn])
                sedFlux=float(bits[fluxColumn])
                
                row=self.ages.index(sedAge)
                column=self.wavelengths.index(sedWavelength)
                
                self.fluxGrid[row][column]=sedFlux

    def getSED(self, ageGyr, z = 0.0, normalise = False, label = None):
        """Extract a SED for given age. Do linear interpolation between models if necessary.
        
        @type ageGyr: float
        @param ageGyr: age of the SED in Gyr
        @type z: float
        @param z: redshift the SED from z = 0 to z = z
        @type normalise: bool
        @param normalise: normalise the SED to have area 1
        @rtype: L{SED} object
        @return: SED
        
        """
        
        if ageGyr in self.ages:
            
            flux=self.fluxGrid[self.ages.index(ageGyr)]
            sed=SED(self.wavelengths, flux, z = z, normalise = normalise, label = label)
            return sed
        
        else:
            
            # Use interpolation, iterating over each wavelength column
            flux=[]
            for i in range(len(self.wavelengths)):
                interpolator=interpolate.interp1d(self.ages, self.fluxGrid[:,i], kind='linear')
                sedFlux=interpolator(ageGyr)
                flux.append(sedFlux)
            sed=SED(self.wavelengths, flux, z = z, normalise = normalise, label = label)
            return sed

    def getColourEvolution(self, passband1, passband2, zFormation, zStepSize = 0.05, magType = "Vega"):
        """Calculates the evolution of the colour observed through passband1 - passband2 for the
        StellarPopulation with redshift, from z = 0 to z = zFormation.
        
        @type passband1: L{Passband} object
        @param passband1: filter passband through which to calculate the first magnitude
        @type passband2: L{Passband} object
        @param passband2: filter passband through which to calculate the second magnitude
        @type zFormation: float
        @param zFormation: formation redshift of the StellarPopulation
        @type zStepSize: float
        @param zStepSize: size of interval in z at which to calculate model colours
        @type magType: string
        @param magType: either "Vega" or "AB"
        @rtype: dictionary
        @return: dictionary of numpy.arrays in format {'z', 'colour'}
        
        """
       
        zSteps=int(math.ceil(zFormation/zStepSize))
        zData=[]
        colourData=[]
        for i in range(1, zSteps):
            zc=i*zStepSize
            age=astCalc.tl(zFormation)-astCalc.tl(zc)
            sed=self.getSED(age, z = zc)
            colour=sed.calcColour(passband1, passband2, magType = magType)
            zData.append(zc)
            colourData.append(colour)

        zData=numpy.array(zData)
        colourData=numpy.array(colourData)
        
        return {'z': zData, 'colour': colourData}
        
    def getMagEvolution(self, passband, magNormalisation, zNormalisation, zFormation, zStepSize = 0.05, 
                            onePlusZSteps = False, magType = "Vega"):
        """Calculates the evolution with redshift (from z = 0 to z = zFormation) of apparent magnitude
        in the observed frame through the passband for the StellarPopulation, normalised to magNormalisation 
        (apparent) at z = zNormalisation.
        
        @type passband: L{Passband} object
        @param passband: filter passband through which to calculate the magnitude
        @type magNormalisation: float
        @param magNormalisation: sets the apparent magnitude of the SED at zNormalisation
        @type zNormalisation: float
        @param zNormalisation: the redshift at which the magnitude normalisation is carried out
        @type zFormation: float
        @param zFormation: formation redshift of the StellarPopulation
        @type zStepSize: float
        @param zStepSize: size of interval in z at which to calculate model magnitudes
        @type onePlusZSteps: bool
        @param onePlusZSteps: if True, zSteps are (1+z)*zStepSize, otherwise zSteps are linear
        @type magType: string
        @param magType: either "Vega" or "AB"
        @rtype: dictionary
        @return: dictionary of numpy.arrays in format {'z', 'mag'}
        
        """
        
        # Count upwards in z steps as interpolation doesn't work if array ordered z decreasing
        zSteps=int(math.ceil(zFormation/zStepSize))
        zData=[]
        magData=[]
        absMagData=[]
        zc0=0.0
        for i in range(1, zSteps):
            if onePlusZSteps == False:
                zc=i*zStepSize
            else:
                zc=zc0+(1+zc0)*zStepSize
                zc0=zc
                if zc >= zFormation:
                    break
            age=astCalc.tl(zFormation)-astCalc.tl(zc)
            sed=self.getSED(age, z = zc)
            mag=sed.calcMag(passband, magType = magType, addDistanceModulus = True)
            zData.append(zc)
            magData.append(mag)
            absMagData.append(sed.calcMag(passband, addDistanceModulus = False))

        zData=numpy.array(zData)
        magData=numpy.array(magData)
        
        # Do the normalisation
        interpolator=interpolate.interp1d(zData, magData, kind='linear')
        modelNormMag=interpolator(zNormalisation)
        normConstant=magNormalisation-modelNormMag
        magData=magData+normConstant
        
        return {'z': zData, 'mag': magData}

    def calcEvolutionCorrection(self, zFrom, zTo, zFormation, passband, magType = "Vega"):
        """Calculates the evolution correction in magnitudes in the rest frame through the passband
        from redshift zFrom to redshift zTo, where the stellarPopulation is assumed to be formed
        at redshift zFormation.

        @type zFrom: float
        @param zFormation: redshift to evolution correct from
        @type zTo: float
        @param zTo: redshift to evolution correct to
        @type zFormation: float
        @param zFormation: formation redshift of the StellarPopulation
        @type passband: L{Passband} object
        @param passband: filter passband through which to calculate magnitude
        @type magType: string
        @param magType: either "Vega" or "AB"
        @rtype: float
        @return: evolution correction in magnitudes in the rest frame
        
        """
        
        ageFrom=astCalc.tl(zFormation)-astCalc.tl(zFrom)
        ageTo=astCalc.tl(zFormation)-astCalc.tl(zTo)
        
        fromSED=self.getSED(ageFrom)
        toSED=self.getSED(ageTo)
        
        fromMag=fromSED.calcMag(passband, magType = magType, addDistanceModulus = False)
        toMag=toSED.calcMag(passband, magType = magType, addDistanceModulus = False)
        
        return fromMag-toMag
        
#------------------------------------------------------------------------------------------------------------
class M05Model(StellarPopulation):
    """This class describes a Maraston 2005 stellar population model. To load a composite stellar population
    model (CSP) for a tau = 0.1 Gyr burst of star formation, solar metallicity, Salpeter IMF:
    
    m05csp = astSED.M05Model(M05_DIR+"/csp_e_0.10_z02_salp.sed_agb")
    
    where M05_DIR is set to point to the directory where the Maraston 2005 models are stored on your system.
    
    The file format of the Maraston 2005 simple stellar poulation (SSP) models is different to the file
    format used for the CSPs, and this needs to be specified using the fileType parameter. To load a SSP with
    solar metallicity, red horizontal branch morphology:
    
    m05ssp = astSED.M05Model(M05_DIR+"/sed.ssz002.rhb", fileType = "ssp")
    
    The wavelength units of SEDs from M05 models are Angstroms, with flux in units of erg/s/Angstrom.
    
    """
    def __init__(self, fileName, fileType = "csp"):
   
        self.modelFamily="M05"

        inFile=open(fileName, "r")
        lines=inFile.readlines()
        inFile.close()
        
        self.fileName=fileName

        if fileType == "csp":
            ageColumn=0
            wavelengthColumn=1
            fluxColumn=2
        elif fileType == "ssp":
            ageColumn=0
            wavelengthColumn=2
            fluxColumn=3
        else:
            raise Exception("fileType must be 'ssp' or 'csp'")
        
        # Extract a list of model ages and valid wavelengths from the file
        self.ages=[]
        self.wavelengths=[]
        for line in lines:
            if line[0] !="#" and len(line) > 3:
                bits=line.split()
                age=float(bits[ageColumn])
                wavelength=float(bits[wavelengthColumn])
                if age not in self.ages:
                    self.ages.append(age)
                if wavelength not in self.wavelengths:
                    self.wavelengths.append(wavelength)
        
        # Construct a grid of flux - rows correspond to each wavelength, columns to age
        self.fluxGrid=numpy.zeros([len(self.ages), len(self.wavelengths)])
        for line in lines:
            if line[0] !="#" and len(line) > 3:
                bits=line.split()
                sedAge=float(bits[ageColumn])
                sedWavelength=float(bits[wavelengthColumn])
                sedFlux=float(bits[fluxColumn])
                
                row=self.ages.index(sedAge)
                column=self.wavelengths.index(sedWavelength)
                
                self.fluxGrid[row][column]=sedFlux
    
#------------------------------------------------------------------------------------------------------------
class BC03Model(StellarPopulation):
    """This class describes a Bruzual & Charlot 2003 stellar population model, extracted from a GALAXEV .ised
    file using the galaxevpl program that is included in GALAXEV. The file format is white space delimited,
    with wavelength in the first column. Subsequent columns contain the model fluxes for SEDs of different
    ages, as specified when running galaxevpl. The age corresponding to each flux column is taken from the 
    comment line beginning "# Age (yr)", and is converted to Gyr.

    For example, to load a tau = 0.1 Gyr burst of star formation,  solar metallicity, Salpeter IMF model
    stored in a file (created by galaxevpl) called "csp_lr_solar_0p1Gyr.136":
    
    bc03model = BC03Model("csp_lr_solar_0p1Gyr.136")

    The wavelength units of SEDs from BC03 models are Angstroms. Flux is converted into units of 
    erg/s/Angstrom (the units in the files output by galaxevpl are LSun/Angstrom).

    """
    
    def __init__(self, fileName):
   
        self.modelFamily="BC03"
        self.fileName=fileName

        inFile=open(fileName, "r")
        lines=inFile.readlines()
        inFile.close()
        
        # Extract a list of model ages - BC03 ages are in years, so convert to Gyr
        self.ages=[]
        for line in lines:
            if line.find("# Age (yr)") != -1:
                rawAges=line[line.find("# Age (yr)")+10:].split()
                for age in rawAges:
                    self.ages.append(float(age)/1e9)
        
        # Extract a list of valid wavelengths from the file
        # If we have many ages in the file, this is more complicated...
        lambdaLinesCount=0
        startFluxDataLine=None
        for i in range(len(lines)):
            line=lines[i]
            if "# Lambda(A)" in line:
                lambdaLinesCount=lambdaLinesCount+1
            if line[0] != "#" and len(line) > 3 and startFluxDataLine == None:
                startFluxDataLine=i
        self.wavelengths=[]
        for i in range(startFluxDataLine, len(lines), lambdaLinesCount):
            line=lines[i]
            bits=line.split()
            self.wavelengths.append(float(bits[0]))        
        
        # Construct a grid of flux - rows correspond to each wavelength, columns to age
        self.fluxGrid=numpy.zeros([len(self.ages), len(self.wavelengths)])
        for i in range(startFluxDataLine, len(lines), lambdaLinesCount):
            line=lines[i]
            bits=[]
            for k in range(i, i+lambdaLinesCount):
                bits=bits+lines[k].split()           
            ageFluxes=bits[1:]
            sedWavelength=float(bits[0])
            column=self.wavelengths.index(sedWavelength)
            for row in range(len(ageFluxes)):
                sedFlux=float(ageFluxes[row])
                self.fluxGrid[row][column]=sedFlux

        # Convert flux into erg/s/Angstrom - native units of galaxevpl files are LSun/Angstrom
        self.fluxGrid=self.fluxGrid*3.826e33
        
#------------------------------------------------------------------------------------------------------------
class P09Model(StellarPopulation):
    """This class describes a Percival et al 2009 (BaSTI; http://albione.oa-teramo.inaf.it) stellar 
    population model. We assume that the synthetic spectra for each model are unpacked under the directory 
    pointed to by fileName.
    
    The wavelength units of SEDs from P09 models are converted to Angstroms. Flux is converted into units of 
    erg/s/Angstrom (the units in the BaSTI low-res spectra are 4.3607e-33 erg/s/m).
    
    """
    
    def __init__(self, fileName):
   
        self.modelFamily="P09"

        files=glob.glob(fileName+os.path.sep+"*.t??????")
        
        self.fileName=fileName

        # Map end of filenames to ages in Gyr
        extensionAgeMap={}
        self.ages=[]
        for f in files:
            ext=f.split(".")[-1]
            ageGyr=float(f[-5:])/1e3
            self.ages.append(ageGyr)
            extensionAgeMap[ext]=ageGyr
        self.ages.sort()
        
        # Construct a grid of flux - rows correspond to each wavelength, columns to age
        self.wavelengths=None
        self.fluxGrid=None
        for i in range(len(self.ages)):
            for e in extensionAgeMap.keys():
                if extensionAgeMap[e] == self.ages[i]:
                    inFileName=glob.glob(fileName+os.path.sep+"*."+e)[0]
                    inFile=open(inFileName, "r")
                    lines=inFile.readlines()
                    inFile.close()
                    wavelength=[]
                    flux=[]
                    for line in lines:
                        bits=line.split()
                        wavelength.append(float(bits[0])*10.0)  # units in file are nm, not angstroms
                        flux.append(float(bits[1]))
                    if self.wavelengths == None:
                        self.wavelengths=wavelength
                    if self.fluxGrid == None:
                        self.fluxGrid=numpy.zeros([len(self.ages), len(self.wavelengths)])
                    self.fluxGrid[i]=flux                    

        # Convert flux into erg/s/Angstrom - native units in BaSTI files are 4.3607e-33 erg/s/m
        self.fluxGrid=self.fluxGrid/4.3607e-33/1e10
        
#------------------------------------------------------------------------------------------------------------
def makeModelSEDDictList(modelList, z, passbandsList, labelsList = [], EBMinusVList = [0.0], forceYoungerThanUniverse = True):
    """This routine makes a list of SEDDict dictionaries (see L{mags2SEDDict}) for fitting using 
    L{fitSEDDict}. This speeds up the fitting as this allows us to calculate model SED magnitudes only once, 
    if all objects to be fitted are at the same redshift. We add some meta data to the modelSEDDicts (e.g.
    the model file names).
        
    The effect of extinction by dust (assuming the Calzetti et al. 2000 law) can be included by giving a list 
    of E(B-V) values.
    
    If forceYoungerThanUniverse == True, ages which are older than the universe at the given z will not be
    included.
    
    @type modelList: list of L{StellarPopulation} model objects
    @param modelList: list of StellarPopulation models to include
    @type z: float
    @param z: redshift to apply to all stellar population models in modelList
    @type EBMinusVList: list
    @param EBMinusVList: list of E(B-V) extinction values to apply to all models, in magnitudes
    @type labelsList: list
    @param labelsList: optional list used for labelling passbands in output SEDDicts
    @type forceYoungerThanUniverse: bool
    @param forceYoungerThanUniverse: if True, do not allow models that exceed the age of the universe at z
    @rtype: list
    @return: list of dictionaries containing model fluxes, to be used as input to L{fitSEDDict}.
    
    """
    
    # Otherwise if this is the case we won't actually make any model SEDDicts ...
    if EBMinusVList == []:
        EBMinusVList=[0.0]
        
    modelSEDDictList=[]
    for m in range(len(modelList)):
        testAges=numpy.array(modelList[m].ages)
        if forceYoungerThanUniverse == True:
            testAges=testAges[numpy.logical_and(numpy.less(testAges, astCalc.tz(z)), numpy.greater(testAges, 0))]
        for t in testAges:
            s=modelList[m].getSED(t, z = z, label=modelList[m].fileName+" - age="+str(t)+" Gyr")
            for EBMinusV in EBMinusVList:
                try:
                    s.extinctionCalzetti(EBMinusV)
                except:
                    raise Exception("Model %s has a wavelength range that doesn't cover ~1200-22000 Angstroms" % (modelList[m].fileName))
                modelSEDDict=s.getSEDDict(passbandsList)
                modelSEDDict['labels']=labelsList
                modelSEDDict['E(B-V)']=EBMinusV
                modelSEDDict['ageGyr']=t
                modelSEDDict['z']=z
                modelSEDDict['fileName']=modelList[m].fileName               
                modelSEDDict['modelListIndex']=m
                modelSEDDictList.append(modelSEDDict)
    
    return modelSEDDictList
    
#------------------------------------------------------------------------------------------------------------
def fitSEDDict(SEDDict, modelSEDDictList):
    """Fits the given SED dictionary (made using L{mags2SEDDict}) with the given list of model SED 
    dictionaries. The latter should be made using L{makeModelSEDDictList}, and entries for fluxes should
    correspond directly between the model and SEDDict.
           
    Returns a dictionary with best fit values.
    
    @type SEDDict: dictionary, in format of L{mags2SEDDict}
    @param SEDDict: dictionary of observed fluxes and uncertainties, in format of L{mags2SEDDict}
    @type modelSEDDictList: list of dictionaries, in format of L{makeModelSEDDictList}
    @param modelSEDDictList: list of dictionaries containing fluxes of models to be fitted to the observed
    fluxes listed in the SEDDict. This should be made using L{makeModelSEDDictList}.
    @rtype: dictionary
    @return: results of the fitting - keys: 
             - 'minChiSq': minimum chi squared value of best fit
             - 'chiSqContrib': corresponding contribution at each passband to the minimum chi squared value
             - 'ageGyr': the age in Gyr of the best fitting model
             - 'modelFileName': the file name of the stellar population model corresponding to the best fit
             - 'modelListIndex': the index of the best fitting model in the input modelSEDDictList
             - 'norm': the normalisation that the best fit model should be multiplied by to match the SEDDict
             - 'z': the redshift of the best fit model
             - 'E(B-V)': the extinction, E(B-V), in magnitudes, of the best fit model
    
    """
    
    modelFlux=[]
    for modelSEDDict in modelSEDDictList:
        modelFlux.append(modelSEDDict['flux'])
    modelFlux=numpy.array(modelFlux)    
    sedFlux=numpy.array([SEDDict['flux']]*len(modelSEDDictList))
    sedFluxErr=numpy.array([SEDDict['fluxErr']]*len(modelSEDDictList))

    # Analytic expression below is for normalisation at minimum chi squared (see note book)
    norm=numpy.sum((modelFlux*sedFlux)/(sedFluxErr**2), axis=1)/numpy.sum(modelFlux**2/sedFluxErr**2, axis=1)
    norms=numpy.array([norm]*modelFlux.shape[1]).transpose()
    chiSq=numpy.sum(((sedFlux-norms*modelFlux)**2)/sedFluxErr**2, axis=1)
    chiSq[numpy.isnan(chiSq)]=1e6   # throw these out, should check this out and handle more gracefully
    minChiSq=chiSq.min()
    bestMatchIndex=numpy.equal(chiSq, minChiSq).nonzero()[0][0]
    bestNorm=norm[bestMatchIndex]
    bestChiSq=minChiSq
    bestChiSqContrib=((sedFlux[bestMatchIndex]-norms[bestMatchIndex]*modelFlux[bestMatchIndex])**2)\
                        /sedFluxErr[bestMatchIndex]**2
    
    resultsDict={'minChiSq': bestChiSq, 
                 'chiSqContrib': bestChiSqContrib,
                 'allChiSqValues': chiSq,
                 'ageGyr': modelSEDDictList[bestMatchIndex]['ageGyr'], 
                 'modelFileName': modelSEDDictList[bestMatchIndex]['fileName'],
                 'modelListIndex': modelSEDDictList[bestMatchIndex]['modelListIndex'],
                 'norm': bestNorm, 
                 'z': modelSEDDictList[bestMatchIndex]['z'], 
                 'E(B-V)': modelSEDDictList[bestMatchIndex]['E(B-V)']}
    
    return resultsDict
    
#------------------------------------------------------------------------------------------------------------
def mags2SEDDict(ABMags, ABMagErrs, passbands):
    """Takes a set of corresponding AB magnitudes, uncertainties, and passbands, and
    returns a dictionary with keys 'flux', 'fluxErr', 'wavelength'. Fluxes are in units of 
    erg/s/cm^2/Angstrom, wavelength in Angstroms. These dictionaries are the staple diet of the
    L{fitSEDDict} routine.
    
    @type ABMags: list or numpy array
    @param ABMags: AB magnitudes, specified in corresponding order to passbands and ABMagErrs
    @type ABMagErrs: list or numpy array
    @param ABMagErrs: AB magnitude errors, specified in corresponding order to passbands and ABMags
    @type passbands: list of L{Passband} objects
    @param passbands: passband objects, specified in corresponding order to ABMags and ABMagErrs
    @rtype: dictionary
    @return: dictionary with keys {'flux', 'fluxErr', 'wavelength'}, suitable for input to L{fitSEDDict}

    """
    
    flux=[]
    fluxErr=[]
    wavelength=[]
    for m, e, p in zip(ABMags, ABMagErrs, passbands):
        f, err=mag2Flux(m, e, p)
        flux.append(f)
        fluxErr.append(err)
        wavelength.append(p.effectiveWavelength())
        
    SEDDict={}
    SEDDict['flux']=numpy.array(flux)
    SEDDict['fluxErr']=numpy.array(fluxErr)
    SEDDict['wavelength']=numpy.array(wavelength)
    
    return SEDDict
    
#------------------------------------------------------------------------------------------------------------
def mag2Flux(ABMag, ABMagErr, passband):
    """Converts given AB magnitude and uncertainty into flux, in erg/s/cm^2/Angstrom.
    
    @type ABMag: float
    @param ABMag: magnitude on AB system in passband
    @type ABMagErr: float
    @param ABMagErr: uncertainty in AB magnitude in passband
    @type passband: L{Passband} object
    @param passband: L{Passband} object at which ABMag was measured
    @rtype: list
    @return: [flux, fluxError], in units of erg/s/cm^2/Angstrom
    
    """
    
    fluxJy=(10**23.0)*10**(-(ABMag+48.6)/2.5)   # AB mag
    aLambda=3e-13 # for conversion to erg s-1 cm-2 angstrom-1 with lambda in microns
    effLMicron=passband.effectiveWavelength()*(1e-10/1e-6)
    fluxWLUnits=aLambda*fluxJy/effLMicron**2
        
    fluxJyErr=(10**23.0)*10**(-(ABMag-ABMagErr+48.6)/2.5)   # AB mag
    fluxWLUnitsErr=aLambda*fluxJyErr/effLMicron**2
    fluxWLUnitsErr=fluxWLUnitsErr-fluxWLUnits

    return [fluxWLUnits, fluxWLUnitsErr]

#------------------------------------------------------------------------------------------------------------
def flux2Mag(flux, fluxErr, passband):
    """Converts given flux and uncertainty in erg/s/cm^2/Angstrom into AB magnitudes.
    
    @type flux: float
    @param flux: flux in erg/s/cm^2/Angstrom in passband
    @type fluxErr: float
    @param fluxErr: uncertainty in flux in passband, in erg/s/cm^2/Angstrom
    @type passband: L{Passband} object
    @param passband: L{Passband} object at which ABMag was measured
    @rtype: list
    @return: [ABMag, ABMagError], in AB magnitudes
    
    """

    # aLambda = 3x10-5 for effective wavelength in angstroms
    aLambda=3e-13 # for conversion to erg s-1 cm-2 angstrom-1 with lambda in microns
    effLMicron=passband.effectiveWavelength()*(1e-10/1e-6)

    fluxJy=(flux*effLMicron**2)/aLambda
    mag=-2.5*numpy.log10(fluxJy/10**23)-48.6
    
    fluxErrJy=(fluxErr*effLMicron**2)/aLambda
    magErr=mag-(-2.5*numpy.log10((fluxJy+fluxErrJy)/10**23)-48.6)
    
    return [mag, magErr]

#------------------------------------------------------------------------------------------------------------
def mag2Jy(ABMag):
    """Converts an AB magnitude into flux density in Jy
    
    @type ABMag: float
    @param ABMag: AB magnitude
    @rtype: float
    @return: flux density in Jy
    
    """
    
    fluxJy=((10**23)*10**(-(float(ABMag)+48.6)/2.5))
    
    return fluxJy


#------------------------------------------------------------------------------------------------------------
def Jy2Mag(fluxJy):
    """Converts flux density in Jy into AB magnitude
    
    @type fluxJy: float
    @param fluxJy: flux density in Jy
    @rtype: float
    @return: AB magnitude
    
    """
        
    ABMag=-2.5*(numpy.log10(fluxJy)-23.0)-48.6
    
    return ABMag
    
#------------------------------------------------------------------------------------------------------------
# Data
VEGA=VegaSED()

# AB SED has constant flux density 3631 Jy
AB=SED(wavelength = numpy.logspace(1, 8, 1e5), flux = numpy.ones(1000000))
AB.flux=(3e-5*3631)/(AB.wavelength**2)
AB.z0flux=AB.flux[:]

# Solar SED from HST CALSPEC (http://www.stsci.edu/hst/observatory/cdbs/calspec.html)
SOL=SED()
SOL.loadFromFile(astLib.__path__[0]+os.path.sep+"data"+os.path.sep+"sun_reference_stis_001.ascii")