This file is indexed.

/usr/lib/python3-escript-mpi/esys/escriptcore/symbolic/symbol.py is in python3-escript-mpi 5.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
##############################################################################
#
# Copyright (c) 2003-2017 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################

from __future__ import print_function, division

__copyright__="""Copyright (c) 2003-2017 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
__author__="Cihan Altinay"

"""
:var __author__: name of author
:var __copyright__: copyrights
:var __license__: licence agreement
:var __url__: url entry point on documentation
:var __version__: version
:var __date__: date of the version
"""

from esys.escriptcore.start import HAVE_SYMBOLS
import numpy
from esys.escriptcore.escriptcpp import Data, FunctionSpace
if HAVE_SYMBOLS:
    import sympy
    
__all__= ['Symbol']
   
class Symbol(object):
    """
    `Symbol` objects are placeholders for a single mathematical symbol, such as
    'x', or for arbitrarily complex mathematical expressions such as
    'c*x**4+alpha*exp(x)-2*sin(beta*x)', where 'alpha', 'beta', 'c', and 'x'
    are also Symbols (the symbolic 'atoms' of the expression).

    With the help of the 'Evaluator' class these symbols and expressions can
    be resolved by substituting numeric values and/or escript `Data` objects
    for the atoms. To facilitate the use of `Data` objects a `Symbol` has a
    shape (and thus a rank) as well as a dimension (see constructor).
    Symbols are useful to perform mathematical simplifications, compute
    derivatives and as coefficients for nonlinear PDEs which can be solved by
    the `NonlinearPDE` class.
    """

    # these are for compatibility with sympy.Symbol. lambdify checks these.
    is_Add=False
    is_Float=False

    def __init__(self, *args, **kwargs):
        """
        Initialises a new `Symbol` object in one of three ways::

            u=Symbol('u')

        returns a scalar symbol by the name 'u'.

            alpha=Symbol('alpha', (4,3))

        returns a rank 2 symbol with the shape (4,3), whose elements are
        named '[alpha]_i_j' (with i=0..3, j=0..2).

            a,b,c=symbols('a,b,c')
            x=Symbol([[a+b,0,0],[0,b-c,0],[0,0,c-a]])

        returns a rank 2 symbol with the shape (3,3) whose elements are
        explicitly specified by numeric values and other symbols/expressions
        within a list or numpy array.

        The dimensionality of the symbol can be specified through the ``dim``
        keyword. All other keywords are passed to the underlying symbolic
        library (currently sympy).

        :param args: initialisation arguments as described above
        :keyword dim: dimensionality of the new Symbol (default: 2)
        :type dim: ``int``
        """
        if not HAVE_SYMBOLS:
            raise RuntimeError("Trying to instantiate a Symbol but sympy not available")
        if 'dim' in kwargs:
            self._dim=kwargs.pop('dim')
        else:
            self._dim=-1 # undefined

        if 'subs' in kwargs:
            self._subs=kwargs.pop('subs')
        else:
            self._subs={}

        if len(args)==1:
            arg=args[0]
            if isinstance(arg, str):
                if arg.find('[')>=0 or arg.find(']')>=0:
                    raise ValueError("Name must not contain '[' or ']'")
                self._arr=numpy.array(sympy.Symbol(arg, **kwargs))
            elif hasattr(arg, "__array__") or isinstance(arg, list):
                if isinstance(arg, list): arg=numpy.array(arg)
                arr=arg.__array__()
                if len(arr.shape)>4:
                    raise ValueError("Symbol only supports tensors up to order 4")
                res=numpy.empty(arr.shape, dtype=object)
                for idx in numpy.ndindex(arr.shape):
                    if hasattr(arr[idx], "item"):
                        res[idx]=arr[idx].item()
                    else:
                        res[idx]=arr[idx]
                self._arr=res
                if isinstance(arg, Symbol):
                    self._subs.update(arg._subs)
                    if self._dim==-1:
                        self._dim=arg._dim
            elif isinstance(arg, sympy.Basic):
                self._arr=numpy.array(arg)
            else:
                raise TypeError("Unsupported argument type %s"%str(type(arg)))
        elif len(args)==2:
            if not isinstance(args[0], str):
                raise TypeError("First argument must be a string")
            if not isinstance(args[1], tuple):
                raise TypeError("Second argument must be a tuple")
            name=args[0]
            shape=args[1]
            if name.find('[')>=0 or name.find(']')>=0:
                raise ValueError("Name must not contain '[' or ']'")
            if len(shape)>4:
                raise ValueError("Symbol only supports tensors up to order 4")
            if len(shape)==0:
                self._arr=numpy.array(sympy.Symbol(name, **kwargs))
            else:
                try:
                    self._arr=sympy.symarray(shape, '['+name+']')
                except TypeError:
                    self._arr=sympy.symarray('['+name+']', shape)
        else:
            raise TypeError("Unsupported number of arguments")
        if self._arr.ndim==0:
            self.name=str(self._arr.item())
        else:
            self.name=str(self._arr.tolist())

    def __repr__(self):
        return str(self._arr)

    def __str__(self):
        return str(self._arr)

    def __eq__(self, other):
        if type(self) is not type(other):
            return False
        if self.getRank()!=other.getRank():
            return False
        if self.getShape()!=other.getShape():
            return False
        return (self._arr==other._arr).all()
        
    def __hash__(self):
        return id(self)

    def __getitem__(self, key):
        """
        Returns an element of this symbol which must have rank >0.
        Unlike item() this method converts sympy objects and numpy arrays into
        escript Symbols in order to facilitate expressions that require
        element access, such as: grad(u)[1]+x

        :param key: (nd-)index of item to be returned
        :return: the requested element
        :rtype: ``Symbol``, ``int``, or ``float``
        """
        res=self._arr[key]
        # replace sympy Symbols/expressions by escript Symbols
        if isinstance(res, sympy.Basic) or isinstance(res, numpy.ndarray):
            res=Symbol(res)
            res._dim=self._dim
        res._subs.update(self._subs)
        return res

    def __setitem__(self, key, value):
        if isinstance(value, Symbol):
            self._subs.update(value._subs)
            if value.getRank()==0:
                self._arr[key]=value.item()
            elif hasattr(self._arr[key], "shape"):
                if self._arr[key].shape==value.getShape():
                    for idx in numpy.ndindex(self._arr[key].shape):
                        self._arr[key][idx]=value[idx].item()
                else:
                    raise ValueError("Wrong shape of value")
            else:
                raise ValueError("Wrong shape of value")
        elif isinstance(value, sympy.Basic):
            self._arr[key]=value
        elif hasattr(value, "__array__"):
            self._arr[key]=map(sympy.sympify,value.flat)
        else:
            self._arr[key]=sympy.sympify(value)

    def __iter__(self):
        return self._arr.__iter__

    def __array__(self, t=None):
        if t:
            return self._arr.astype(t)
        else:
            return self._arr

    def _sympy_(self):
        """
        """
        return self.applyfunc(sympy.sympify)

    def getDim(self):
        """
        Returns the spatial dimensionality of this symbol.

        :return: the symbol's spatial dimensionality, or -1 if undefined
        :rtype: ``int``
        """
        return self._dim

    def getRank(self):
        """
        Returns the rank of this symbol.

        :return: the symbol's rank which is equal to the length of the shape.
        :rtype: ``int``
        """
        return self._arr.ndim

    def getShape(self):
        """
        Returns the shape of this symbol.

        :return: the symbol's shape
        :rtype: ``tuple`` of ``int``
        """
        return self._arr.shape

    def getDataSubstitutions(self):
        """
        Returns a dictionary of symbol names and the escript ``Data`` objects
        they represent within this Symbol.

        :return: the dictionary of substituted ``Data`` objects
        :rtype: ``dict``
        """
        return self._subs

    def item(self, *args):
        """
        Returns an element of this symbol.
        This method behaves like the item() method of numpy.ndarray.
        If this is a scalar Symbol, no arguments are allowed and the only
        element in this Symbol is returned.
        Otherwise, 'args' specifies a flat or nd-index and the element at
        that index is returned.

        :param args: index of item to be returned
        :return: the requested element
        :rtype: ``sympy.Symbol``, ``int``, or ``float``
        """
        return self._arr.item(args)

    def atoms(self, *types):
        """
        Returns the atoms that form the current Symbol.

        By default, only objects that are truly atomic and cannot be divided
        into smaller pieces are returned: symbols, numbers, and number
        symbols like I and pi. It is possible to request atoms of any type,
        however.

        Note that if this symbol contains components such as [x]_i_j then
        only their main symbol 'x' is returned.

        :param types: types to restrict result to
        :return: list of atoms of specified type
        :rtype: ``set``
        """
        for t in types:
            if t == type(self):
                types=types+(type(sympy.Symbol("t")),)
        s=set()
        for el in self._arr.flat:
            if isinstance(el,sympy.Basic):
                atoms=el.atoms(*types)
                for a in atoms:
                    if a.is_Symbol:
                        n,c=Symbol._symComp(a)
                        s.add(sympy.Symbol(n))
                    else:
                        s.add(a)
            elif len(types)==0 or type(el) in types:
                s.add(el)
        return s

    def _sympystr_(self, printer):
        # compatibility with sympy 1.6
        return self._sympystr(printer)

    def _sympystr(self, printer):
        return self.lambdarepr()

    def lambdarepr(self):
        """
        """
        from sympy.printing.lambdarepr import lambdarepr
        temp_arr=numpy.empty(self.getShape(), dtype=object)
        for idx,el in numpy.ndenumerate(self._arr):
            atoms=el.atoms(sympy.Symbol) if isinstance(el,sympy.Basic) else []
            # create a dictionary to convert names like [x]_0_0 to x[0,0]
            symdict={}
            for a in atoms:
                n,c=Symbol._symComp(a)
                if len(c)>0:
                    c=[str(i) for i in c]
                    symstr=n+'['+','.join(c)+']'
                else:
                    symstr=n
                symdict[a.name]=symstr
            s=lambdarepr(el)
            for key in symdict:
                s=s.replace(key, symdict[key])
            temp_arr[idx]=s
        if self.getRank()==0:
            return temp_arr.item()
        else:
            return 'combineData(%s,%s)'%(str(temp_arr.tolist()).replace("'",""),str(self.getShape()))

    def coeff(self, x, expand=True):
        """
        Returns the coefficient of the term "x" or 0 if there is no "x".

        If "x" is a scalar symbol then "x" is searched in all components of
        this symbol. Otherwise the shapes must match and the coefficients are
        checked component by component.

        Example::
        
            x=Symbol('x', (2,2))
            y=3*x
            print y.coeff(x)
            print y.coeff(x[1,1])

        will print::

            [[3 3]
             [3 3]]

            [[0 0]
             [0 3]]

        :param x: the term whose coefficients are to be found
        :type x: ``Symbol``, ``numpy.ndarray``, `list`
        :return: the coefficient(s) of the term
        :rtype: ``Symbol``
        """
        self._ensureShapeCompatible(x)
        if hasattr(x, '__array__'):
            y=x.__array__()
        else:
            y=numpy.array(x)

        if y.ndim>0:
            result=numpy.zeros(self.getShape(), dtype=object)
            for idx in numpy.ndindex(y.shape):
                if y[idx]!=0:
                    res=self._arr[idx].coeff(y[idx], expand)
                    if res is not None:
                        result[idx]=res
        elif y.item()==0:
            result=numpy.zeros(self.getShape(), dtype=object)
        else:
            coeff_item=lambda item: getattr(item, 'coeff')(y.item(), expand)
            none_to_zero=lambda item: 0 if item is None else item
            result=self.applyfunc(coeff_item)
            result=result.applyfunc(none_to_zero)
        res=Symbol(result, dim=self._dim)
        for i in self._subs: res.subs(i, self._subs[i])
        return res

    def subs(self, old, new):
        """
        Substitutes an expression.
        """
        dataSubs={}
        old._ensureShapeCompatible(new)
        if isinstance(new, Data):
            if old.getShape()==() and new.getShape()!=():
                raise ValueError("Only a scalar Data object can be substituted into a scalar\
                        symbol")
            subs=self._subs.copy()
            name='data'+str(id(new))
            newsym=Symbol(name, new.getShape(), dim=self._dim)
            subs.update({Symbol(name):new})
            result=numpy.empty(self.getShape(), dtype=object)
            for idx in numpy.ndindex(self.getShape()):
                result[idx]=self._arr[idx].subs(old._arr[idx], newsym._arr[idx])
            result=Symbol(result, dim=self._dim, subs=subs)
        elif isinstance(old, Symbol) and old.getRank()>0:
            if isinstance(new, Symbol):
                dataSubs=new.getDataSubstitutions()    
            if hasattr(new, '__array__'):
                new=new.__array__()
            else:
                new=numpy.array(new)

            result=numpy.empty(self.getShape(), dtype=object)
            if new.ndim>0:
                for idx in numpy.ndindex(self.getShape()):
                    result[idx]=self._arr[idx].subs(old._arr[idx], new[idx])
            else: # substitute scalar for non-scalar
                for idx in numpy.ndindex(self.getShape()):
                    result[idx]=self._arr[idx].subs(old._arr[idx], new.item())
            result=Symbol(result, dim=self._dim, subs=self._subs)
        else: # scalar
            if isinstance(new, Symbol):
                dataSubs=new.getDataSubstitutions()    
                new=new.item()
            if isinstance(old, Symbol):
                old=old.item()
            subs_item=lambda item: getattr(item, 'subs')(old, new)
            result=self.applyfunc(subs_item)
        result._subs.update(dataSubs)
        return result

    def diff(self, *symbols, **assumptions):
        """
        """
        symbols=Symbol._symbolgen(*symbols)
        result=Symbol(self._arr, dim=self._dim, subs=self._subs)
        for s in symbols:
            if isinstance(s, Symbol):
                if s.getRank()==0:
                    diff_item=lambda item: getattr(item, 'diff')(s._arr.item(), **assumptions)
                    result=result.applyfunc(diff_item)
                elif s.getRank()==1:
                    dim=s.getShape()[0]
                    out=result._arr.copy().reshape(self.getShape()+(1,)).repeat(dim,axis=self.getRank())
                    for d in range(dim):
                        for idx in numpy.ndindex(self.getShape()):
                            index=idx+(d,)
                            out[index]=out[index].diff(s[d].item(), **assumptions)
                    result=Symbol(out, dim=self._dim, subs=self._subs)
                else:
                    raise ValueError("diff: argument must have rank 0 or 1")
            else:
                diff_item=lambda item: getattr(item, 'diff')(s, **assumptions)
                result=result.applyfunc(diff_item)
        return result

    def grad(self, where=None):
        """
        Returns a symbol which represents the gradient of this symbol.
        :type where: ``Symbol``, ``FunctionSpace``
        """
        if self._dim < 0:
            raise ValueError("grad: cannot compute gradient as symbol has undefined dimensionality")
        subs=self._subs
        if isinstance(where, Symbol):
            if where.getRank()>0:
                raise ValueError("grad: 'where' must be a scalar symbol")
            where=where._arr.item()
        elif isinstance(where, FunctionSpace):
            name='fs'+str(id(where))
            fssym=Symbol(name)
            subs=self._subs.copy()
            subs.update({fssym:where})
            where=name

        from .functions import grad_n
        out=self._arr.copy().reshape(self.getShape()+(1,)).repeat(self._dim,axis=self.getRank())
        for d in range(self._dim):
            for idx in numpy.ndindex(self.getShape()):
                index=idx+(d,)
                if where is None:
                    out[index]=grad_n(out[index],d)
                else:
                    out[index]=grad_n(out[index],d,where)
        return Symbol(out, dim=self._dim, subs=subs)

    def inverse(self):
        """
        """
        if not self.getRank()==2:
            raise TypeError("inverse: Only rank 2 supported")
        s=self.getShape()
        if not s[0] == s[1]:
            raise ValueError("inverse: Only square shapes supported")
        out=numpy.zeros(s, numpy.object)
        arr=self._arr
        if s[0]==1:
            if arr[0,0].is_zero:
                raise ZeroDivisionError("inverse: Symbol not invertible")
            out[0,0]=1./arr[0,0]
        elif s[0]==2:
            A11=arr[0,0]
            A12=arr[0,1]
            A21=arr[1,0]
            A22=arr[1,1]
            D = A11*A22-A12*A21
            if D.is_zero:
                raise ZeroDivisionError("inverse: Symbol not invertible")
            D=1./D
            out[0,0]= A22*D
            out[1,0]=-A21*D
            out[0,1]=-A12*D
            out[1,1]= A11*D
        elif s[0]==3:
            A11=arr[0,0]
            A21=arr[1,0]
            A31=arr[2,0]
            A12=arr[0,1]
            A22=arr[1,1]
            A32=arr[2,1]
            A13=arr[0,2]
            A23=arr[1,2]
            A33=arr[2,2]
            D = A11*(A22*A33-A23*A32)+ A12*(A31*A23-A21*A33)+A13*(A21*A32-A31*A22)
            if D.is_zero:
                raise ZeroDivisionError("inverse: Symbol not invertible")
            D=1./D
            out[0,0]=(A22*A33-A23*A32)*D
            out[1,0]=(A31*A23-A21*A33)*D
            out[2,0]=(A21*A32-A31*A22)*D
            out[0,1]=(A13*A32-A12*A33)*D
            out[1,1]=(A11*A33-A31*A13)*D
            out[2,1]=(A12*A31-A11*A32)*D
            out[0,2]=(A12*A23-A13*A22)*D
            out[1,2]=(A13*A21-A11*A23)*D
            out[2,2]=(A11*A22-A12*A21)*D
        else:
           raise TypeError("inverse: Only matrix dimensions 1,2,3 are supported")
        return Symbol(out, dim=self._dim, subs=self._subs)

    def swap_axes(self, axis0, axis1):
        """
        """
        return Symbol(numpy.swapaxes(self._arr, axis0, axis1), dim=self._dim, subs=self._subs)

    def tensorProduct(self, other, axis_offset):
        """
        """
        arg0_c=self._arr.copy()
        sh0=self.getShape()
        if isinstance(other, Symbol):
            arg1_c=other._arr.copy()
            sh1=other.getShape()
            dim=other._dim if self._dim < 0 else self._dim
        else:
            arg1_c=other.copy()
            sh1=other.shape
            dim=self._dim
        d0,d1,d01=1,1,1
        for i in sh0[:self._arr.ndim-axis_offset]: d0*=i
        for i in sh1[axis_offset:]: d1*=i
        for i in sh1[:axis_offset]: d01*=i
        arg0_c.resize((d0,d01))
        arg1_c.resize((d01,d1))
        out=numpy.zeros((d0,d1),numpy.object)
        for i0 in range(d0):
            for i1 in range(d1):
                out[i0,i1]=numpy.sum(arg0_c[i0,:]*arg1_c[:,i1])
        out.resize(sh0[:self._arr.ndim-axis_offset]+sh1[axis_offset:])
        subs=self._subs.copy()
        subs.update(other._subs)
        return Symbol(out, dim=dim, subs=subs)

    def transposedTensorProduct(self, other, axis_offset):
        """
        """
        arg0_c=self._arr.copy()
        sh0=self.getShape()
        if isinstance(other, Symbol):
            arg1_c=other._arr.copy()
            sh1=other.getShape()
            dim=other._dim if self._dim < 0 else self._dim
        else:
            arg1_c=other.copy()
            sh1=other.shape
            dim=self._dim
        d0,d1,d01=1,1,1
        for i in sh0[axis_offset:]: d0*=i
        for i in sh1[axis_offset:]: d1*=i
        for i in sh1[:axis_offset]: d01*=i
        arg0_c.resize((d01,d0))
        arg1_c.resize((d01,d1))
        out=numpy.zeros((d0,d1),numpy.object)
        for i0 in range(d0):
            for i1 in range(d1):
                out[i0,i1]=numpy.sum(arg0_c[:,i0]*arg1_c[:,i1])
        out.resize(sh0[axis_offset:]+sh1[axis_offset:])
        subs=self._subs.copy()
        subs.update(other._subs)
        return Symbol(out, dim=dim, subs=subs)

    def tensorTransposedProduct(self, other, axis_offset):
        """
        """
        arg0_c=self._arr.copy()
        sh0=self.getShape()
        if isinstance(other, Symbol):
            arg1_c=other._arr.copy()
            sh1=other.getShape()
            r1=other.getRank()
            dim=other._dim if self._dim < 0 else self._dim
        else:
            arg1_c=other.copy()
            sh1=other.shape
            r1=other.ndim
            dim=self._dim
        d0,d1,d01=1,1,1
        for i in sh0[:self._arr.ndim-axis_offset]: d0*=i
        for i in sh1[:r1-axis_offset]: d1*=i
        for i in sh1[r1-axis_offset:]: d01*=i
        arg0_c.resize((d0,d01))
        arg1_c.resize((d1,d01))
        out=numpy.zeros((d0,d1),numpy.object)
        for i0 in range(d0):
            for i1 in range(d1):
                out[i0,i1]=numpy.sum(arg0_c[i0,:]*arg1_c[i1,:])
        out.resize(sh0[:self._arr.ndim-axis_offset]+sh1[:r1-axis_offset])
        subs=self._subs.copy()
        subs.update(other._subs)
        return Symbol(out, dim=dim, subs=subs)

    def trace(self, axis_offset):
        """
        Returns the trace of this Symbol.
        """
        sh=self.getShape()
        s1=1
        for i in range(axis_offset): s1*=sh[i]
        s2=1
        for i in range(axis_offset+2,len(sh)): s2*=sh[i]
        arr_r=numpy.reshape(self._arr,(s1,sh[axis_offset],sh[axis_offset],s2))
        out=numpy.zeros([s1,s2],object)
        for i1 in range(s1):
            for i2 in range(s2):
                for j in range(sh[axis_offset]):
                    out[i1,i2]+=arr_r[i1,j,j,i2]
        out.resize(sh[:axis_offset]+sh[axis_offset+2:])
        return Symbol(out, dim=self._dim, subs=self._subs)

    def transpose(self, axis_offset):
        """
        Returns the transpose of this Symbol.
        """
        if axis_offset is None:
            axis_offset=int(self._arr.ndim/2)
        axes=list(range(axis_offset, self._arr.ndim))+list(range(0,axis_offset))
        return Symbol(numpy.transpose(self._arr, axes=axes), dim=self._dim, subs=self._subs)

    def applyfunc(self, f, on_type=None):
        """
        Applies the function `f` to all elements (if on_type is None) or to
        all elements of type `on_type`.
        """
        assert callable(f)
        if self._arr.ndim==0:
            if on_type is None or isinstance(self._arr.item(), on_type):
                el=f(self._arr.item())
            else:
                el=self._arr.item()
            if el is not None:
                out=Symbol(el, dim=self._dim, subs=self._subs)
            else:
                return el
        else:
            out=numpy.empty(self.getShape(), dtype=object)
            for idx in numpy.ndindex(self.getShape()):
                if on_type is None or isinstance(self._arr[idx],on_type):
                    out[idx]=f(self._arr[idx])
                else:
                    out[idx]=self._arr[idx]
            out=Symbol(out, dim=self._dim, subs=self._subs)
        return out

    def expand(self):
        """
        Applies the sympy.expand operation on all elements in this symbol
        """
        return self.applyfunc(sympy.expand, sympy.Basic)

    def simplify(self):
        """
        Applies the sympy.simplify operation on all elements in this symbol
        """
        return self.applyfunc(sympy.simplify, sympy.Basic)
    
    def evalf(self):
        """
        Applies the sympy.evalf operation on all elements in this symbol
        """
        evalf_s=lambda item: getattr(item, 'evalf')()
        return self.applyfunc(evalf_s, sympy.Basic)
    # unary/binary operators follow

    def __pos__(self):
        return self

    def __neg__(self):
        return Symbol(-self._arr, dim=self._dim, subs=self._subs)

    def __abs__(self):
        return Symbol(abs(self._arr), dim=self._dim, subs=self._subs)

    def _ensureShapeCompatible(self, other):
        """
        Checks for compatible shapes for binary operations.
        Raises TypeError if not compatible.
        """
        sh0=self.getShape()
        if isinstance(other, Symbol) or isinstance(other, Data):
            sh1=other.getShape()
        elif isinstance(other, numpy.ndarray):
            sh1=other.shape
        elif isinstance(other, list):
            sh1=numpy.array(other).shape
        elif isinstance(other,int) or isinstance(other,float) or isinstance(other,sympy.Basic):
            sh1=()
        else:
            raise TypeError("Unsupported argument type '%s' for operation"%other.__class__.__name__)
        if not sh0==sh1 and not sh0==() and not sh1==():
            raise TypeError("Incompatible shapes for operation")

    def __binaryop(self, op, other):
        """
        Helper for binary operations that checks types, shapes etc.
        """
        self._ensureShapeCompatible(other)
        if isinstance(other, Symbol):
            subs=self._subs.copy()
            subs.update(other._subs)
            dim=other._dim if self._dim < 0 else self._dim
            return Symbol(getattr(self._arr, op)(other._arr), dim=dim, subs=subs)
        if isinstance(other, Data):
            name='data'+str(id(other))
            othersym=Symbol(name, other.getShape(), dim=self._dim)
            subs=self._subs.copy()
            subs.update({Symbol(name):other})
            return Symbol(getattr(self._arr, op)(othersym._arr), dim=self._dim, subs=subs)
        return Symbol(getattr(self._arr, op)(other), dim=self._dim, subs=self._subs)

    def __add__(self, other):
        return self.__binaryop('__add__', other)

    def __radd__(self, other):
        return self.__binaryop('__radd__', other)

    def __sub__(self, other):
        return self.__binaryop('__sub__', other)

    def __rsub__(self, other):
        return self.__binaryop('__rsub__', other)

    def __mul__(self, other):
        return self.__binaryop('__mul__', other)

    def __rmul__(self, other):
        return self.__binaryop('__rmul__', other)

    def __div__(self, other):
        return self.__binaryop('__div__', other)

    def __truediv__(self, other):
        return self.__binaryop('__truediv__', other)
            
    def __rdiv__(self, other):
        return self.__binaryop('__rdiv__', other)
    
    def __rtruediv__(self, other):
        return self.__binaryop('__rtruediv__', other)     
    def __pow__(self, other):
        return self.__binaryop('__pow__', other)

    def __rpow__(self, other):
        return self.__binaryop('__rpow__', other)

    # static methods

    @staticmethod
    def _symComp(sym):
        """
        """
        n=sym.name
        a=n.split('[')
        if len(a)!=2:
            return n,()
        a=a[1].split(']')
        if len(a)!=2:
            return n,()
        name=a[0]
        comps=[int(i) for i in a[1].split('_')[1:]]
        return name,tuple(comps)

    @staticmethod
    def _symbolgen(*symbols):
        """
        Generator of all symbols in the argument of diff().
        (cf. sympy.Derivative._symbolgen)

        Example:
        >> ._symbolgen(x, 3, y)
        (x, x, x, y)
        >> ._symbolgen(x, 10**6)
        (x, x, x, x, x, x, x, ...)
        """
        from itertools import repeat
        last_s = symbols[len(symbols)-1]
        if not isinstance(last_s, Symbol):
            last_s=sympy.sympify(last_s)
        for i in range(len(symbols)):
            s = symbols[i]
            if not isinstance(s, Symbol):
                s=sympy.sympify(s)
            next_s = None
            if s != last_s:
                next_s = symbols[i+1]
                if not isinstance(next_s, Symbol):
                    next_s=sympy.sympify(next_s)

            if isinstance(s, sympy.Integer):
                continue
            elif isinstance(s, Symbol) or isinstance(s, sympy.Symbol):
                # handle cases like (x, 3)
                if isinstance(next_s, sympy.Integer):
                    # yield (x, x, x)
                    for copy_s in repeat(s,int(next_s)):
                        yield copy_s
                else:
                    yield s
            else:
                yield s