This file is indexed.

/usr/lib/python3/dist-packages/fabio/OXDimage.py is in python3-fabio 0.6.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
# coding: utf-8
#
#    Project: X-ray image reader
#             https://github.com/silx-kit/fabio
#
#
#    Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE

"""Reads Oxford Diffraction Sapphire 3 images

Authors:
........
* Henning O. Sorensen & Erik Knudsen:
  Center for Fundamental Research: Metal Structures in Four Dimensions;
  Risoe National Laboratory;
  Frederiksborgvej 399;
  DK-4000 Roskilde;
  email:erik.knudsen@risoe.dk
* Jon Wright, Jérôme Kieffer & Gaël Goret:
  European Synchrotron Radiation Facility;
  Grenoble (France)

"""

# Get ready for python3:
from __future__ import with_statement, print_function

__contact__ = "Jerome.Kieffer@esrf.fr"
__license__ = "MIT"
__copyright__ = "Jérôme Kieffer"
__date__ = "27/07/2017"

import time
import logging
import struct
logger = logging.getLogger(__name__)
import numpy
from .fabioimage import FabioImage
from .compression import decTY1, compTY1
from .fabioutils import to_str
from .utils.mathutils import rad2deg, deg2rad

DETECTOR_TYPES = {0: 'Sapphire/KM4CCD (1x1: 0.06mm, 2x2: 0.12mm)',
                  1: 'Sapphire2-Kodak (1x1: 0.06mm, 2x2: 0.12mm)',
                  2: 'Sapphire3-Kodak (1x1: 0.03mm, 2x2: 0.06mm, 4x4: 0.12mm)',
                  3: 'Onyx-Kodak (1x1: 0.06mm, 2x2: 0.12mm, 4x4: 0.24mm)',
                  4: 'Unknown Oxford diffraction detector',
                  7: 'Pilatus 300K-Dectris'}

DEFAULT_HEADERS = {'Header Version': 'OD SAPPHIRE  3.0',
                   'Compression': "TY1",
                   'Header Size In Bytes': 5120,
                   "ASCII Section size in Byte": 256,
                   "General Section size in Byte": 512,
                   "Special Section size in Byte": 768,
                   "KM4 Section size in Byte": 1024,
                   "Statistic Section in Byte": 512,
                   "History Section in Byte": 2048,
                   'NSUPPLEMENT': 0
                   }


class OxdImage(FabioImage):
    """
    Oxford Diffraction Sapphire 3 images reader/writer class

    Note: We assume the binary format is alway little-endian, is this True ?
    """

    DESCRIPTION = "Oxford Diffraction Sapphire 3 file format"

    DEFAULT_EXTENSIONS = ["img"]

    def _readheader(self, infile):

        infile.seek(0)

        # Ascii header part 256 byes long
        self.header['Header Version'] = to_str(infile.readline()[:-2])
        block = infile.readline()
        self.header['Compression'] = to_str(block[12:15])
        block = infile.readline()
        self.header['NX'] = int(block[3:7])
        self.header['NY'] = int(block[11:15])
        self.header['OI'] = int(block[19:26])
        self.header['OL'] = int(block[30:37])
        block = infile.readline()
        self.header['Header Size In Bytes'] = int(block[8:15])
        self.header['General Section size in Byte'] = int(block[19:26])
        self.header['Special Section size in Byte'] = int(block[30:37])
        self.header['KM4 Section size in Byte'] = int(block[41:48])
        self.header['Statistic Section in Byte'] = int(block[52:59])
        self.header['History Section in Byte'] = int(block[63:])
        block = infile.readline()
        self.header['NSUPPLEMENT'] = int(block[12:19])
        block = infile.readline()
        self.header['Time'] = to_str(block[5:29])

        header_version = float(self.header['Header Version'].split()[2])
        if header_version < 4.0:
            # for all our test files with header version 3.0
            # ascii_section_size == 256
            # but that's a legacy code
            ascii_section_size = self.header['Header Size In Bytes'] - (
                self.header['General Section size in Byte'] +
                self.header['Special Section size in Byte'] +
                self.header['KM4 Section size in Byte'] +
                self.header['Statistic Section in Byte'] +
                self.header['History Section in Byte'])
        else:
            ascii_section_size = DEFAULT_HEADERS["ASCII Section size in Byte"]
        self.header["ASCII Section size in Byte"] = ascii_section_size

        # Skip to general section (NG) 512 byes long <<<<<<"
        infile.seek(self.header["ASCII Section size in Byte"])
        block = infile.read(self.header['General Section size in Byte'])
        self.header['Binning in x'] = struct.unpack("<H", block[0:2])[0]
        self.header['Binning in y'] = struct.unpack("<H", block[2:4])[0]
        self.header['Detector size x'] = struct.unpack("<H", block[22:24])[0]
        self.header['Detector size y'] = struct.unpack("<H", block[24:26])[0]
        self.header['Pixels in x'] = struct.unpack("<H", block[26:28])[0]
        self.header['Pixels in y'] = struct.unpack("<H", block[28:30])[0]
        self.header['No of pixels'] = struct.unpack("<I", block[36:40])[0]

        # Speciel section (NS) 768 bytes long
        block = infile.read(self.header['Special Section size in Byte'])
        self.header['Gain'] = struct.unpack("<d", block[56:64])[0]
        self.header['Overflows flag'] = struct.unpack("<h", block[464:466])[0]
        self.header['Overflow after remeasure flag'] = struct.unpack("<h", block[466:468])[0]
        self.header['Overflow threshold'] = struct.unpack("<i", block[472:476])[0]
        self.header['Exposure time in sec'] = struct.unpack("<d", block[480:488])[0]
        self.header['Overflow time in sec'] = struct.unpack("<d", block[488:496])[0]
        self.header['Monitor counts of raw image 1'] = struct.unpack("<i", block[528:532])[0]
        self.header['Monitor counts of raw image 2'] = struct.unpack("<i", block[532:536])[0]
        self.header['Monitor counts of overflow raw image 1'] = struct.unpack("<i", block[536:540])[0]
        self.header['Monitor counts of overflow raw image 2'] = struct.unpack("<i", block[540:544])[0]
        self.header['Unwarping'] = struct.unpack("<i", block[544:548])[0]
        self.header['Detector type'] = DETECTOR_TYPES[struct.unpack("<i", block[548:552])[0]]
        self.header['Real pixel size x (mm)'] = struct.unpack("<d", block[568:576])[0]
        self.header['Real pixel size y (mm)'] = struct.unpack("<d", block[576:584])[0]

        # KM4 goniometer section (NK) 1024 bytes long
        block = infile.read(self.header['KM4 Section size in Byte'])
        # Spatial correction file
        self.header['Spatial correction file'] = to_str(block[26:272].strip(b"\x00"))
        self.header['Spatial correction file date'] = to_str(block[0:26].strip(b"\x00"))
        # Angles are in steps due to stepper motors - conversion factor RAD
        # angle[0] = omega, angle[1] = theta, angle[2] = kappa, angle[3] = phi,
        start_angles_step = numpy.fromstring(block[284:304], numpy.int32)
        end_angles_step = numpy.fromstring(block[324:344], numpy.int32)
        step2rad = numpy.fromstring(block[368:408], numpy.float)
        zero_correction_soft_step = numpy.fromstring(block[512:532], numpy.int32)
        if not numpy.little_endian:
            start_angles_step.byteswap(True)
            end_angles_step.byteswap(True)
            step2rad.byteswap(True)
            zero_correction_soft_step.byteswap(True)
        step_angles_deg = rad2deg(step2rad)
        # calc angles
        start_angles_deg = start_angles_step * step_angles_deg
        end_angles_deg = end_angles_step * step_angles_deg
        self.header['Omega start in deg'] = start_angles_deg[0]
        self.header['Theta start in deg'] = start_angles_deg[1]
        self.header['Kappa start in deg'] = start_angles_deg[2]
        self.header['Phi start in deg'] = start_angles_deg[3]
        self.header['Omega end in deg'] = end_angles_deg[0]
        self.header['Theta end in deg'] = end_angles_deg[1]
        self.header['Kappa end in deg'] = end_angles_deg[2]
        self.header['Phi end in deg'] = end_angles_deg[3]
        self.header['Omega step in deg'] = step_angles_deg[0]
        self.header['Theta step in deg'] = step_angles_deg[1]
        self.header['Kappa step in deg'] = step_angles_deg[2]
        self.header['Phi step in deg'] = step_angles_deg[3]

        zero_correction_soft_deg = zero_correction_soft_step * step_angles_deg
        self.header['Omega zero corr. in deg'] = zero_correction_soft_deg[0]
        self.header['Theta zero corr. in deg'] = zero_correction_soft_deg[1]
        self.header['Kappa zero corr. in deg'] = zero_correction_soft_deg[2]
        self.header['Phi zero corr. in deg'] = zero_correction_soft_deg[3]
        # Beam rotation about e2,e3
        self.header['Beam rot in deg (e2)'] = struct.unpack("<d", block[552:560])[0]
        self.header['Beam rot in deg (e3)'] = struct.unpack("<d", block[560:568])[0]
        # Wavelenghts alpha1, alpha2, beta
        self.header['Wavelength alpha1'] = struct.unpack("<d", block[568:576])[0]
        self.header['Wavelength alpha2'] = struct.unpack("<d", block[576:584])[0]
        self.header['Wavelength alpha'] = struct.unpack("<d", block[584:592])[0]
        self.header['Wavelength beta'] = struct.unpack("<d", block[592:600])[0]

        # Detector tilts around e1,e2,e3 in deg
        self.header['Detector tilt e1 in deg'] = struct.unpack("<d", block[640:648])[0]
        self.header['Detector tilt e2 in deg'] = struct.unpack("<d", block[648:656])[0]
        self.header['Detector tilt e3 in deg'] = struct.unpack("<d", block[656:664])[0]

        # Beam center
        self.header['Beam center x'] = struct.unpack("<d", block[664:672])[0]
        self.header['Beam center y'] = struct.unpack("<d", block[672:680])[0]
        # Angle (alpha) between kappa rotation axis and e3 (ideally 50 deg)
        self.header['Alpha angle in deg'] = struct.unpack("<d", block[680:688])[0]
        # Angle (beta) between phi rotation axis and e3 (ideally 0 deg)
        self.header['Beta angle in deg'] = struct.unpack("<d", block[688:696])[0]

        # Detector distance
        self.header['Distance in mm'] = struct.unpack("<d", block[712:720])[0]
        # Statistics section (NS) 512 bytes long
        block = infile.read(self.header['Statistic Section in Byte'])
        self.header['Stat: Min '] = struct.unpack("<i", block[0:4])[0]
        self.header['Stat: Max '] = struct.unpack("<i", block[4:8])[0]
        self.header['Stat: Average '] = struct.unpack("<d", block[24:32])[0]
        self.header['Stat: Stddev '] = numpy.sqrt(struct.unpack("<d", block[32:40])[0])
        self.header['Stat: Skewness '] = struct.unpack("<d", block[40:48])[0]

        # History section (NH) 2048 bytes long
        block = infile.read(self.header['History Section in Byte'])
        self.header['Flood field image'] = to_str(block[99:126].strip(b"\x00"))

    def read(self, fname, frame=None):
        """
        Read in header into self.header and
            the data   into self.data
        """
        self.header = self.check_header()
        self.resetvals()
        with self._open(fname) as infile:
            self._readheader(infile)

            infile.seek(self.header['Header Size In Bytes'])

            # Compute image size
            try:
                self.dim1 = int(self.header['NX'])
                self.dim2 = int(self.header['NY'])
            except (ValueError, KeyError):
                raise IOError("Oxford  file %s is corrupted, cannot read it" % str(fname))

            if self.header['Compression'] == 'TY1':
                logger.debug("Compressed with the KM4CCD compression")
                raw8 = infile.read(self.dim1 * self.dim2)
                raw16 = None
                raw32 = None
                if self.header['OI'] > 0:
                    raw16 = infile.read(self.header['OI'] * 2)
                if self.header['OL'] > 0:
                    raw32 = infile.read(self.header['OL'] * 4)

                # endianess is handled at the decompression level
                raw_data = decTY1(raw8, raw16, raw32)
                bytecode = raw_data.dtype
            elif self.header['Compression'] == 'TY5':
                logger.info("Compressed with the TY5 compression")
                bytecode = numpy.int8
                self.bpp = 1
                raw8 = infile.read(self.dim1 * self.dim2)
                raw_data = numpy.fromstring(raw8, bytecode)

                if self.header['OI'] > 0:
                    self.raw16 = infile.read(self.header['OI'] * 2)
                else:
                    self.raw16 = b""
                if self.header['OL'] > 0:
                    self.raw32 = infile.read(self.header['OL'] * 4)
                else:
                    self.raw32 = b""
                self.rest = infile.read()
                self.blob = raw8 + self.raw16 + self.raw32 + self.rest
                raw_data = self.dec_TY5(raw8 + self.raw16 + self.raw32)
            else:
                bytecode = numpy.int32
                self.bpp = len(numpy.array(0, bytecode).tostring())
                nbytes = self.dim1 * self.dim2 * self.bpp
                raw_data = numpy.fromstring(infile.read(nbytes), bytecode)
                # Always assume little-endian on the disk
                if not numpy.little_endian:
                    raw_data.byteswap(True)
        # infile.close()

        logger.debug('OVER_SHORT2: %s', raw_data.dtype)
        logger.debug("%s" % (raw_data < 0).sum())
        logger.debug("BYTECODE: %s", bytecode)
        self.data = raw_data.reshape((self.dim2, self.dim1))
        self.bytecode = self.data.dtype.type
        self.pilimage = None
        return self

    def _writeheader(self):
        """
        :return: a string containing the header for Oxford images
        """
        linesep = "\r\n"
        for key in DEFAULT_HEADERS:
            if key not in self.header:
                self.header[key] = DEFAULT_HEADERS[key]

        if "NX" not in self.header.keys() or "NY" not in self.header.keys():
            self.header['NX'] = self.dim1
            self.header['NY'] = self.dim2
        ascii_headers = [self.header['Header Version'],
                         "COMPRESSION=%s (%5.1f)" % (self.header["Compression"], self.getCompressionRatio()),
                         "NX=%4i NY=%4i OI=%7i OL=%7i " % (self.header["NX"], self.header["NY"], self.header["OI"], self.header["OL"]),
                         "NHEADER=%7i NG=%7i NS=%7i NK=%7i NS=%7i NH=%7i" % (self.header['Header Size In Bytes'],
                                                                             self.header['General Section size in Byte'],
                                                                             self.header['Special Section size in Byte'],
                                                                             self.header['KM4 Section size in Byte'],
                                                                             self.header['Statistic Section in Byte'],
                                                                             self.header['History Section in Byte']),
                         "NSUPPLEMENT=%7i" % (self.header["NSUPPLEMENT"])]
        if "Time" in self.header:
            ascii_headers.append("TIME=%s" % self.header["Time"])
        else:

            ascii_headers.append("TIME=%s" % time.ctime())

        header = (linesep.join(ascii_headers)).ljust(256).encode("ASCII")

        NG = Section(self.header['General Section size in Byte'], self.header)
        NG.setData('Binning in x', 0, numpy.uint16)
        NG.setData('Binning in y', 2, numpy.uint16)
        NG.setData('Detector size x', 22, numpy.uint16)
        NG.setData('Detector size y', 24, numpy.uint16)
        NG.setData('Pixels in x', 26, numpy.uint16)
        NG.setData('Pixels in y', 28, numpy.uint16)
        NG.setData('No of pixels', 36, numpy.uint32)
        header += NG.__repr__()

        NS = Section(self.header['Special Section size in Byte'], self.header)
        NS.setData('Gain', 56, numpy.float)
        NS.setData('Overflows flag', 464, numpy.int16)
        NS.setData('Overflow after remeasure flag', 466, numpy.int16)
        NS.setData('Overflow threshold', 472, numpy.int32)
        NS.setData('Exposure time in sec', 480, numpy.float)
        NS.setData('Overflow time in sec', 488, numpy.float)
        NS.setData('Monitor counts of raw image 1', 528, numpy.int32)
        NS.setData('Monitor counts of raw image 2', 532, numpy.int32)
        NS.setData('Monitor counts of overflow raw image 1', 536, numpy.int32)
        NS.setData('Monitor counts of overflow raw image 2', 540, numpy.int32)
        NS.setData('Unwarping', 544, numpy.int32)
        if 'Detector type' in self.header:
            for key, value in DETECTOR_TYPES.items():
                if value == self.header['Detector type']:
                    NS.setData(None, 548, numpy.int32, default=key)
        NS.setData('Real pixel size x (mm)', 568, numpy.float)
        NS.setData('Real pixel size y (mm)', 576, numpy.float)
        header += NS.__repr__()

        KM = Section(self.header['KM4 Section size in Byte'], self.header)
        KM.setData('Spatial correction file date', 0, "|S26")
        KM.setData('Spatial correction file', 26, "|S246")
        # Angles are in steps due to stepper motors - conversion factor RAD
        # angle[0] = omega, angle[1] = theta, angle[2] = kappa, angle[3] = phi,
        if self.header.get('Omega step in deg', None):
            KM.setData(None, 368, numpy.float64, deg2rad(self.header["Omega step in deg"]))
            if self.header.get('Omega start in deg', None):
                KM.setData(None, 284, numpy.int32, self.header["Omega start in deg"] / self.header["Omega step in deg"])
            if self.header.get('Omega end in deg', None):
                KM.setData(None, 324, numpy.int32, self.header["Omega end in deg"] / self.header["Omega step in deg"])
            if self.header.get('Omega zero corr. in deg', None):
                KM.setData(None, 512, numpy.int32, self.header['Omega zero corr. in deg'] / self.header["Omega step in deg"])

        if self.header.get('Theta step in deg', None):
            KM.setData(None, 368 + 8, numpy.float64, deg2rad(self.header["Theta step in deg"]))
            if self.header.get('Theta start in deg', None):
                KM.setData(None, 284 + 4, numpy.int32, self.header["Theta start in deg"] / self.header["Theta step in deg"])
            if self.header.get('Theta end in deg', None):
                KM.setData(None, 324 + 4, numpy.int32, self.header["Theta end in deg"] / self.header["Theta step in deg"])
            if self.header.get('Theta zero corr. in deg', None):
                KM.setData(None, 512 + 4, numpy.int32, self.header['Theta zero corr. in deg'] / self.header["Theta step in deg"])

        if self.header.get('Kappa step in deg', None):
            KM.setData(None, 368 + 16, numpy.float64, deg2rad(self.header["Kappa step in deg"]))
            if self.header.get('Kappa start in deg', None):
                KM.setData(None, 284 + 8, numpy.int32, self.header["Kappa start in deg"] / self.header["Kappa step in deg"])
            if self.header.get('Kappa end in deg', None):
                KM.setData(None, 324 + 8, numpy.int32, self.header["Kappa end in deg"] / self.header["Kappa step in deg"])
            if self.header.get('Kappa zero corr. in deg', None):
                KM.setData(None, 512 + 8, numpy.int32, self.header['Kappa zero corr. in deg'] / self.header["Kappa step in deg"])

        if self.header.get('Phi step in deg', None):
            KM.setData(None, 368 + 24, numpy.float64, deg2rad(self.header["Phi step in deg"]))
            if self.header.get('Phi start in deg', None):
                KM.setData(None, 284 + 12, numpy.int32, self.header["Phi start in deg"] / self.header["Phi step in deg"])
            if self.header.get('Phi end in deg', None):
                KM.setData(None, 324 + 12, numpy.int32, self.header["Phi end in deg"] / self.header["Phi step in deg"])
            if self.header.get('Phi zero corr. in deg', None):
                KM.setData(None, 512 + 12, numpy.int32, self.header['Phi zero corr. in deg'] / self.header["Phi step in deg"])

        # Beam rotation about e2,e3
        KM.setData('Beam rot in deg (e2)', 552, numpy.float64)
        KM.setData('Beam rot in deg (e3)', 560, numpy.float64)
        # Wavelenghts alpha1, alpha2, beta
        KM.setData('Wavelength alpha1', 568, numpy.float64)
        KM.setData('Wavelength alpha2', 576, numpy.float64)
        KM.setData('Wavelength alpha', 584, numpy.float64)
        KM.setData('Wavelength beta', 592, numpy.float64)

        # Detector tilts around e1,e2,e3 in deg
        KM.setData('Detector tilt e1 in deg', 640, numpy.float64)
        KM.setData('Detector tilt e2 in deg', 648, numpy.float64)
        KM.setData('Detector tilt e3 in deg', 656, numpy.float64)

        # Beam center
        KM.setData('Beam center x', 664, numpy.float64)
        KM.setData('Beam center y', 672, numpy.float64)
        # Angle (alpha) between kappa rotation axis and e3 (ideally 50 deg)
        KM.setData('Alpha angle in deg', 680, numpy.float64)
        # Angle (beta) between phi rotation axis and e3 (ideally 0 deg)
        KM.setData('Beta angle in deg', 688, numpy.float64)

        # Detector distance
        KM.setData('Distance in mm', 712, numpy.float64)
        header += KM.__repr__()

        SS = Section(self.header['Statistic Section in Byte'], self.header)
        SS.setData('Stat: Min ', 0, numpy.int32)
        SS.setData('Stat: Max ', 4, numpy.int32)
        SS.setData('Stat: Average ', 24, numpy.float64)
        if self.header.get('Stat: Stddev ', None):
            SS.setData(None, 32, numpy.float64, self.header['Stat: Stddev '] ** 2)
        SS.setData('Stat: Skewness ', 40, numpy.float64)
        header += SS.__repr__()

        HS = Section(self.header['History Section in Byte'], self.header)
        HS.setData('Flood field image', 99, "|S27")
        header += HS.__repr__()

        return header

    def write(self, fname):
        """Write Oxford diffraction images: this is still beta
        Only TY1 compressed images is currently possible
        :param fname: output filename
        """
        if self.header.get("Compression") != "TY1":
            logger.warning("Enforce TY1 compression")
            self.header["Compression"] = "TY1"

        datablock8, datablock16, datablock32 = compTY1(self.data)
        self.header["OI"] = len(datablock16) / 2
        self.header["OL"] = len(datablock32) / 4
        with self._open(fname, mode="wb") as outfile:
            outfile.write(self._writeheader())
            outfile.write(datablock8)
            outfile.write(datablock16)
            outfile.write(datablock32)

    def getCompressionRatio(self):
        "calculate the compression factor obtained vs raw data"
        return 100.0 * (self.data.size + 2 * self.header["OI"] + 4 * self.header["OL"]) / (self.data.size * 4)

    @staticmethod
    def checkData(data=None):
        if data is None:
            return None
        else:
            return data.astype(int)

    def dec_TY5(self, stream):
        """
        Attempt to decode TY5 compression scheme

        :param stream: input stream
        :return: 1D array with data
        """
        logger.info("TY5 decompression is slow for now")
        array_size = self.dim1 * self.dim2
        stream_size = len(stream)
        data = numpy.zeros(array_size)
        raw = numpy.fromstring(stream, dtype="uint8")
        pos_inp = pos_out = current = ex1 = ex2 = 0

        while pos_inp < stream_size and pos_out < array_size:
            if pos_out % self.dim2 == 0:
                last = 0
            else:
                last = current
            value = raw[pos_inp]
            if value < 254:
                # this is the normal case
                # 1 bytes encode one pixel
                current = last + value - 127
                pos_inp += 1
            elif value == 254:
                ex1 += 1
                # this is the special case 1:
                # if the marker 254 is found the next 2 bytes encode one pixel
                value = raw[pos_inp + 1:pos_inp + 3].view("int16")
                if not numpy.little_endian:
                    value = value.byteswap(True)
                current = last + value[0]
                pos_inp += 3

            elif value == 255:
                # this is the special case 2:
                # if the marker 255 is found the next 4 bytes encode one pixel
                ex2 += 1
                logger.info('special case 32 bits.')
                value = raw[pos_inp + 1:pos_inp + 5].view("int32")
                if not numpy.little_endian:
                    value = value.byteswap(True)
                current = last + value[0]
                pos_inp += 5
            data[pos_out] = current
            pos_out += 1

        logger.info("TY5: Exception: 16bits: %s, 32bits: %s", ex1, ex2)
        return data


OXDimage = OxdImage


class Section(object):
    """
    Small helper class for writing binary headers
    """
    def __init__(self, size, dictHeader):
        """
        :param size: size of the header section in bytes
        :param dictHeader: headers of the image
        """
        self.size = size
        self.header = dictHeader
        self.lstChr = bytearray(size)
        self._dictSize = {}

    def __repr__(self):
        return bytes(self.lstChr)

    def getSize(self, dtype):
        if dtype not in self._dictSize:
            self._dictSize[dtype] = len(numpy.zeros(1, dtype=dtype).tostring())
        return self._dictSize[dtype]

    def setData(self, key, offset, dtype, default=None):
        """
        :param offset: int, starting position in the section
        :param key: name of the header key
        :param dtype: type of the data to insert (defines the size!)
        """
        if key in self.header:
            value = self.header[key]
        elif key in DEFAULT_HEADERS:
            value = DEFAULT_HEADERS[key]
        else:
            value = default
        if value is None:
            value = b"\x00" * self.getSize(dtype)
        elif numpy.little_endian:
            value = numpy.array(value).astype(dtype).tostring()
        else:
            value = numpy.array(value).astype(dtype).byteswap().tostring()
        self.lstChr[offset:offset + self.getSize(dtype)] = value