This file is indexed.

/usr/lib/python3/dist-packages/igraph/clustering.py is in python3-igraph 0.7.1.post6-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
# vim:ts=4:sw=4:sts=4:et
# -*- coding: utf-8 -*-
"""Classes related to graph clustering.

@undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison"""

__license__ = """
Copyright (C) 2006-2012  Tamás Nepusz <ntamas@gmail.com>
Pázmány Péter sétány 1/a, 1117 Budapest, Hungary

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc.,  51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
"""

from copy import deepcopy

from math import pi
from io import StringIO

from igraph import community_to_membership
from igraph.compat import property
from igraph.configuration import Configuration
from igraph.datatypes import UniqueIdGenerator
from igraph.drawing.colors import ClusterColoringPalette
from igraph.statistics import Histogram
from igraph.summary import _get_wrapper_for_width
from igraph.utils import str_to_orientation

class Clustering(object):
    """Class representing a clustering of an arbitrary ordered set.

    This is now used as a base for L{VertexClustering}, but it might be
    useful for other purposes as well.

    Members of an individual cluster can be accessed by the C{[]} operator:

      >>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2])
      >>> cl[0]
      [0, 1, 2, 3]

    The membership vector can be accessed by the C{membership} property:

      >>> cl.membership
      [0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2]

    The number of clusters can be retrieved by the C{len} function:

      >>> len(cl)
      3

    You can iterate over the clustering object as if it were a regular list
    of clusters:

      >>> for cluster in cl:
      ...     print(" ".join(str(idx) for idx in cluster))
      ... 
      0 1 2 3
      4 5 6
      7 8 9 10

    If you need all the clusters at once as lists, you can simply convert
    the clustering object to a list:

      >>> cluster_list = list(cl)
      >>> print(cluster_list)
      [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]]

    @undocumented: _formatted_cluster_iterator
    """

    def __init__(self, membership, params = None):
        """Constructor.

        @param membership: the membership list -- that is, the cluster
          index in which each element of the set belongs to.
        @param params: additional parameters to be stored in this
          object's dictionary."""
        self._membership = list(membership)
        if len(self._membership)>0:
            self._len = max(m for m in self._membership if m is not None)+1
        else:
            self._len = 0

        if params:
            self.__dict__.update(params)

    def __getitem__(self, idx):
        """Returns the members of the specified cluster.

        @param idx: the index of the cluster
        @return: the members of the specified cluster as a list
        @raise IndexError: if the index is out of bounds"""
        if idx < 0 or idx >= self._len:
            raise IndexError("cluster index out of range")
        return [i for i, e in enumerate(self._membership) if e == idx]

    def __iter__(self):
        """Iterates over the clusters in this clustering.

        This method will return a generator that generates the clusters
        one by one."""
        clusters = [[] for _ in range(self._len)]
        for idx, cluster in enumerate(self._membership):
            clusters[cluster].append(idx)
        return iter(clusters)

    def __len__(self):
        """Returns the number of clusters.

        @return: the number of clusters
        """
        return self._len

    def __str__(self):
        return self.summary(verbosity=1, width=78)

    def as_cover(self):
        """Returns a L{Cover} that contains the same clusters as this clustering."""
        return Cover(self._graph, self)

    def compare_to(self, other, *args, **kwds):
        """Compares this clustering to another one using some similarity or
        distance metric.

        This is a convenience method that simply calls L{compare_communities}
        with the two clusterings as arguments. Any extra positional or keyword
        argument is also forwarded to L{compare_communities}."""
        return compare_communities(self, other, *args, **kwds)

    @property
    def membership(self):
        """Returns the membership vector."""
        return self._membership[:]

    @property
    def n(self):
        """Returns the number of elements covered by this clustering."""
        return len(self._membership)

    def size(self, idx):
        """Returns the size of a given cluster.

        @param idx: the cluster in which we are interested.
        """
        return len(self[idx])

    def sizes(self, *args):
        """Returns the size of given clusters.

        The indices are given as positional arguments. If there are no
        positional arguments, the function will return the sizes of all clusters.
        """
        counts = [0] * len(self)
        for x in self._membership:
            counts[x] += 1

        if args:
            return [counts[idx] for idx in args]

        return counts

    def size_histogram(self, bin_width = 1):
        """Returns the histogram of cluster sizes.

        @param bin_width: the bin width of the histogram
        @return: a L{Histogram} object
        """
        return Histogram(bin_width, self.sizes())

    def summary(self, verbosity=0, width=None):
        """Returns the summary of the clustering.

        The summary includes the number of items and clusters, and also the
        list of members for each of the clusters if the verbosity is nonzero.

        @param verbosity: determines whether the cluster members should be
          printed. Zero verbosity prints the number of items and clusters only.
        @return: the summary of the clustering as a string.
        """
        out = StringIO()
        print("Clustering with %d elements and %d clusters" % \
                (len(self._membership), len(self)), file=out)

        if verbosity < 1:
            return out.getvalue().strip()

        ndigits = len(str(len(self)))
        wrapper = _get_wrapper_for_width(width,
                subsequent_indent = " " * (ndigits+3))

        for idx, cluster in enumerate(self._formatted_cluster_iterator()):
            wrapper.initial_indent = "[%*d] " % (ndigits, idx)
            print("\n".join(wrapper.wrap(cluster)), file=out)

        return out.getvalue().strip()

    def _formatted_cluster_iterator(self):
        """Iterates over the clusters and formats them into a string to be
        presented in the summary."""
        for cluster in self:
            yield ", ".join(str(member) for member in cluster)


class VertexClustering(Clustering):
    """The clustering of the vertex set of a graph.

    This class extends L{Clustering} by linking it to a specific L{Graph} object
    and by optionally storing the modularity score of the clustering.
    It also provides some handy methods like getting the subgraph corresponding
    to a cluster and such.

    @note: since this class is linked to a L{Graph}, destroying the graph by the
      C{del} operator does not free the memory occupied by the graph if there
      exists a L{VertexClustering} that references the L{Graph}.

    @undocumented: _formatted_cluster_iterator
    """

    # Allow None to be passed to __plot__ as the "palette" keyword argument
    _default_palette = None

    def __init__(self, graph, membership = None, modularity = None, \
                 params = None, modularity_params = None):
        """Creates a clustering object for a given graph.

        @param graph: the graph that will be associated to the clustering
        @param membership: the membership list. The length of the list must
          be equal to the number of vertices in the graph. If C{None}, every
          vertex is assumed to belong to the same cluster.
        @param modularity: the modularity score of the clustering. If C{None},
          it will be calculated when needed.
        @param params: additional parameters to be stored in this object.
        @param modularity_params: arguments that should be passed to
          L{Graph.modularity} when the modularity is (re)calculated. If the
          original graph was weighted, you should pass a dictionary
          containing a C{weight} key with the appropriate value here.
        """
        if membership is None:
            Clustering.__init__(self, [0]*graph.vcount(), params)
        else:
            if len(membership) != graph.vcount():
                raise ValueError("membership list has invalid length")
            Clustering.__init__(self, membership, params)

        self._graph = graph
        self._modularity = modularity
        self._modularity_dirty = modularity is None
        if modularity_params is None:
            self._modularity_params = {}
        else:
            self._modularity_params = dict(modularity_params)

    # pylint: disable-msg=C0103
    @classmethod
    def FromAttribute(cls, graph, attribute, intervals=None, params=None):
        """Creates a vertex clustering based on the value of a vertex attribute.

        Vertices having the same attribute will correspond to the same cluster.

        @param graph: the graph on which we are working
        @param attribute: name of the attribute on which the clustering
            is based.
        @param intervals: for numeric attributes, you can either pass a single
            number or a list of numbers here. A single number means that the
            vertices will be put in bins of that width and vertices ending up
            in the same bin will be in the same cluster. A list of numbers
            specify the bin positions explicitly; e.g., C{[10, 20, 30]} means
            that there will be four categories: vertices with the attribute
            value less than 10, between 10 and 20, between 20 and 30 and over 30.
            Intervals are closed from the left and open from the right.
        @param params: additional parameters to be stored in this object.

        @return: a new VertexClustering object
        """
        from bisect import bisect

        def safeintdiv(x, y):
            """Safe integer division that handles None gracefully"""
            if x is None:
                return None
            return int(x / y)

        def safebisect(intervals, x):
            """Safe list bisection that handles None gracefully"""
            if x is None:
                return None
            return bisect(intervals, x)

        try:
            _ = iter(intervals)
            iterable = True
        except TypeError:
            iterable = False
        if intervals is None:
            vec = graph.vs[attribute]
        elif iterable:
            intervals = list(intervals)
            vec = [safebisect(intervals, x) for x in graph.vs[attribute]]
        else:
            intervals = float(intervals)
            vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]]

        idgen = UniqueIdGenerator()
        idgen[None] = None
        vec = [idgen[i] for i in vec]
        return cls(graph, vec, None, params)

    def as_cover(self):
        """Returns a L{VertexCover} that contains the same clusters as this
        clustering."""
        return VertexCover(self._graph, self)

    def cluster_graph(self, combine_vertices=None, combine_edges=None):
        """Returns a graph where each cluster is contracted into a single
        vertex.

        In the resulting graph, vertex M{i} represents cluster M{i} in this
        clustering. Vertex M{i} and M{j} will be connected if there was
        at least one connected vertex pair M{(a, b)} in the original graph such
        that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster
        M{j}.

        @param combine_vertices: specifies how to derive the attributes of
          the vertices in the new graph from the attributes of the old ones.
          See L{Graph.contract_vertices()} for more details.
        @param combine_edges: specifies how to derive the attributes of the
          edges in the new graph from the attributes of the old ones. See
          L{Graph.simplify()} for more details. If you specify C{False}
          here, edges will not be combined, and the number of edges between
          the vertices representing the original clusters will be equal to
          the number of edges between the members of those clusters in the
          original graph.

        @return: the new graph.
        """
        result = self.graph.copy()
        result.contract_vertices(self.membership, combine_vertices)
        if combine_edges != False:
            result.simplify(combine_edges=combine_edges)
        return result

    def crossing(self):
        """Returns a boolean vector where element M{i} is C{True} iff edge
        M{i} lies between clusters, C{False} otherwise."""
        membership = self.membership
        return [membership[v1] != membership[v2] \
                for v1, v2 in self.graph.get_edgelist()]

    @property
    def modularity(self):
        """Returns the modularity score"""
        if self._modularity_dirty:
            return self._recalculate_modularity_safe()
        return self._modularity
    q = modularity

    @property
    def graph(self):
        """Returns the graph belonging to this object"""
        return self._graph

    def recalculate_modularity(self):
        """Recalculates the stored modularity value.

        This method must be called before querying the modularity score of the
        clustering through the class member C{modularity} or C{q} if the
        graph has been modified (edges have been added or removed) since the
        creation of the L{VertexClustering} object.

        @return: the new modularity score
        """
        self._modularity = self._graph.modularity(self._membership,
                **self._modularity_params)
        self._modularity_dirty = False
        return self._modularity

    def _recalculate_modularity_safe(self):
        """Recalculates the stored modularity value and swallows all exceptions
        raised by the modularity function (if any).

        @return: the new modularity score or C{None} if the modularity function
        could not be calculated.
        """
        try:
            return self.recalculate_modularity()
        except:
            return None
        finally:
            self._modularity_dirty = False

    def subgraph(self, idx):
        """Get the subgraph belonging to a given cluster.

        @param idx: the cluster index
        @return: a copy of the subgraph
        @precondition: the vertex set of the graph hasn't been modified since
          the moment the clustering was constructed.
        """
        return self._graph.subgraph(self[idx])


    def subgraphs(self):
        """Gets all the subgraphs belonging to each of the clusters.

        @return: a list containing copies of the subgraphs
        @precondition: the vertex set of the graph hasn't been modified since
          the moment the clustering was constructed.
        """
        return [self._graph.subgraph(cl) for cl in self]


    def giant(self):
        """Returns the giant community of the clustered graph.

        The giant component a community for which no larger community exists.
        @note: there can be multiple giant communities, this method will return
          the copy of an arbitrary one if there are multiple giant communities.

        @return: a copy of the giant community.
        @precondition: the vertex set of the graph hasn't been modified since
          the moment the clustering was constructed.
        """
        ss = self.sizes()
        max_size = max(ss)
        return self.subgraph(ss.index(max_size))

    def __plot__(self, context, bbox, palette, *args, **kwds):
        """Plots the clustering to the given Cairo context in the given
        bounding box.

        This is done by calling L{Graph.__plot__()} with the same arguments, but
        coloring the graph vertices according to the current clustering (unless
        overridden by the C{vertex_color} argument explicitly).

        This method understands all the positional and keyword arguments that
        are understood by L{Graph.__plot__()}, only the differences will be
        highlighted here:

          - C{mark_groups}: whether to highlight some of the vertex groups by
            colored polygons. Besides the values accepted by L{Graph.__plot__}
            (i.e., a dict mapping colors to vertex indices, a list containing
            lists of vertex indices, or C{False}), the following are also
            accepted:

              - C{True}: all the groups will be highlighted, the colors matching
                the corresponding color indices from the current palette
                (see the C{palette} keyword argument of L{Graph.__plot__}.

              - A dict mapping cluster indices or tuples of vertex indices to
                color names.  The given clusters or vertex groups will be
                highlighted by the given colors.

              - A list of cluster indices. This is equivalent to passing a
                dict mapping numeric color indices from the current palette
                to cluster indices; therefore, the cluster referred to by element
                I{i} of the list will be highlighted by color I{i} from the
                palette.

            The value of the C{plotting.mark_groups} configuration key is also
            taken into account here; if that configuration key is C{True} and
            C{mark_groups} is not given explicitly, it will automatically be set
            to C{True}.

            In place of lists of vertex indices, you may also use L{VertexSeq}
            instances.

            In place of color names, you may also use color indices into the
            current palette. C{None} as a color name will mean that the
            corresponding group is ignored.

          - C{palette}: the palette used to resolve numeric color indices to RGBA
            values. By default, this is an instance of L{ClusterColoringPalette}.

        @see: L{Graph.__plot__()} for more supported keyword arguments.
        """
        if "edge_color" not in kwds and "color" not in self.graph.edge_attributes():
            # Set up a default edge coloring based on internal vs external edges
            colors = ["grey20", "grey80"]
            kwds["edge_color"] = [colors[is_crossing]
                                  for is_crossing in self.crossing()]

        if palette is None:
            palette = ClusterColoringPalette(len(self))

        if "mark_groups" not in kwds:
            if Configuration.instance()["plotting.mark_groups"]:
                kwds["mark_groups"] = (
                    (group, color) for color, group in enumerate(self)
                )
        else:
            kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering(
                    kwds["mark_groups"], self)

        if "vertex_color" not in kwds:
            kwds["vertex_color"] = self.membership

        return self._graph.__plot__(context, bbox, palette, *args, **kwds)

    def _formatted_cluster_iterator(self):
        """Iterates over the clusters and formats them into a string to be
        presented in the summary."""
        if self._graph.is_named():
            names = self._graph.vs["name"]
            for cluster in self:
                yield ", ".join(str(names[member]) for member in cluster)
        else:
            for cluster in self:
                yield ", ".join(str(member) for member in cluster)


###############################################################################

class Dendrogram(object):
    """The hierarchical clustering (dendrogram) of some dataset.

    A hierarchical clustering means that we know not only the way the
    elements are separated into groups, but also the exact history of
    how individual elements were joined into larger subgroups.

    This class internally represents the hierarchy by a matrix with n rows
    and 2 columns -- or more precisely, a list of lists of size 2. This is
    exactly the same as the original format used by C{igraph}'s C core.
    The M{i}th row of the matrix contains the indices of the two clusters
    being joined in time step M{i}. The joint group will be represented by
    the ID M{n+i}, with M{i} starting from one. The ID of the joint group
    will be referenced in the upcoming steps instead of any of its individual
    members. So, IDs less than or equal to M{n} (where M{n} is the number of
    rows in the matrix) mean the original members of the dataset (with ID
    from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an
    example, take a look at the dendrogram and the internal representation of
    a given clustering of five nodes::

      0 -+
         |
      1 -+-+
           |
      2 ---+-+        <====>   [[0, 1], [3, 4], [2, 5], [6, 7]]
             |
      3 -+   |
         |   |
      4 -+---+---

    @undocumented: _item_box_size, _plot_item, _traverse_inorder
    """

    def __init__(self, merges):
        """Creates a hierarchical clustering.

        @param merges: the merge history either in matrix or tuple format"""
        self._merges = [tuple(pair) for pair in merges]
        self._nmerges = len(self._merges)
        if self._nmerges:
            self._nitems = max(self._merges[-1])-self._nmerges+2
        else:
            self._nitems = 0
        self._names = None

    @staticmethod
    def _convert_matrix_to_tuple_repr(merges, n=None):
        """Converts the matrix representation of a clustering to a tuple
        representation.

        @param merges: the matrix representation of the clustering
        @return: the tuple representation of the clustering
        """
        if n is None:
            n = len(merges)+1
        tuple_repr = list(range(n))
        idxs = list(range(n))
        for rowidx, row in enumerate(merges):
            i, j = row
            try:
                idxi, idxj = idxs[i], idxs[j]
                tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj])
                tuple_repr[idxj] = None
            except IndexError:
                raise ValueError("malformed matrix, subgroup referenced "+
                                 "before being created in step %d" % rowidx)
            idxs.append(j)
        return [x for x in tuple_repr if x is not None]

    def _traverse_inorder(self):
        """Conducts an inorder traversal of the merge tree.

        The inorder traversal returns the nodes on the last level in the order
        they should be drawn so that no edges cross each other.

        @return: the result of the inorder traversal in a list."""
        result = []
        seen_nodes = set()

        for node_index in reversed(range(self._nitems+self._nmerges)):
            if node_index in seen_nodes:
                continue

            stack = [node_index]
            while stack:
                last = stack.pop()
                seen_nodes.add(last)
                if last < self._nitems:
                    # 'last' is a regular node so the traversal ends here, we
                    # can append it to the results
                    result.append(last)
                else:
                    # 'last' is a merge node, so let us proceed with the entry
                    # where this merge node was created
                    stack.extend(self._merges[last-self._nitems])

        return result

    def __str__(self):
        return self.summary(verbosity=1)

    def format(self, format="newick"):
        """Formats the dendrogram in a foreign format.

        Currently only the Newick format is supported.

        Example:

            >>> d = Dendrogram([(2, 3), (0, 1), (4, 5)])
            >>> d.format()
            '((2,3)4,(0,1)5)6;'
            >>> d.names = list("ABCDEFG")
            >>> d.format()
            '((C,D)E,(A,B)F)G;'
        """
        if format == "newick":
            n = self._nitems + self._nmerges
            if self._names is None:
                nodes = list(range(n))
            else:
                nodes = list(self._names)
            if len(nodes) < n:
                nodes.extend("" for _ in range(n - len(nodes)))
            for k, (i, j) in enumerate(self._merges, self._nitems):
                nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k])
                nodes[i] = nodes[j] = None
            return nodes[-1] + ";"
        raise ValueError("unsupported format: %r" % format)

    def summary(self, verbosity=0, max_leaf_count=40):
        """Returns the summary of the dendrogram.

        The summary includes the number of leafs and branches, and also an
        ASCII art representation of the dendrogram unless it is too large.

        @param verbosity: determines whether the ASCII representation of the
          dendrogram should be printed. Zero verbosity prints only the number
          of leafs and branches.
        @param max_leaf_count: the maximal number of leafs to print in the
          ASCII representation. If the dendrogram has more leafs than this
          limit, the ASCII representation will not be printed even if the
          verbosity is larger than or equal to 1.
        @return: the summary of the dendrogram as a string.
        """
        out = StringIO()
        print("Dendrogram, %d elements, %d merges" % \
                (self._nitems, self._nmerges), file=out)

        if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count:
            return out.getvalue().strip()

        print(file=out)

        positions = [None] * self._nitems
        inorder = self._traverse_inorder()
        distance = 2
        level_distance = 2
        nextp = 0
        for idx, element in enumerate(inorder):
            positions[element] = nextp
            inorder[idx] = str(element)
            nextp += max(distance, len(inorder[idx])+1)

        width = max(positions)+1

        # Print the nodes on the lowest level
        print((" " * (distance-1)).join(inorder), file=out)
        midx = 0
        max_community_idx = self._nitems
        while midx < self._nmerges:
            char_array = [" "] * width
            for position in positions:
                if position >= 0:
                    char_array[position] = "|"
            char_str = "".join(char_array)
            for _ in range(level_distance-1):
                print(char_str, file=out) # Print the lines

            cidx_incr = 0
            while midx < self._nmerges:
                id1, id2 = self._merges[midx]
                if id1 >= max_community_idx or id2 >= max_community_idx:
                    break
                midx += 1

                pos1, pos2 = positions[id1], positions[id2]
                positions[id1], positions[id2] = -1, -1

                if pos1 > pos2:
                    pos1, pos2 = pos2, pos1
                positions.append((pos1+pos2) // 2)

                dashes = "-" * (pos2 - pos1 - 1)
                char_array[pos1:(pos2+1)] = "`%s'" % dashes

                cidx_incr += 1

            max_community_idx += cidx_incr

            print("".join(char_array), file=out)

        return out.getvalue().strip()

    def _item_box_size(self, context, horiz, idx):
        """Calculates the amount of space needed for drawing an
        individual vertex at the bottom of the dendrogram."""
        if self._names is None or self._names[idx] is None:
            x_bearing, _, _, height, x_advance, _ = context.text_extents("")
        else:
            x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx]))

        if horiz:
            return x_advance - x_bearing, height
        return height, x_advance - x_bearing

    # pylint: disable-msg=R0913
    def _plot_item(self, context, horiz, idx, x, y):
        """Plots a dendrogram item to the given Cairo context

        @param context: the Cairo context we are plotting on
        @param horiz: whether the dendrogram is horizontally oriented
        @param idx: the index of the item
        @param x: the X position of the item
        @param y: the Y position of the item
        """
        if self._names is None or self._names[idx] is None:
            return

        height = self._item_box_size(context, True, idx)[1]
        if horiz:
            context.move_to(x, y+height)
            context.show_text(str(self._names[idx]))
        else:
            context.save()
            context.translate(x, y)
            context.rotate(-pi/2.)
            context.move_to(0, height)
            context.show_text(str(self._names[idx]))
            context.restore()

    # pylint: disable-msg=C0103,W0613
    # W0613 = unused argument 'palette'
    def __plot__(self, context, bbox, palette, *args, **kwds):
        """Draws the dendrogram on the given Cairo context

        Supported keyword arguments are:

          - C{orientation}: the orientation of the dendrogram. Must be one of
            the following values: C{left-right}, C{bottom-top}, C{right-left}
            or C{top-bottom}. Individual elements are always placed at the
            former edge and merges are performed towards the latter edge.
            Possible aliases: C{horizontal} = C{left-right},
            C{vertical} = C{bottom-top}, C{lr} = C{left-right},
            C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}.
            The default is C{left-right}.

        """
        from igraph.layout import Layout

        if self._names is None:
            self._names = [str(x) for x in range(self._nitems)]

        orientation = str_to_orientation(kwds.get("orientation", "lr"),
                reversed_vertical=True)
        horiz = orientation in ("lr", "rl")

        # Get the font height
        font_height = context.font_extents()[2]

        # Calculate space needed for individual items at the
        # bottom of the dendrogram
        item_boxes = [self._item_box_size(context, horiz, idx) \
          for idx in range(self._nitems)]

        # Small correction for cases when the right edge of the labels is
        # aligned with the tips of the dendrogram branches
        ygap = 2 if orientation == "bt" else 0
        xgap = 2 if orientation == "lr" else 0
        item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes]

        # Calculate coordinates
        layout = Layout([(0, 0)] * self._nitems, dim=2)
        inorder = self._traverse_inorder()
        if not horiz:
            x, y = 0, 0
            for idx, element in enumerate(inorder):
                layout[element] = (x, 0)
                x += max(font_height, item_boxes[element][0])

            for id1, id2 in self._merges:
                y += 1
                layout.append(((layout[id1][0]+layout[id2][0])/2., y))

            # Mirror or rotate the layout if necessary
            if orientation == "bt":
                layout.mirror(1)
        else:
            x, y = 0, 0
            for idx, element in enumerate(inorder):
                layout[element] = (0, y)
                y += max(font_height, item_boxes[element][1])

            for id1, id2 in self._merges:
                x += 1
                layout.append((x, (layout[id1][1]+layout[id2][1])/2.))

            # Mirror or rotate the layout if necessary
            if orientation == "rl":
                layout.mirror(0)

        # Rescale layout to the bounding box
        maxw = max(e[0] for e in item_boxes)
        maxh = max(e[1] for e in item_boxes)

        # w, h: width and height of the area containing the dendrogram
        # tree without the items.
        # delta_x, delta_y: displacement of the dendrogram tree
        width, height = float(bbox.width), float(bbox.height)
        delta_x, delta_y = 0, 0
        if horiz:
            width -= maxw
            if orientation == "lr":
                delta_x = maxw
        else:
            height -= maxh
            if orientation == "tb":
                delta_y = maxh

        if horiz:
            delta_y += font_height / 2.
        else:
            delta_x += font_height / 2.
        layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y),
                        keep_aspect_ratio=False)

        context.save()

        context.translate(bbox.left, bbox.top)
        context.set_source_rgb(0., 0., 0.)
        context.set_line_width(1)

        # Draw items
        if horiz:
            sgn = 0 if orientation == "rl" else -1
            for idx in range(self._nitems):
                x = layout[idx][0] + sgn * item_boxes[idx][0]
                y = layout[idx][1] - item_boxes[idx][1]/2.
                self._plot_item(context, horiz, idx, x, y)
        else:
            sgn = 1 if orientation == "bt" else 0
            for idx in range(self._nitems):
                x = layout[idx][0] - item_boxes[idx][0]/2.
                y = layout[idx][1] + sgn * item_boxes[idx][1]
                self._plot_item(context, horiz, idx, x, y)

        # Draw dendrogram lines
        if not horiz:
            for idx, (id1, id2) in enumerate(self._merges):
                x0, y0 = layout[id1]
                x1, y1 = layout[id2]
                x2, y2 = layout[idx + self._nitems]
                context.move_to(x0, y0)
                context.line_to(x0, y2)
                context.line_to(x1, y2)
                context.line_to(x1, y1)
                context.stroke()
        else:
            for idx, (id1, id2) in enumerate(self._merges):
                x0, y0 = layout[id1]
                x1, y1 = layout[id2]
                x2, y2 = layout[idx + self._nitems]
                context.move_to(x0, y0)
                context.line_to(x2, y0)
                context.line_to(x2, y1)
                context.line_to(x1, y1)
                context.stroke()

        context.restore()

    @property
    def merges(self):
        """Returns the performed merges in matrix format"""
        return deepcopy(self._merges)

    @property
    def names(self):
        """Returns the names of the nodes in the dendrogram"""
        return self._names

    @names.setter
    def names(self, items):
        """Sets the names of the nodes in the dendrogram"""
        if items is None:
            self._names = None
            return

        items = list(items)
        if len(items) < self._nitems:
            raise ValueError("must specify at least %d names" % self._nitems)

        n = self._nitems + self._nmerges
        self._names = items[:n]
        if len(self._names) < n:
            self._names.extend("" for _ in range(n-len(self._names)))


class VertexDendrogram(Dendrogram):
    """The dendrogram resulting from the hierarchical clustering of the
    vertex set of a graph."""

    def __init__(self, graph, merges, optimal_count = None, params = None,
            modularity_params = None):
        """Creates a dendrogram object for a given graph.

        @param graph: the graph that will be associated to the clustering
        @param merges: the merges performed given in matrix form.
        @param optimal_count: the optimal number of clusters where the
          dendrogram should be cut. This is a hint usually provided by the
          clustering algorithm that produces the dendrogram. C{None} means
          that such a hint is not available; the optimal count will then be
          selected based on the modularity in such a case.
        @param params: additional parameters to be stored in this object.
        @param modularity_params: arguments that should be passed to
          L{Graph.modularity} when the modularity is (re)calculated. If the
          original graph was weighted, you should pass a dictionary
          containing a C{weight} key with the appropriate value here.
        """
        Dendrogram.__init__(self, merges)
        self._graph = graph
        self._optimal_count = optimal_count
        if modularity_params is None:
            self._modularity_params = {}
        else:
            self._modularity_params = dict(modularity_params)

    def as_clustering(self, n=None):
        """Cuts the dendrogram at the given level and returns a corresponding
        L{VertexClustering} object.

        @param n: the desired number of clusters. Merges are replayed from the
          beginning until the membership vector has exactly M{n} distinct elements
          or until there are no more recorded merges, whichever happens first.
          If C{None}, the optimal count hint given by the clustering algorithm
          will be used If the optimal count was not given either, it will be
          calculated by selecting the level where the modularity is maximal.
        @return: a new L{VertexClustering} object.
        """
        if n is None:
            n = self.optimal_count
        num_elts = self._graph.vcount()
        idgen = UniqueIdGenerator()
        membership = community_to_membership(self._merges, num_elts, \
                                             num_elts - n)
        membership = [idgen[m] for m in membership]
        return VertexClustering(self._graph, membership,
                modularity_params=self._modularity_params)

    @property
    def optimal_count(self):
        """Returns the optimal number of clusters for this dendrogram.

        If an optimal count hint was given at construction time, this
        property simply returns the hint. If such a count was not given,
        this method calculates the optimal number of clusters by maximizing
        the modularity along all the possible cuts in the dendrogram.
        """
        if self._optimal_count is not None:
            return self._optimal_count

        n = self._graph.vcount()
        max_q, optimal_count = 0, 1
        for step in range(min(n-1, len(self._merges))):
            membs = community_to_membership(self._merges, n, step)
            q = self._graph.modularity(membs, **self._modularity_params)
            if q > max_q:
                optimal_count = n-step
                max_q = q
        self._optimal_count = optimal_count
        return optimal_count

    @optimal_count.setter
    def optimal_count(self, value):
        self._optimal_count = max(int(value), 1)

    def __plot__(self, context, bbox, palette, *args, **kwds):
        """Draws the vertex dendrogram on the given Cairo context

        See L{Dendrogram.__plot__} for the list of supported keyword
        arguments."""
        from igraph.drawing.metamagic import AttributeCollectorBase

        class VisualVertexBuilder(AttributeCollectorBase):
            _kwds_prefix = "vertex_"
            label = None

        builder = VisualVertexBuilder(self._graph.vs, kwds)
        self._names = [vertex.label for vertex in builder]
        self._names = [name if name is not None else str(idx)
                       for idx, name in enumerate(self._names)]
        result = Dendrogram.__plot__(self, context, bbox, palette, \
                *args, **kwds)
        del self._names

        return result

###############################################################################

class Cover(object):
    """Class representing a cover of an arbitrary ordered set.

    Covers are similar to clusterings, but each element of the set may
    belong to more than one cluster in a cover, and elements not belonging
    to any cluster are also allowed.

    L{Cover} instances provide a similar API as L{Clustering} instances;
    for instance, iterating over a L{Cover} will iterate over the clusters
    just like with a regular L{Clustering} instance. However, they are not
    derived from each other or from a common superclass, and there might
    be functions that exist only in one of them or the other.

    Clusters of an individual cover can be accessed by the C{[]} operator:

      >>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]])
      >>> cl[0]
      [0, 1, 2, 3]

    The membership vector can be accessed by the C{membership} property.
    Note that contrary to L{Clustering} instances, the membership vector
    will contain lists that contain the cluster indices each item belongs
    to:

      >>> cl.membership
      [[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]]

    The number of clusters can be retrieved by the C{len} function:

      >>> len(cl)
      3

    You can iterate over the cover as if it were a regular list of
    clusters:

      >>> for cluster in cl:
      ...     print(" ".join(str(idx) for idx in cluster))
      ... 
      0 1 2 3
      2 3 4
      0 1 6

    If you need all the clusters at once as lists, you can simply convert
    the cover to a list:

      >>> cluster_list = list(cl)
      >>> print(cluster_list)
      [[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]]

    L{Clustering} objects can readily be converted to L{Cover} objects
    using the constructor:

      >>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2])
      >>> cover = Cover(clustering)
      >>> list(clustering) == list(cover)
      True

    @undocumented: _formatted_cluster_iterator
    """

    def __init__(self, clusters, n=0):
        """Constructs a cover with the given clusters.

        @param clusters: the clusters in this cover, as a list or iterable.
          Each cluster is specified by a list or tuple that contains the
          IDs of the items in this cluster. IDs start from zero.

        @param n: the total number of elements in the set that is covered
          by this cover. If it is less than the number of unique elements
          found in all the clusters, we will simply use the number of unique
          elements, so it is safe to leave this at zero. You only have to
          specify this parameter if there are some elements that are covered
          by none of the clusters.
        """

        self._clusters = [list(cluster) for cluster in clusters]
        try:
            self._n = max(max(cluster)+1 for cluster in self._clusters if cluster)
        except ValueError:
            self._n = 0
        self._n = max(n, self._n)

    def __getitem__(self, index):
        """Returns the cluster with the given index."""
        return self._clusters[index]

    def __iter__(self):
        """Iterates over the clusters in this cover."""
        return iter(self._clusters)

    def __len__(self):
        """Returns the number of clusters in this cover."""
        return len(self._clusters)

    def __str__(self):
        """Returns a string representation of the cover."""
        return self.summary(verbosity=1, width=78)

    @property
    def membership(self):
        """Returns the membership vector of this cover.

        The membership vector of a cover covering I{n} elements is a list of
        length I{n}, where element I{i} contains the cluster indices of the
        I{i}th item.
        """
        result = [[] for _ in range(self._n)]
        for idx, cluster in enumerate(self):
            for item in cluster:
                result[item].append(idx)
        return result

    @property
    def n(self):
        """Returns the number of elements in the set covered by this cover."""
        return self._n

    def size(self, idx):
        """Returns the size of a given cluster.

        @param idx: the cluster in which we are interested.
        """
        return len(self[idx])

    def sizes(self, *args):
        """Returns the size of given clusters.

        The indices are given as positional arguments. If there are no
        positional arguments, the function will return the sizes of all clusters.
        """
        if args:
            return [len(self._clusters[idx]) for idx in args]
        return [len(cluster) for cluster in self]

    def size_histogram(self, bin_width = 1):
        """Returns the histogram of cluster sizes.

        @param bin_width: the bin width of the histogram
        @return: a L{Histogram} object
        """
        return Histogram(bin_width, self.sizes())

    def summary(self, verbosity=0, width=None):
        """Returns the summary of the cover.

        The summary includes the number of items and clusters, and also the
        list of members for each of the clusters if the verbosity is nonzero.

        @param verbosity: determines whether the cluster members should be
          printed. Zero verbosity prints the number of items and clusters only.
        @return: the summary of the cover as a string.
        """
        out = StringIO()
        print("Cover with %d clusters" % len(self), file=out)

        if verbosity < 1:
            return out.getvalue().strip()

        ndigits = len(str(len(self)))
        wrapper = _get_wrapper_for_width(width,
                subsequent_indent = " " * (ndigits+3))

        for idx, cluster in enumerate(self._formatted_cluster_iterator()):
            wrapper.initial_indent = "[%*d] " % (ndigits, idx)
            print("\n".join(wrapper.wrap(cluster)), file=out)

        return out.getvalue().strip()

    def _formatted_cluster_iterator(self):
        """Iterates over the clusters and formats them into a string to be
        presented in the summary."""
        for cluster in self:
            yield ", ".join(str(member) for member in cluster)


class VertexCover(Cover):
    """The cover of the vertex set of a graph.

    This class extends L{Cover} by linking it to a specific L{Graph} object.
    It also provides some handy methods like getting the subgraph corresponding
    to a cluster and such.

    @note: since this class is linked to a L{Graph}, destroying the graph by the
      C{del} operator does not free the memory occupied by the graph if there
      exists a L{VertexCover} that references the L{Graph}.

    @undocumented: _formatted_cluster_iterator
    """

    def __init__(self, graph, clusters = None):
        """Creates a cover object for a given graph.

        @param graph: the graph that will be associated to the cover
        @param clusters: the list of clusters. If C{None}, it is assumed
          that there is only a single cluster that covers the whole graph.
        """
        if clusters is None:
            clusters = [list(range(graph.vcount()))]

        Cover.__init__(self, clusters, n = graph.vcount())
        if self._n > graph.vcount():
            raise ValueError("cluster list contains vertex ID larger than the "
                             "number of vertices in the graph")

        self._graph = graph

    def crossing(self):
        """Returns a boolean vector where element M{i} is C{True} iff edge
        M{i} lies between clusters, C{False} otherwise."""
        membership = [frozenset(cluster) for cluster in self.membership]
        return [membership[v1].isdisjoint(membership[v2]) \
                for v1, v2 in self.graph.get_edgelist()]

    @property
    def graph(self):
        """Returns the graph belonging to this object"""
        return self._graph

    def subgraph(self, idx):
        """Get the subgraph belonging to a given cluster.

        @param idx: the cluster index
        @return: a copy of the subgraph
        @precondition: the vertex set of the graph hasn't been modified since
          the moment the cover was constructed.
        """
        return self._graph.subgraph(self[idx])

    def subgraphs(self):
        """Gets all the subgraphs belonging to each of the clusters.

        @return: a list containing copies of the subgraphs
        @precondition: the vertex set of the graph hasn't been modified since
          the moment the cover was constructed.
        """
        return [self._graph.subgraph(cl) for cl in self]

    def __plot__(self, context, bbox, palette, *args, **kwds):
        """Plots the cover to the given Cairo context in the given
        bounding box.

        This is done by calling L{Graph.__plot__()} with the same arguments, but
        drawing nice colored blobs around the vertex groups.

        This method understands all the positional and keyword arguments that
        are understood by L{Graph.__plot__()}, only the differences will be
        highlighted here:

          - C{mark_groups}: whether to highlight the vertex clusters by
            colored polygons. Besides the values accepted by L{Graph.__plot__}
            (i.e., a dict mapping colors to vertex indices, a list containing
            lists of vertex indices, or C{False}), the following are also
            accepted:

              - C{True}: all the clusters will be highlighted, the colors matching
                the corresponding color indices from the current palette
                (see the C{palette} keyword argument of L{Graph.__plot__}.

              - A dict mapping cluster indices or tuples of vertex indices to
                color names.  The given clusters or vertex groups will be
                highlighted by the given colors.

              - A list of cluster indices. This is equivalent to passing a
                dict mapping numeric color indices from the current palette
                to cluster indices; therefore, the cluster referred to by element
                I{i} of the list will be highlighted by color I{i} from the
                palette.

            The value of the C{plotting.mark_groups} configuration key is also
            taken into account here; if that configuration key is C{True} and
            C{mark_groups} is not given explicitly, it will automatically be set
            to C{True}.

            In place of lists of vertex indices, you may also use L{VertexSeq}
            instances.

            In place of color names, you may also use color indices into the
            current palette. C{None} as a color name will mean that the
            corresponding group is ignored.

          - C{palette}: the palette used to resolve numeric color indices to RGBA
            values. By default, this is an instance of L{ClusterColoringPalette}.

        @see: L{Graph.__plot__()} for more supported keyword arguments.
        """
        if "edge_color" not in kwds and "color" not in self.graph.edge_attributes():
            # Set up a default edge coloring based on internal vs external edges
            colors = ["grey20", "grey80"]
            kwds["edge_color"] = [colors[is_crossing]
                                  for is_crossing in self.crossing()]

        if "palette" in kwds:
            palette = kwds["palette"]
        else:
            palette = ClusterColoringPalette(len(self))

        if "mark_groups" not in kwds:
            if Configuration.instance()["plotting.mark_groups"]:
                kwds["mark_groups"] = enumerate(self)
        else:
            kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering(
                    kwds["mark_groups"], self)

        return self._graph.__plot__(context, bbox, palette, *args, **kwds)

    def _formatted_cluster_iterator(self):
        """Iterates over the clusters and formats them into a string to be
        presented in the summary."""
        if self._graph.is_named():
            names = self._graph.vs["name"]
            for cluster in self:
                yield ", ".join(str(names[member]) for member in cluster)
        else:
            for cluster in self:
                yield ", ".join(str(member) for member in cluster)


class CohesiveBlocks(VertexCover):
    """The cohesive block structure of a graph.

    Instances of this type are created by L{Graph.cohesive_blocks()}. See
    the documentation of L{Graph.cohesive_blocks()} for an explanation of
    what cohesive blocks are.

    This class provides a few more methods that make handling of cohesive
    block structures easier.
    """

    def __init__(self, graph, blocks = None, cohesion = None, parent = None):
        """Constructs a new cohesive block structure for the given graph.

        If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the
        arguments will be ignored and L{Graph.cohesive_blocks()} will be
        called to calculate the cohesive blocks. Otherwise, these three
        variables should describe the *result* of a cohesive block structure
        calculation. Chances are that you never have to construct L{CohesiveBlocks}
        instances directly, just use L{Graph.cohesive_blocks()}.

        @param graph: the graph itself
        @param blocks: a list containing the blocks; each block is described
          as a list containing vertex IDs.
        @param cohesion: the cohesion of each block. The length of this list
          must be equal to the length of I{blocks}.
        @param parent: the parent block of each block. Negative values or
          C{None} mean that there is no parent block for that block. There
          should be only one parent block, which covers the entire graph.
        @see: Graph.cohesive_blocks()
        """
        if blocks is None or cohesion is None or parent is None:
            blocks, cohesion, parent = graph.cohesive_blocks()

        VertexCover.__init__(self, graph, blocks)

        self._cohesion = cohesion
        self._parent = parent
        for idx, p in enumerate(self._parent):
            if p < 0:
                self._parent[idx] = None

    def cohesion(self, idx):
        """Returns the cohesion of the group with the given index."""
        return self._cohesion[idx]

    def cohesions(self):
        """Returns the list of cohesion values for each group."""
        return self._cohesion[:]

    def hierarchy(self):
        """Returns a new graph that describes the hierarchical relationships
        between the groups.

        The new graph will be a directed tree; an edge will point from
        vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}.
        In other words, the edges point downwards.
        """
        from igraph import Graph
        edges = [pair for pair in zip(self._parent, range(len(self)))
                 if pair[0] is not None]
        return Graph(edges, directed=True)

    def max_cohesion(self, idx):
        """Finds the maximum cohesion score among all the groups that contain
        the given vertex."""
        result = 0
        for cohesion, cluster in zip(self._cohesion, self._clusters):
            if idx in cluster:
                result = max(result, cohesion)
        return result

    def max_cohesions(self):
        """For each vertex in the graph, returns the maximum cohesion score
        among all the groups that contain the vertex."""
        result = [0] * self._graph.vcount()
        for cohesion, cluster in zip(self._cohesion, self._clusters):
            for idx in cluster:
                result[idx] = max(result[idx], cohesion)
        return result

    def parent(self, idx):
        """Returns the parent group index of the group with the given index
        or C{None} if the given group is the root."""
        return self._parent[idx]

    def parents(self):
        """Returns the list of parent group indices for each group or C{None}
        if the given group is the root."""
        return self._parent[:]

    def __plot__(self, context, bbox, palette, *args, **kwds):
        """Plots the cohesive block structure to the given Cairo context in
        the given bounding box.

        Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword
        arguments accepted by L{VertexCover.__plot__()} are also accepted here.
        The only difference is that the vertices are colored according to their
        maximal cohesions by default, and groups are marked by colored blobs
        except the last group which encapsulates the whole graph.

        See the documentation of L{VertexCover.__plot__()} for more details.
        """
        prepare_groups = False
        if "mark_groups" not in kwds:
            if Configuration.instance()["plotting.mark_groups"]:
                prepare_groups = True
        elif kwds["mark_groups"] == True:
            prepare_groups = True

        if prepare_groups:
            colors = [pair for pair in enumerate(self.cohesions())
                if pair[1] > 1]
            kwds["mark_groups"] = colors

        if "vertex_color" not in kwds:
            kwds["vertex_color"] = self.max_cohesions()

        return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds)

def _handle_mark_groups_arg_for_clustering(mark_groups, clustering):
    """Handles the mark_groups=... keyword argument in plotting methods of
    clusterings.

    This is an internal method, you shouldn't need to mess around with it.
    Its purpose is to handle the extended semantics of the mark_groups=...
    keyword argument in the C{__plot__} method of L{VertexClustering} and
    L{VertexCover} instances, namely the feature that numeric IDs are resolved
    to clusters automatically.
    """
    # Handle the case of mark_groups = True, mark_groups containing a list or
    # tuple of cluster IDs, and and mark_groups yielding (cluster ID, color)
    # pairs
    if mark_groups is True:
        group_iter = ((group, color) for color, group in enumerate(clustering))
    elif isinstance(mark_groups, dict):
        group_iter = iter(mark_groups.items())
    elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"):
        # Lists, tuples
        try:
            first = mark_groups[0]
        except:
            # Hmm. Maybe not a list or tuple?
            first = None
        if first is not None:
            # Okay. Is the first element of the list a single number?
            if isinstance(first, int):
                # Yes. Seems like we have a list of cluster indices.
                # Assign color indices automatically.
                group_iter = ((group, color)
                        for color, group in enumerate(mark_groups))
            else:
                # No. Seems like we have good ol' group-color pairs.
                group_iter = mark_groups
        else:
            group_iter = mark_groups
    elif hasattr(mark_groups, "__iter__"):
        # Iterators etc
        group_iter = mark_groups
    else:
        group_iter = iter({}.items())

    def cluster_index_resolver():
        for group, color in group_iter:
            if isinstance(group, int):
                group = clustering[group]
            yield group, color

    return cluster_index_resolver()

##############################################################

def _prepare_community_comparison(comm1, comm2, remove_none=False):
    """Auxiliary method that takes two community structures either as
    membership lists or instances of L{Clustering}, and returns a
    tuple whose two elements are membership lists.

    This is used by L{compare_communities} and L{split_join_distance}.

    @param comm1: the first community structure as a membership list or
      as a L{Clustering} object.
    @param comm2: the second community structure as a membership list or
      as a L{Clustering} object.
    @param remove_none: whether to remove C{None} entries from the membership
      lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1}
      or C{comm2} will result in an exception. If C{remove_none} is C{True},
      C{None} values are filtered away and only the remaining lists are
      compared.
    """
    def _ensure_list(obj):
        if isinstance(obj, Clustering):
            return obj.membership
        return list(obj)

    vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2)
    if len(vec1) != len(vec2):
        raise ValueError("the two membership vectors must be equal in length")

    if remove_none and (None in vec1 or None in vec2):
        idxs_to_remove = [i for i in range(len(vec1)) \
                if vec1[i] is None or vec2[i] is None]
        idxs_to_remove.reverse()
        n = len(vec1)
        for i in idxs_to_remove:
            n -= 1
            vec1[i], vec1[n] = vec1[n], vec1[i]
            vec2[i], vec2[n] = vec2[n], vec2[i]
        del vec1[n:]
        del vec2[n:]

    return vec1, vec2


def compare_communities(comm1, comm2, method="vi", remove_none=False):
    """Compares two community structures using various distance measures.

    @param comm1: the first community structure as a membership list or
      as a L{Clustering} object.
    @param comm2: the second community structure as a membership list or
      as a L{Clustering} object.
    @param method: the measure to use. C{"vi"} or C{"meila"} means the
      variation of information metric of Meila (2003), C{"nmi"} or C{"danon"}
      means the normalized mutual information as defined by Danon et al (2005),
      C{"split-join"} means the split-join distance of van Dongen (2000),
      C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"}
      means the adjusted Rand index of Hubert and Arabie (1985).
    @param remove_none: whether to remove C{None} entries from the membership
      lists. This is handy if your L{Clustering} object was constructed using
      L{VertexClustering.FromAttribute} using an attribute which was not defined
      for all the vertices. If C{remove_none} is C{False}, a C{None} entry in
      either C{comm1} or C{comm2} will result in an exception. If C{remove_none}
      is C{True}, C{None} values are filtered away and only the remaining lists
      are compared.

    @return: the calculated measure.
    @newfield ref: Reference
    @ref: Meila M: Comparing clusterings by the variation of information.
          In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel
          Machines: 16th Annual Conference on Computational Learning Theory
          and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA.
          Lecture Notes in Computer Science, vol. 2777, Springer, 2003.
          ISBN: 978-3-540-40720-1.
    @ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community
          structure identification. J Stat Mech P09008, 2005.
    @ref: van Dongen D: Performance criteria for graph clustering and Markov
          cluster experiments. Technical Report INS-R0012, National Research
          Institute for Mathematics and Computer Science in the Netherlands,
          Amsterdam, May 2000.
    @ref: Rand WM: Objective criteria for the evaluation of clustering
          methods. J Am Stat Assoc 66(336):846-850, 1971.
    @ref: Hubert L and Arabie P: Comparing partitions. Journal of
          Classification 2:193-218, 1985.
    """
    import igraph._igraph
    vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none)
    return igraph._igraph._compare_communities(vec1, vec2, method)


def split_join_distance(comm1, comm2, remove_none=False):
    """Calculates the split-join distance between two community structures.

    The split-join distance is a distance measure defined on the space of
    partitions of a given set. It is the sum of the projection distance of
    one partition from the other and vice versa, where the projection
    number of A from B is if calculated as follows:

      1. For each set in A, find the set in B with which it has the
         maximal overlap, and take note of the size of the overlap.

      2. Take the sum of the maximal overlap sizes for each set in A.

      3. Subtract the sum from M{n}, the number of elements in the
         partition.

    Note that the projection distance is asymmetric, that's why it has to be
    calculated in both directions and then added together.  This function
    returns the projection distance of C{comm1} from C{comm2} and the
    projection distance of C{comm2} from C{comm1}, and returns them in a pair.
    The actual split-join distance is the sum of the two distances. The reason
    why it is presented this way is that one of the elements being zero then
    implies that one of the partitions is a subpartition of the other (and if
    it is close to zero, then one of the partitions is close to being a
    subpartition of the other).

    @param comm1: the first community structure as a membership list or
      as a L{Clustering} object.
    @param comm2: the second community structure as a membership list or
      as a L{Clustering} object.
    @param remove_none: whether to remove C{None} entries from the membership
      lists. This is handy if your L{Clustering} object was constructed using
      L{VertexClustering.FromAttribute} using an attribute which was not defined
      for all the vertices. If C{remove_none} is C{False}, a C{None} entry in
      either C{comm1} or C{comm2} will result in an exception. If C{remove_none}
      is C{True}, C{None} values are filtered away and only the remaining lists
      are compared.

    @return: the projection distance of C{comm1} from C{comm2} and vice versa
      in a tuple. The split-join distance is the sum of the two.
    @newfield ref: Reference
    @ref: van Dongen D: Performance criteria for graph clustering and Markov
          cluster experiments. Technical Report INS-R0012, National Research
          Institute for Mathematics and Computer Science in the Netherlands,
          Amsterdam, May 2000.

    @see: L{compare_communities()} with C{method = "split-join"} if you are
      not interested in the individual projection distances but only the
      sum of them.
    """
    import igraph._igraph
    vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none)
    return igraph._igraph._split_join_distance(vec1, vec2)