/usr/lib/python3/dist-packages/astLib/astStats.py is in python3-astlib 0.10.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 | """module for performing statistical calculations.
(c) 2007-2012 Matt Hilton
(c) 2013-2014 Matt Hilton & Steven Boada
U{http://astlib.sourceforge.net}
This module (as you may notice) provides very few statistical routines. It does, however, provide
biweight (robust) estimators of location and scale, as described in Beers et al. 1990 (AJ, 100,
32), in addition to a robust least squares fitting routine that uses the biweight transform.
Some routines may fail if they are passed lists with few items and encounter a `divide by zero'
error. Where this occurs, the function will return None. An error message will be printed to the
console when this happens if astStats.REPORT_ERRORS=True (the default). Testing if an
astStats function returns None can be used to handle errors in scripts.
For extensive statistics modules, the Python bindings for GNU R (U{http://rpy.sourceforge.net}), or
SciPy (U{http://www.scipy.org}) are suggested.
"""
import math
import numpy
import sys
REPORT_ERRORS=True
#---------------------------------------------------------------------------------------------------
def mean(dataList):
"""Calculates the mean average of a list of numbers.
@type dataList: list or numpy array
@param dataList: input data, must be a one dimensional list
@rtype: float
@return: mean average
"""
return numpy.mean(dataList)
#---------------------------------------------------------------------------------------------------
def weightedMean(dataList):
"""Calculates the weighted mean average of a two dimensional list (value, weight) of
numbers.
@type dataList: list
@param dataList: input data, must be a two dimensional list in format [value, weight]
@rtype: float
@return: weighted mean average
"""
sum=0
weightSum=0
for item in dataList:
sum=sum+float(item[0]*item[1])
weightSum=weightSum+item[1]
if len(dataList)>0:
mean=sum/weightSum
else:
mean=0
return mean
#---------------------------------------------------------------------------------------------------
def stdev(dataList):
"""Calculates the (sample) standard deviation of a list of numbers.
@type dataList: list or numpy array
@param dataList: input data, must be a one dimensional list
@rtype: float
@return: standard deviation
"""
return numpy.std(dataList)
#---------------------------------------------------------------------------------------------------
def rms(dataList):
"""Calculates the root mean square of a list of numbers.
@type dataList: list
@param dataList: input data, must be a one dimensional list
@rtype: float
@return: root mean square
"""
dataListSq=[]
for item in dataList:
dataListSq.append(item*item)
listMeanSq=mean(dataListSq)
rms=math.sqrt(listMeanSq)
return rms
#---------------------------------------------------------------------------------------------------
def weightedStdev(dataList):
"""Calculates the weighted (sample) standard deviation of a list of numbers.
@type dataList: list
@param dataList: input data, must be a two dimensional list in format [value, weight]
@rtype: float
@return: weighted standard deviation
@note: Returns None if an error occurs.
"""
listMean=weightedMean(dataList)
sum=0
wSum=0
wNonZero=0
for item in dataList:
if item[1]>0.0:
sum=sum+float((item[0]-listMean)/item[1])*float((item[0]-listMean)/item[1])
wSum=wSum+float(1.0/item[1])*float(1.0/item[1])
if len(dataList)>1:
nFactor=float(len(dataList))/float(len(dataList)-1)
stdev=math.sqrt(nFactor*(sum/wSum))
else:
if REPORT_ERRORS==True:
print("""ERROR: astStats.weightedStdev() : dataList contains < 2 items.""")
stdev=None
return stdev
#---------------------------------------------------------------------------------------------------
def median(dataList):
"""Calculates the median of a list of numbers.
@type dataList: list or numpy array
@param dataList: input data, must be a one dimensional list
@rtype: float
@return: median average
"""
return numpy.median(dataList)
#---------------------------------------------------------------------------------------------------
def modeEstimate(dataList):
"""Returns an estimate of the mode of a set of values by mode=(3*median)-(2*mean).
@type dataList: list
@param dataList: input data, must be a one dimensional list
@rtype: float
@return: estimate of mode average
"""
mode=(3*median(dataList))-(2*mean(dataList))
return mode
#---------------------------------------------------------------------------------------------------
def MAD(dataList):
"""Calculates the Median Absolute Deviation of a list of numbers.
@type dataList: list
@param dataList: input data, must be a one dimensional list
@rtype: float
@return: median absolute deviation
"""
listMedian=median(dataList)
# Calculate |x-M| values
diffModuli=[]
for item in dataList:
diffModuli.append(math.fabs(item-listMedian))
MAD=median(diffModuli)
return MAD
#---------------------------------------------------------------------------------------------------
def biweightLocation(dataList, tuningConstant):
"""Calculates the biweight location estimator (like a robust average) of a list of
numbers.
@type dataList: list
@param dataList: input data, must be a one dimensional list
@type tuningConstant: float
@param tuningConstant: 6.0 is recommended.
@rtype: float
@return: biweight location
@note: Returns None if an error occurs.
"""
C=tuningConstant
listMedian=median(dataList)
listMAD=MAD(dataList)
if listMAD!=0:
uValues=[]
for item in dataList:
uValues.append((item-listMedian)/(C*listMAD))
top=0 # numerator equation (5) Beers et al if you like
bottom=0 # denominator
for i in range(len(uValues)):
if math.fabs(uValues[i])<=1.0:
top=top+((dataList[i]-listMedian) \
*(1.0-(uValues[i]*uValues[i])) \
*(1.0-(uValues[i]*uValues[i])))
bottom=bottom+((1.0-(uValues[i]*uValues[i])) \
*(1.0-(uValues[i]*uValues[i])))
CBI=listMedian+(top/bottom)
else:
if REPORT_ERRORS==True:
print("""ERROR: astStats: biweightLocation() : MAD() returned 0.""")
return None
return CBI
#---------------------------------------------------------------------------------------------------
def biweightScale(dataList, tuningConstant):
"""Calculates the biweight scale estimator (like a robust standard deviation) of a list
of numbers.
@type dataList: list
@param dataList: input data, must be a one dimensional list
@type tuningConstant: float
@param tuningConstant: 9.0 is recommended.
@rtype: float
@return: biweight scale
@note: Returns None if an error occurs.
"""
C=tuningConstant
# Calculate |x-M| values and u values
listMedian=median(dataList)
listMAD=MAD(dataList)
diffModuli=[]
for item in dataList:
diffModuli.append(math.fabs(item-listMedian))
uValues=[]
for item in dataList:
try:
uValues.append((item-listMedian)/(C*listMAD))
except ZeroDivisionError:
if REPORT_ERRORS==True:
print("""ERROR: astStats.biweightScale() : divide by zero error.""")
return None
top=0 # numerator equation (9) Beers et al
bottom=0
valCount=0 # Count values where u<1 only
for i in range(len(uValues)):
# Skip u values >1
if math.fabs(uValues[i])<=1.0:
u2Term=1.0-(uValues[i]*uValues[i])
u4Term=math.pow(u2Term, 4)
top=top+((diffModuli[i]*diffModuli[i])*u4Term)
bottom=bottom+(u2Term*(1.0-(5.0*(uValues[i]*uValues[i]))))
valCount=valCount+1
top=math.sqrt(top)
bottom=math.fabs(bottom)
SBI=math.pow(float(valCount), 0.5)*(top/bottom)
return SBI
#---------------------------------------------------------------------------------------------------
def biweightClipped(dataList, tuningConstant, sigmaCut):
"""Iteratively calculates biweight location and scale, using sigma clipping, for a list
of values. The calculation is performed on the first column of a multi-dimensional
list; other columns are ignored.
@type dataList: list
@param dataList: input data, must contain more than 5 values
@type tuningConstant: float
@param tuningConstant: 6.0 is recommended for location estimates, 9.0 is recommended for
scale estimates
@type sigmaCut: float
@param sigmaCut: sigma clipping to apply
@rtype: dictionary
@return: estimate of biweight location, scale, and list of non-clipped data, in the format
{'biweightLocation', 'biweightScale', 'dataList'}
@note: Returns None if an error occurs.
"""
iterations=0
clippedValues=[]
for row in dataList:
if type(row)==list:
clippedValues.append(row[0])
else:
clippedValues.append(row)
cbi=None
sbi=None
clippedData=None
while iterations<11 and len(clippedValues)>5:
cbi=biweightLocation(clippedValues, tuningConstant)
sbi=biweightScale(clippedValues, tuningConstant)
# check for either biweight routine falling over
# happens when feed in lots of similar numbers
# e.g. when bootstrapping with a small sample
if cbi==None or sbi==None:
if REPORT_ERRORS==True:
print("""ERROR: astStats : biweightClipped() :
divide by zero error.""")
return None
else:
clippedValues=[]
clippedData=[]
for row in dataList:
if type(row)==list:
if row[0]>cbi-(sigmaCut*sbi) \
and row[0]<cbi+(sigmaCut*sbi):
clippedValues.append(row[0])
clippedData.append(row)
else:
if row>cbi-(sigmaCut*sbi) \
and row<cbi+(sigmaCut*sbi):
clippedValues.append(row)
clippedData.append(row)
iterations=iterations+1
return {'biweightLocation':cbi, 'biweightScale':sbi, 'dataList':clippedData}
#---------------------------------------------------------------------------------------------------
def biweightTransform(dataList, tuningConstant):
"""Calculates the biweight transform for a set of values. Useful for using as weights in
robust line fitting.
@type dataList: list
@param dataList: input data, must be a one dimensional list
@type tuningConstant: float
@param tuningConstant: 6.0 is recommended for location estimates, 9.0 is recommended for
scale estimates
@rtype: list
@return: list of biweights
"""
C=tuningConstant
# Calculate |x-M| values and u values
listMedian=abs(median(dataList))
cutoff=C*listMedian
biweights=[]
for item in dataList:
if abs(item)<cutoff:
biweights.append([item,
(1.0-((item/cutoff)*(item/cutoff))) \
*(1.0-((item/cutoff)*(item/cutoff)))])
else:
biweights.append([item, 0.0])
return biweights
#---------------------------------------------------------------------------------------------------
def OLSFit(dataList):
"""Performs an ordinary least squares fit on a two dimensional list of numbers.
Minimum number of data points is 5.
@type dataList: list
@param dataList: input data, must be a two dimensional list in format [x, y]
@rtype: dictionary
@return: slope and intercept on y-axis, with associated errors, in the format
{'slope', 'intercept', 'slopeError', 'interceptError'}
@note: Returns None if an error occurs.
"""
sumX=0
sumY=0
sumXY=0
sumXX=0
n=float(len(dataList))
if n > 2:
for item in dataList:
sumX=sumX+item[0]
sumY=sumY+item[1]
sumXY=sumXY+(item[0]*item[1])
sumXX=sumXX+(item[0]*item[0])
m=((n*sumXY)-(sumX*sumY))/((n*sumXX)-(sumX*sumX))
c=((sumXX*sumY)-(sumX*sumXY))/((n*sumXX)-(sumX*sumX))
sumRes=0
for item in dataList:
sumRes=sumRes+((item[1]-(m*item[0])-c) \
*(item[1]-(m*item[0])-c))
sigma=math.sqrt((1.0/(n-2))*sumRes)
try:
mSigma=(sigma*math.sqrt(n))/math.sqrt((n*sumXX)-(sumX*sumX))
except:
mSigma=numpy.nan
try:
cSigma=(sigma*math.sqrt(sumXX))/math.sqrt((n*sumXX)-(sumX*sumX))
except:
cSigma=numpy.nan
else:
if REPORT_ERRORS==True:
print("""ERROR: astStats.OLSFit() : dataList contains < 3 items.""")
return None
return {'slope':m,
'intercept':c,
'slopeError':mSigma,
'interceptError':cSigma}
#---------------------------------------------------------------------------------------------------
def clippedMeanStdev(dataList, sigmaCut = 3.0, maxIterations = 10.0):
"""Calculates the clipped mean and stdev of a list of numbers.
@type dataList: list
@param dataList: input data, one dimensional list of numbers
@type sigmaCut: float
@param sigmaCut: clipping in Gaussian sigma to apply
@type maxIterations: int
@param maxIterations: maximum number of iterations
@rtype: dictionary
@return: format {'clippedMean', 'clippedStdev', 'numPoints'}
"""
listCopy=[]
for d in dataList:
listCopy.append(d)
listCopy=numpy.array(listCopy)
iterations=0
while iterations < maxIterations and len(listCopy) > 4:
m=listCopy.mean()
s=listCopy.std()
listCopy=listCopy[numpy.less(abs(listCopy), abs(m+sigmaCut*s))]
iterations=iterations+1
return {'clippedMean': m, 'clippedStdev': s, 'numPoints': listCopy.shape[0]}
#---------------------------------------------------------------------------------------------------
def clippedWeightedLSFit(dataList, sigmaCut):
"""Performs a weighted least squares fit on a list of numbers with sigma clipping. Minimum number of data
points is 5.
@type dataList: list
@param dataList: input data, must be a three dimensional list in format [x, y, y weight]
@rtype: dictionary
@return: slope and intercept on y-axis, with associated errors, in the format
{'slope', 'intercept', 'slopeError', 'interceptError'}
@note: Returns None if an error occurs.
"""
iterations=0
clippedValues=[]
for row in dataList:
clippedValues.append(row)
while iterations<11 and len(clippedValues)>4:
fitResults=weightedLSFit(clippedValues, "errors")
if fitResults['slope'] == None:
if REPORT_ERRORS==True:
print("""ERROR: astStats : clippedWeightedLSFit() :
divide by zero error.""")
return None
else:
clippedValues=[]
for row in dataList:
# Trim points more than sigmaCut*sigma away from the fitted line
fit=fitResults['slope']*row[0]+fitResults['intercept']
res=row[1]-fit
if abs(res)/row[2] < sigmaCut:
clippedValues.append(row)
iterations=iterations+1
# store the number of values that made it through the clipping process
fitResults['numDataPoints']=len(clippedValues)
return fitResults
#---------------------------------------------------------------------------------------------------
def weightedLSFit(dataList, weightType):
"""Performs a weighted least squares fit on a three dimensional list of numbers [x, y, y error].
@type dataList: list
@param dataList: input data, must be a three dimensional list in format [x, y, y error]
@type weightType: string
@param weightType: if "errors", weights are calculated assuming the input data is in the
format [x, y, error on y]; if "weights", the weights are assumed to be already calculated and
stored in a fourth column [x, y, error on y, weight] (as used by e.g. L{astStats.biweightLSFit})
@rtype: dictionary
@return: slope and intercept on y-axis, with associated errors, in the format
{'slope', 'intercept', 'slopeError', 'interceptError'}
@note: Returns None if an error occurs.
"""
if weightType == "weights":
sumW=0
sumWX=0
sumWY=0
sumWXY=0
sumWXX=0
n=float(len(dataList))
if n > 4:
for item in dataList:
W=item[3]
sumWX=sumWX+(W*item[0])
sumWY=sumWY+(W*item[1])
sumWXY=sumWXY+(W*item[0]*item[1])
sumWXX=sumWXX+(W*item[0]*item[0])
sumW=sumW+W
#print sumW, sumWXX, sumWX
try:
m=((sumW*sumWXY)-(sumWX*sumWY)) \
/((sumW*sumWXX)-(sumWX*sumWX))
except ZeroDivisionError:
if REPORT_ERRORS == True:
print("ERROR: astStats.weightedLSFit() : divide by zero error.")
return None
try:
c=((sumWXX*sumWY)-(sumWX*sumWXY)) \
/((sumW*sumWXX)-(sumWX*sumWX))
except ZeroDivisionError:
if REPORT_ERRORS == True:
print("ERROR: astStats.weightedLSFit() : divide by zero error.")
return None
sumRes=0
for item in dataList:
sumRes=sumRes+((item[1]-(m*item[0])-c) \
*(item[1]-(m*item[0])-c))
sigma=math.sqrt((1.0/(n-2))*sumRes)
# Can get div0 errors here so check
# When biweight fitting converges this shouldn't happen
if (n*sumWXX)-(sumWX*sumWX)>0.0:
mSigma=(sigma*math.sqrt(n)) \
/math.sqrt((n*sumWXX)-(sumWX*sumWX))
cSigma=(sigma*math.sqrt(sumWXX)) \
/math.sqrt((n*sumWXX)-(sumWX*sumWX))
else:
if REPORT_ERRORS==True:
print("""ERROR: astStats.weightedLSFit()
: divide by zero error.""")
return None
else:
if REPORT_ERRORS==True:
print("""ERROR: astStats.weightedLSFit() :
dataList contains < 5 items.""")
return None
elif weightType == "errors":
sumX=0
sumY=0
sumXY=0
sumXX=0
sumSigma=0
n=float(len(dataList))
for item in dataList:
sumX=sumX+(item[0]/(item[2]*item[2]))
sumY=sumY+(item[1]/(item[2]*item[2]))
sumXY=sumXY+((item[0]*item[1])/(item[2]*item[2]))
sumXX=sumXX+((item[0]*item[0])/(item[2]*item[2]))
sumSigma=sumSigma+(1.0/(item[2]*item[2]))
delta=(sumSigma*sumXX)-(sumX*sumX)
m=((sumSigma*sumXY)-(sumX*sumY))/delta
c=((sumXX*sumY)-(sumX*sumXY))/delta
mSigma=math.sqrt(sumSigma/delta)
cSigma=math.sqrt(sumXX/delta)
return {'slope':m,
'intercept':c,
'slopeError':mSigma,
'interceptError':cSigma}
#---------------------------------------------------------------------------------------------------
def biweightLSFit(dataList, tuningConstant, sigmaCut = None):
"""Performs a weighted least squares fit, where the weights used are the biweight
transforms of the residuals to the previous best fit .i.e. the procedure is iterative,
and converges very quickly (iterations is set to 10 by default). Minimum number of data
points is 10.
This seems to give slightly different results to the equivalent R routine, so use at your
own risk!
@type dataList: list
@param dataList: input data, must be a three dimensional list in format [x, y, y weight]
@type tuningConstant: float
@param tuningConstant: 6.0 is recommended for location estimates, 9.0 is recommended for
scale estimates
@type sigmaCut: float
@param sigmaCut: sigma clipping to apply (set to None if not required)
@rtype: dictionary
@return: slope and intercept on y-axis, with associated errors, in the format
{'slope', 'intercept', 'slopeError', 'interceptError'}
@note: Returns None if an error occurs.
"""
dataCopy=[]
for row in dataList:
dataCopy.append(row)
# First perform unweighted fit, then calculate residuals
results=OLSFit(dataCopy)
origLen=len(dataCopy)
for k in range(10):
m=results['slope']
c=results['intercept']
res=[]
for item in dataCopy:
res.append((m*item[0]+c)-item[1])
if len(res)>5:
# For clipping, trim away things >3 sigma
# away from median
if sigmaCut != None:
absRes=[]
for item in res:
absRes.append(abs(item))
sigma=stdev(absRes)
count=0
for item in absRes:
if item>(sigmaCut*sigma) \
and len(dataCopy)>2:
del dataCopy[count]
del res[count]
# Index of datalist gets out of
# sync with absRes as we delete
# items
count=count-1
count=count+1
# Biweight transform residuals
weights=biweightTransform(res, tuningConstant)
# Perform weighted fit, using biweight transforms
# of residuals as weight
wData=[]
for i in range(len(dataCopy)):
wData.append([dataCopy[i][0], dataCopy[i][1], dataCopy[i][2], weights[i][1]])
results=weightedLSFit(wData, "weights")
return results
#---------------------------------------------------------------------------------------------------
def cumulativeBinner(data, binMin, binMax, binTotal):
"""Bins the input data cumulatively.
@param data: input data, must be a one dimensional list
@type binMin: float
@param binMin: minimum value from which to bin data
@type binMax: float
@param binMax: maximum value from which to bin data
@type binTotal: int
@param binTotal: number of bins
@rtype: list
@return: binned data, in format [bin centre, frequency]
"""
#Bin data
binStep=float(binMax-binMin)/binTotal
bins=[]
totalItems=len(data)
for i in range(binTotal):
bins.append(0)
for item in data:
if item>(binMin+(i*binStep)):
bins[i]=bins[i]+1.0/totalItems
# Gnuplot requires points at bin midpoints
coords=[]
for i in range(binTotal):
coords.append([binMin+(float(i+0.5)*binStep), bins[i]])
return coords
#---------------------------------------------------------------------------------------------------
def binner(data, binMin, binMax, binTotal):
"""Bins the input data..
@param data: input data, must be a one dimensional list
@type binMin: float
@param binMin: minimum value from which to bin data
@type binMax: float
@param binMax: maximum value from which to bin data
@type binTotal: int
@param binTotal: number of bins
@rtype: list
@return: binned data, in format [bin centre, frequency]
"""
#Bin data
binStep=float(binMax-binMin)/binTotal
bins=[]
for i in range(binTotal):
bins.append(0)
for item in data:
if item>(binMin+(i*binStep)) \
and item<=(binMin+((i+1)*binStep)):
bins[i]=bins[i]+1
# Gnuplot requires points at bin midpoints
coords=[]
for i in range(binTotal):
coords.append([binMin+(float(i+0.5)*binStep), bins[i]])
return coords
#---------------------------------------------------------------------------------------------------
def weightedBinner(data, weights, binMin, binMax, binTotal):
"""Bins the input data, recorded frequency is sum of weights in bin.
@param data: input data, must be a one dimensional list
@type binMin: float
@param binMin: minimum value from which to bin data
@type binMax: float
@param binMax: maximum value from which to bin data
@type binTotal: int
@param binTotal: number of bins
@rtype: list
@return: binned data, in format [bin centre, frequency]
"""
#Bin data
binStep=float(binMax-binMin)/binTotal
bins=[]
for i in range(binTotal):
bins.append(0.0)
for item, weight in zip(data, weights):
if item>(binMin+(i*binStep)) \
and item<=(binMin+((i+1)*binStep)):
bins[i]=bins[i]+weight
# Gnuplot requires points at bin midpoints
coords=[]
for i in range(binTotal):
coords.append([binMin+(float(i+0.5)*binStep), bins[i]])
return coords
#---------------------------------------------------------------------------------------------------
|