/usr/lib/python3/dist-packages/igraph/clustering.py is in python3-igraph 0.7.1.post6-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 | # vim:ts=4:sw=4:sts=4:et
# -*- coding: utf-8 -*-
"""Classes related to graph clustering.
@undocumented: _handle_mark_groups_arg_for_clustering, _prepare_community_comparison"""
__license__ = """
Copyright (C) 2006-2012 Tamás Nepusz <ntamas@gmail.com>
Pázmány Péter sétány 1/a, 1117 Budapest, Hungary
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
"""
from copy import deepcopy
from math import pi
from io import StringIO
from igraph import community_to_membership
from igraph.compat import property
from igraph.configuration import Configuration
from igraph.datatypes import UniqueIdGenerator
from igraph.drawing.colors import ClusterColoringPalette
from igraph.statistics import Histogram
from igraph.summary import _get_wrapper_for_width
from igraph.utils import str_to_orientation
class Clustering(object):
"""Class representing a clustering of an arbitrary ordered set.
This is now used as a base for L{VertexClustering}, but it might be
useful for other purposes as well.
Members of an individual cluster can be accessed by the C{[]} operator:
>>> cl = Clustering([0,0,0,0,1,1,1,2,2,2,2])
>>> cl[0]
[0, 1, 2, 3]
The membership vector can be accessed by the C{membership} property:
>>> cl.membership
[0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2]
The number of clusters can be retrieved by the C{len} function:
>>> len(cl)
3
You can iterate over the clustering object as if it were a regular list
of clusters:
>>> for cluster in cl:
... print(" ".join(str(idx) for idx in cluster))
...
0 1 2 3
4 5 6
7 8 9 10
If you need all the clusters at once as lists, you can simply convert
the clustering object to a list:
>>> cluster_list = list(cl)
>>> print(cluster_list)
[[0, 1, 2, 3], [4, 5, 6], [7, 8, 9, 10]]
@undocumented: _formatted_cluster_iterator
"""
def __init__(self, membership, params = None):
"""Constructor.
@param membership: the membership list -- that is, the cluster
index in which each element of the set belongs to.
@param params: additional parameters to be stored in this
object's dictionary."""
self._membership = list(membership)
if len(self._membership)>0:
self._len = max(m for m in self._membership if m is not None)+1
else:
self._len = 0
if params:
self.__dict__.update(params)
def __getitem__(self, idx):
"""Returns the members of the specified cluster.
@param idx: the index of the cluster
@return: the members of the specified cluster as a list
@raise IndexError: if the index is out of bounds"""
if idx < 0 or idx >= self._len:
raise IndexError("cluster index out of range")
return [i for i, e in enumerate(self._membership) if e == idx]
def __iter__(self):
"""Iterates over the clusters in this clustering.
This method will return a generator that generates the clusters
one by one."""
clusters = [[] for _ in range(self._len)]
for idx, cluster in enumerate(self._membership):
clusters[cluster].append(idx)
return iter(clusters)
def __len__(self):
"""Returns the number of clusters.
@return: the number of clusters
"""
return self._len
def __str__(self):
return self.summary(verbosity=1, width=78)
def as_cover(self):
"""Returns a L{Cover} that contains the same clusters as this clustering."""
return Cover(self._graph, self)
def compare_to(self, other, *args, **kwds):
"""Compares this clustering to another one using some similarity or
distance metric.
This is a convenience method that simply calls L{compare_communities}
with the two clusterings as arguments. Any extra positional or keyword
argument is also forwarded to L{compare_communities}."""
return compare_communities(self, other, *args, **kwds)
@property
def membership(self):
"""Returns the membership vector."""
return self._membership[:]
@property
def n(self):
"""Returns the number of elements covered by this clustering."""
return len(self._membership)
def size(self, idx):
"""Returns the size of a given cluster.
@param idx: the cluster in which we are interested.
"""
return len(self[idx])
def sizes(self, *args):
"""Returns the size of given clusters.
The indices are given as positional arguments. If there are no
positional arguments, the function will return the sizes of all clusters.
"""
counts = [0] * len(self)
for x in self._membership:
counts[x] += 1
if args:
return [counts[idx] for idx in args]
return counts
def size_histogram(self, bin_width = 1):
"""Returns the histogram of cluster sizes.
@param bin_width: the bin width of the histogram
@return: a L{Histogram} object
"""
return Histogram(bin_width, self.sizes())
def summary(self, verbosity=0, width=None):
"""Returns the summary of the clustering.
The summary includes the number of items and clusters, and also the
list of members for each of the clusters if the verbosity is nonzero.
@param verbosity: determines whether the cluster members should be
printed. Zero verbosity prints the number of items and clusters only.
@return: the summary of the clustering as a string.
"""
out = StringIO()
print("Clustering with %d elements and %d clusters" % \
(len(self._membership), len(self)), file=out)
if verbosity < 1:
return out.getvalue().strip()
ndigits = len(str(len(self)))
wrapper = _get_wrapper_for_width(width,
subsequent_indent = " " * (ndigits+3))
for idx, cluster in enumerate(self._formatted_cluster_iterator()):
wrapper.initial_indent = "[%*d] " % (ndigits, idx)
print("\n".join(wrapper.wrap(cluster)), file=out)
return out.getvalue().strip()
def _formatted_cluster_iterator(self):
"""Iterates over the clusters and formats them into a string to be
presented in the summary."""
for cluster in self:
yield ", ".join(str(member) for member in cluster)
class VertexClustering(Clustering):
"""The clustering of the vertex set of a graph.
This class extends L{Clustering} by linking it to a specific L{Graph} object
and by optionally storing the modularity score of the clustering.
It also provides some handy methods like getting the subgraph corresponding
to a cluster and such.
@note: since this class is linked to a L{Graph}, destroying the graph by the
C{del} operator does not free the memory occupied by the graph if there
exists a L{VertexClustering} that references the L{Graph}.
@undocumented: _formatted_cluster_iterator
"""
# Allow None to be passed to __plot__ as the "palette" keyword argument
_default_palette = None
def __init__(self, graph, membership = None, modularity = None, \
params = None, modularity_params = None):
"""Creates a clustering object for a given graph.
@param graph: the graph that will be associated to the clustering
@param membership: the membership list. The length of the list must
be equal to the number of vertices in the graph. If C{None}, every
vertex is assumed to belong to the same cluster.
@param modularity: the modularity score of the clustering. If C{None},
it will be calculated when needed.
@param params: additional parameters to be stored in this object.
@param modularity_params: arguments that should be passed to
L{Graph.modularity} when the modularity is (re)calculated. If the
original graph was weighted, you should pass a dictionary
containing a C{weight} key with the appropriate value here.
"""
if membership is None:
Clustering.__init__(self, [0]*graph.vcount(), params)
else:
if len(membership) != graph.vcount():
raise ValueError("membership list has invalid length")
Clustering.__init__(self, membership, params)
self._graph = graph
self._modularity = modularity
self._modularity_dirty = modularity is None
if modularity_params is None:
self._modularity_params = {}
else:
self._modularity_params = dict(modularity_params)
# pylint: disable-msg=C0103
@classmethod
def FromAttribute(cls, graph, attribute, intervals=None, params=None):
"""Creates a vertex clustering based on the value of a vertex attribute.
Vertices having the same attribute will correspond to the same cluster.
@param graph: the graph on which we are working
@param attribute: name of the attribute on which the clustering
is based.
@param intervals: for numeric attributes, you can either pass a single
number or a list of numbers here. A single number means that the
vertices will be put in bins of that width and vertices ending up
in the same bin will be in the same cluster. A list of numbers
specify the bin positions explicitly; e.g., C{[10, 20, 30]} means
that there will be four categories: vertices with the attribute
value less than 10, between 10 and 20, between 20 and 30 and over 30.
Intervals are closed from the left and open from the right.
@param params: additional parameters to be stored in this object.
@return: a new VertexClustering object
"""
from bisect import bisect
def safeintdiv(x, y):
"""Safe integer division that handles None gracefully"""
if x is None:
return None
return int(x / y)
def safebisect(intervals, x):
"""Safe list bisection that handles None gracefully"""
if x is None:
return None
return bisect(intervals, x)
try:
_ = iter(intervals)
iterable = True
except TypeError:
iterable = False
if intervals is None:
vec = graph.vs[attribute]
elif iterable:
intervals = list(intervals)
vec = [safebisect(intervals, x) for x in graph.vs[attribute]]
else:
intervals = float(intervals)
vec = [safeintdiv(x, intervals) for x in graph.vs[attribute]]
idgen = UniqueIdGenerator()
idgen[None] = None
vec = [idgen[i] for i in vec]
return cls(graph, vec, None, params)
def as_cover(self):
"""Returns a L{VertexCover} that contains the same clusters as this
clustering."""
return VertexCover(self._graph, self)
def cluster_graph(self, combine_vertices=None, combine_edges=None):
"""Returns a graph where each cluster is contracted into a single
vertex.
In the resulting graph, vertex M{i} represents cluster M{i} in this
clustering. Vertex M{i} and M{j} will be connected if there was
at least one connected vertex pair M{(a, b)} in the original graph such
that vertex M{a} was in cluster M{i} and vertex M{b} was in cluster
M{j}.
@param combine_vertices: specifies how to derive the attributes of
the vertices in the new graph from the attributes of the old ones.
See L{Graph.contract_vertices()} for more details.
@param combine_edges: specifies how to derive the attributes of the
edges in the new graph from the attributes of the old ones. See
L{Graph.simplify()} for more details. If you specify C{False}
here, edges will not be combined, and the number of edges between
the vertices representing the original clusters will be equal to
the number of edges between the members of those clusters in the
original graph.
@return: the new graph.
"""
result = self.graph.copy()
result.contract_vertices(self.membership, combine_vertices)
if combine_edges != False:
result.simplify(combine_edges=combine_edges)
return result
def crossing(self):
"""Returns a boolean vector where element M{i} is C{True} iff edge
M{i} lies between clusters, C{False} otherwise."""
membership = self.membership
return [membership[v1] != membership[v2] \
for v1, v2 in self.graph.get_edgelist()]
@property
def modularity(self):
"""Returns the modularity score"""
if self._modularity_dirty:
return self._recalculate_modularity_safe()
return self._modularity
q = modularity
@property
def graph(self):
"""Returns the graph belonging to this object"""
return self._graph
def recalculate_modularity(self):
"""Recalculates the stored modularity value.
This method must be called before querying the modularity score of the
clustering through the class member C{modularity} or C{q} if the
graph has been modified (edges have been added or removed) since the
creation of the L{VertexClustering} object.
@return: the new modularity score
"""
self._modularity = self._graph.modularity(self._membership,
**self._modularity_params)
self._modularity_dirty = False
return self._modularity
def _recalculate_modularity_safe(self):
"""Recalculates the stored modularity value and swallows all exceptions
raised by the modularity function (if any).
@return: the new modularity score or C{None} if the modularity function
could not be calculated.
"""
try:
return self.recalculate_modularity()
except:
return None
finally:
self._modularity_dirty = False
def subgraph(self, idx):
"""Get the subgraph belonging to a given cluster.
@param idx: the cluster index
@return: a copy of the subgraph
@precondition: the vertex set of the graph hasn't been modified since
the moment the clustering was constructed.
"""
return self._graph.subgraph(self[idx])
def subgraphs(self):
"""Gets all the subgraphs belonging to each of the clusters.
@return: a list containing copies of the subgraphs
@precondition: the vertex set of the graph hasn't been modified since
the moment the clustering was constructed.
"""
return [self._graph.subgraph(cl) for cl in self]
def giant(self):
"""Returns the giant community of the clustered graph.
The giant component a community for which no larger community exists.
@note: there can be multiple giant communities, this method will return
the copy of an arbitrary one if there are multiple giant communities.
@return: a copy of the giant community.
@precondition: the vertex set of the graph hasn't been modified since
the moment the clustering was constructed.
"""
ss = self.sizes()
max_size = max(ss)
return self.subgraph(ss.index(max_size))
def __plot__(self, context, bbox, palette, *args, **kwds):
"""Plots the clustering to the given Cairo context in the given
bounding box.
This is done by calling L{Graph.__plot__()} with the same arguments, but
coloring the graph vertices according to the current clustering (unless
overridden by the C{vertex_color} argument explicitly).
This method understands all the positional and keyword arguments that
are understood by L{Graph.__plot__()}, only the differences will be
highlighted here:
- C{mark_groups}: whether to highlight some of the vertex groups by
colored polygons. Besides the values accepted by L{Graph.__plot__}
(i.e., a dict mapping colors to vertex indices, a list containing
lists of vertex indices, or C{False}), the following are also
accepted:
- C{True}: all the groups will be highlighted, the colors matching
the corresponding color indices from the current palette
(see the C{palette} keyword argument of L{Graph.__plot__}.
- A dict mapping cluster indices or tuples of vertex indices to
color names. The given clusters or vertex groups will be
highlighted by the given colors.
- A list of cluster indices. This is equivalent to passing a
dict mapping numeric color indices from the current palette
to cluster indices; therefore, the cluster referred to by element
I{i} of the list will be highlighted by color I{i} from the
palette.
The value of the C{plotting.mark_groups} configuration key is also
taken into account here; if that configuration key is C{True} and
C{mark_groups} is not given explicitly, it will automatically be set
to C{True}.
In place of lists of vertex indices, you may also use L{VertexSeq}
instances.
In place of color names, you may also use color indices into the
current palette. C{None} as a color name will mean that the
corresponding group is ignored.
- C{palette}: the palette used to resolve numeric color indices to RGBA
values. By default, this is an instance of L{ClusterColoringPalette}.
@see: L{Graph.__plot__()} for more supported keyword arguments.
"""
if "edge_color" not in kwds and "color" not in self.graph.edge_attributes():
# Set up a default edge coloring based on internal vs external edges
colors = ["grey20", "grey80"]
kwds["edge_color"] = [colors[is_crossing]
for is_crossing in self.crossing()]
if palette is None:
palette = ClusterColoringPalette(len(self))
if "mark_groups" not in kwds:
if Configuration.instance()["plotting.mark_groups"]:
kwds["mark_groups"] = (
(group, color) for color, group in enumerate(self)
)
else:
kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering(
kwds["mark_groups"], self)
if "vertex_color" not in kwds:
kwds["vertex_color"] = self.membership
return self._graph.__plot__(context, bbox, palette, *args, **kwds)
def _formatted_cluster_iterator(self):
"""Iterates over the clusters and formats them into a string to be
presented in the summary."""
if self._graph.is_named():
names = self._graph.vs["name"]
for cluster in self:
yield ", ".join(str(names[member]) for member in cluster)
else:
for cluster in self:
yield ", ".join(str(member) for member in cluster)
###############################################################################
class Dendrogram(object):
"""The hierarchical clustering (dendrogram) of some dataset.
A hierarchical clustering means that we know not only the way the
elements are separated into groups, but also the exact history of
how individual elements were joined into larger subgroups.
This class internally represents the hierarchy by a matrix with n rows
and 2 columns -- or more precisely, a list of lists of size 2. This is
exactly the same as the original format used by C{igraph}'s C core.
The M{i}th row of the matrix contains the indices of the two clusters
being joined in time step M{i}. The joint group will be represented by
the ID M{n+i}, with M{i} starting from one. The ID of the joint group
will be referenced in the upcoming steps instead of any of its individual
members. So, IDs less than or equal to M{n} (where M{n} is the number of
rows in the matrix) mean the original members of the dataset (with ID
from 0 to M{n}), while IDs up from M{n+1} mean joint groups. As an
example, take a look at the dendrogram and the internal representation of
a given clustering of five nodes::
0 -+
|
1 -+-+
|
2 ---+-+ <====> [[0, 1], [3, 4], [2, 5], [6, 7]]
|
3 -+ |
| |
4 -+---+---
@undocumented: _item_box_size, _plot_item, _traverse_inorder
"""
def __init__(self, merges):
"""Creates a hierarchical clustering.
@param merges: the merge history either in matrix or tuple format"""
self._merges = [tuple(pair) for pair in merges]
self._nmerges = len(self._merges)
if self._nmerges:
self._nitems = max(self._merges[-1])-self._nmerges+2
else:
self._nitems = 0
self._names = None
@staticmethod
def _convert_matrix_to_tuple_repr(merges, n=None):
"""Converts the matrix representation of a clustering to a tuple
representation.
@param merges: the matrix representation of the clustering
@return: the tuple representation of the clustering
"""
if n is None:
n = len(merges)+1
tuple_repr = list(range(n))
idxs = list(range(n))
for rowidx, row in enumerate(merges):
i, j = row
try:
idxi, idxj = idxs[i], idxs[j]
tuple_repr[idxi] = (tuple_repr[idxi], tuple_repr[idxj])
tuple_repr[idxj] = None
except IndexError:
raise ValueError("malformed matrix, subgroup referenced "+
"before being created in step %d" % rowidx)
idxs.append(j)
return [x for x in tuple_repr if x is not None]
def _traverse_inorder(self):
"""Conducts an inorder traversal of the merge tree.
The inorder traversal returns the nodes on the last level in the order
they should be drawn so that no edges cross each other.
@return: the result of the inorder traversal in a list."""
result = []
seen_nodes = set()
for node_index in reversed(range(self._nitems+self._nmerges)):
if node_index in seen_nodes:
continue
stack = [node_index]
while stack:
last = stack.pop()
seen_nodes.add(last)
if last < self._nitems:
# 'last' is a regular node so the traversal ends here, we
# can append it to the results
result.append(last)
else:
# 'last' is a merge node, so let us proceed with the entry
# where this merge node was created
stack.extend(self._merges[last-self._nitems])
return result
def __str__(self):
return self.summary(verbosity=1)
def format(self, format="newick"):
"""Formats the dendrogram in a foreign format.
Currently only the Newick format is supported.
Example:
>>> d = Dendrogram([(2, 3), (0, 1), (4, 5)])
>>> d.format()
'((2,3)4,(0,1)5)6;'
>>> d.names = list("ABCDEFG")
>>> d.format()
'((C,D)E,(A,B)F)G;'
"""
if format == "newick":
n = self._nitems + self._nmerges
if self._names is None:
nodes = list(range(n))
else:
nodes = list(self._names)
if len(nodes) < n:
nodes.extend("" for _ in range(n - len(nodes)))
for k, (i, j) in enumerate(self._merges, self._nitems):
nodes[k] = "(%s,%s)%s" % (nodes[i], nodes[j], nodes[k])
nodes[i] = nodes[j] = None
return nodes[-1] + ";"
raise ValueError("unsupported format: %r" % format)
def summary(self, verbosity=0, max_leaf_count=40):
"""Returns the summary of the dendrogram.
The summary includes the number of leafs and branches, and also an
ASCII art representation of the dendrogram unless it is too large.
@param verbosity: determines whether the ASCII representation of the
dendrogram should be printed. Zero verbosity prints only the number
of leafs and branches.
@param max_leaf_count: the maximal number of leafs to print in the
ASCII representation. If the dendrogram has more leafs than this
limit, the ASCII representation will not be printed even if the
verbosity is larger than or equal to 1.
@return: the summary of the dendrogram as a string.
"""
out = StringIO()
print("Dendrogram, %d elements, %d merges" % \
(self._nitems, self._nmerges), file=out)
if self._nitems == 0 or verbosity < 1 or self._nitems > max_leaf_count:
return out.getvalue().strip()
print(file=out)
positions = [None] * self._nitems
inorder = self._traverse_inorder()
distance = 2
level_distance = 2
nextp = 0
for idx, element in enumerate(inorder):
positions[element] = nextp
inorder[idx] = str(element)
nextp += max(distance, len(inorder[idx])+1)
width = max(positions)+1
# Print the nodes on the lowest level
print((" " * (distance-1)).join(inorder), file=out)
midx = 0
max_community_idx = self._nitems
while midx < self._nmerges:
char_array = [" "] * width
for position in positions:
if position >= 0:
char_array[position] = "|"
char_str = "".join(char_array)
for _ in range(level_distance-1):
print(char_str, file=out) # Print the lines
cidx_incr = 0
while midx < self._nmerges:
id1, id2 = self._merges[midx]
if id1 >= max_community_idx or id2 >= max_community_idx:
break
midx += 1
pos1, pos2 = positions[id1], positions[id2]
positions[id1], positions[id2] = -1, -1
if pos1 > pos2:
pos1, pos2 = pos2, pos1
positions.append((pos1+pos2) // 2)
dashes = "-" * (pos2 - pos1 - 1)
char_array[pos1:(pos2+1)] = "`%s'" % dashes
cidx_incr += 1
max_community_idx += cidx_incr
print("".join(char_array), file=out)
return out.getvalue().strip()
def _item_box_size(self, context, horiz, idx):
"""Calculates the amount of space needed for drawing an
individual vertex at the bottom of the dendrogram."""
if self._names is None or self._names[idx] is None:
x_bearing, _, _, height, x_advance, _ = context.text_extents("")
else:
x_bearing, _, _, height, x_advance, _ = context.text_extents(str(self._names[idx]))
if horiz:
return x_advance - x_bearing, height
return height, x_advance - x_bearing
# pylint: disable-msg=R0913
def _plot_item(self, context, horiz, idx, x, y):
"""Plots a dendrogram item to the given Cairo context
@param context: the Cairo context we are plotting on
@param horiz: whether the dendrogram is horizontally oriented
@param idx: the index of the item
@param x: the X position of the item
@param y: the Y position of the item
"""
if self._names is None or self._names[idx] is None:
return
height = self._item_box_size(context, True, idx)[1]
if horiz:
context.move_to(x, y+height)
context.show_text(str(self._names[idx]))
else:
context.save()
context.translate(x, y)
context.rotate(-pi/2.)
context.move_to(0, height)
context.show_text(str(self._names[idx]))
context.restore()
# pylint: disable-msg=C0103,W0613
# W0613 = unused argument 'palette'
def __plot__(self, context, bbox, palette, *args, **kwds):
"""Draws the dendrogram on the given Cairo context
Supported keyword arguments are:
- C{orientation}: the orientation of the dendrogram. Must be one of
the following values: C{left-right}, C{bottom-top}, C{right-left}
or C{top-bottom}. Individual elements are always placed at the
former edge and merges are performed towards the latter edge.
Possible aliases: C{horizontal} = C{left-right},
C{vertical} = C{bottom-top}, C{lr} = C{left-right},
C{rl} = C{right-left}, C{tb} = C{top-bottom}, C{bt} = C{bottom-top}.
The default is C{left-right}.
"""
from igraph.layout import Layout
if self._names is None:
self._names = [str(x) for x in range(self._nitems)]
orientation = str_to_orientation(kwds.get("orientation", "lr"),
reversed_vertical=True)
horiz = orientation in ("lr", "rl")
# Get the font height
font_height = context.font_extents()[2]
# Calculate space needed for individual items at the
# bottom of the dendrogram
item_boxes = [self._item_box_size(context, horiz, idx) \
for idx in range(self._nitems)]
# Small correction for cases when the right edge of the labels is
# aligned with the tips of the dendrogram branches
ygap = 2 if orientation == "bt" else 0
xgap = 2 if orientation == "lr" else 0
item_boxes = [(x+xgap, y+ygap) for x, y in item_boxes]
# Calculate coordinates
layout = Layout([(0, 0)] * self._nitems, dim=2)
inorder = self._traverse_inorder()
if not horiz:
x, y = 0, 0
for idx, element in enumerate(inorder):
layout[element] = (x, 0)
x += max(font_height, item_boxes[element][0])
for id1, id2 in self._merges:
y += 1
layout.append(((layout[id1][0]+layout[id2][0])/2., y))
# Mirror or rotate the layout if necessary
if orientation == "bt":
layout.mirror(1)
else:
x, y = 0, 0
for idx, element in enumerate(inorder):
layout[element] = (0, y)
y += max(font_height, item_boxes[element][1])
for id1, id2 in self._merges:
x += 1
layout.append((x, (layout[id1][1]+layout[id2][1])/2.))
# Mirror or rotate the layout if necessary
if orientation == "rl":
layout.mirror(0)
# Rescale layout to the bounding box
maxw = max(e[0] for e in item_boxes)
maxh = max(e[1] for e in item_boxes)
# w, h: width and height of the area containing the dendrogram
# tree without the items.
# delta_x, delta_y: displacement of the dendrogram tree
width, height = float(bbox.width), float(bbox.height)
delta_x, delta_y = 0, 0
if horiz:
width -= maxw
if orientation == "lr":
delta_x = maxw
else:
height -= maxh
if orientation == "tb":
delta_y = maxh
if horiz:
delta_y += font_height / 2.
else:
delta_x += font_height / 2.
layout.fit_into((delta_x, delta_y, width - delta_x, height - delta_y),
keep_aspect_ratio=False)
context.save()
context.translate(bbox.left, bbox.top)
context.set_source_rgb(0., 0., 0.)
context.set_line_width(1)
# Draw items
if horiz:
sgn = 0 if orientation == "rl" else -1
for idx in range(self._nitems):
x = layout[idx][0] + sgn * item_boxes[idx][0]
y = layout[idx][1] - item_boxes[idx][1]/2.
self._plot_item(context, horiz, idx, x, y)
else:
sgn = 1 if orientation == "bt" else 0
for idx in range(self._nitems):
x = layout[idx][0] - item_boxes[idx][0]/2.
y = layout[idx][1] + sgn * item_boxes[idx][1]
self._plot_item(context, horiz, idx, x, y)
# Draw dendrogram lines
if not horiz:
for idx, (id1, id2) in enumerate(self._merges):
x0, y0 = layout[id1]
x1, y1 = layout[id2]
x2, y2 = layout[idx + self._nitems]
context.move_to(x0, y0)
context.line_to(x0, y2)
context.line_to(x1, y2)
context.line_to(x1, y1)
context.stroke()
else:
for idx, (id1, id2) in enumerate(self._merges):
x0, y0 = layout[id1]
x1, y1 = layout[id2]
x2, y2 = layout[idx + self._nitems]
context.move_to(x0, y0)
context.line_to(x2, y0)
context.line_to(x2, y1)
context.line_to(x1, y1)
context.stroke()
context.restore()
@property
def merges(self):
"""Returns the performed merges in matrix format"""
return deepcopy(self._merges)
@property
def names(self):
"""Returns the names of the nodes in the dendrogram"""
return self._names
@names.setter
def names(self, items):
"""Sets the names of the nodes in the dendrogram"""
if items is None:
self._names = None
return
items = list(items)
if len(items) < self._nitems:
raise ValueError("must specify at least %d names" % self._nitems)
n = self._nitems + self._nmerges
self._names = items[:n]
if len(self._names) < n:
self._names.extend("" for _ in range(n-len(self._names)))
class VertexDendrogram(Dendrogram):
"""The dendrogram resulting from the hierarchical clustering of the
vertex set of a graph."""
def __init__(self, graph, merges, optimal_count = None, params = None,
modularity_params = None):
"""Creates a dendrogram object for a given graph.
@param graph: the graph that will be associated to the clustering
@param merges: the merges performed given in matrix form.
@param optimal_count: the optimal number of clusters where the
dendrogram should be cut. This is a hint usually provided by the
clustering algorithm that produces the dendrogram. C{None} means
that such a hint is not available; the optimal count will then be
selected based on the modularity in such a case.
@param params: additional parameters to be stored in this object.
@param modularity_params: arguments that should be passed to
L{Graph.modularity} when the modularity is (re)calculated. If the
original graph was weighted, you should pass a dictionary
containing a C{weight} key with the appropriate value here.
"""
Dendrogram.__init__(self, merges)
self._graph = graph
self._optimal_count = optimal_count
if modularity_params is None:
self._modularity_params = {}
else:
self._modularity_params = dict(modularity_params)
def as_clustering(self, n=None):
"""Cuts the dendrogram at the given level and returns a corresponding
L{VertexClustering} object.
@param n: the desired number of clusters. Merges are replayed from the
beginning until the membership vector has exactly M{n} distinct elements
or until there are no more recorded merges, whichever happens first.
If C{None}, the optimal count hint given by the clustering algorithm
will be used If the optimal count was not given either, it will be
calculated by selecting the level where the modularity is maximal.
@return: a new L{VertexClustering} object.
"""
if n is None:
n = self.optimal_count
num_elts = self._graph.vcount()
idgen = UniqueIdGenerator()
membership = community_to_membership(self._merges, num_elts, \
num_elts - n)
membership = [idgen[m] for m in membership]
return VertexClustering(self._graph, membership,
modularity_params=self._modularity_params)
@property
def optimal_count(self):
"""Returns the optimal number of clusters for this dendrogram.
If an optimal count hint was given at construction time, this
property simply returns the hint. If such a count was not given,
this method calculates the optimal number of clusters by maximizing
the modularity along all the possible cuts in the dendrogram.
"""
if self._optimal_count is not None:
return self._optimal_count
n = self._graph.vcount()
max_q, optimal_count = 0, 1
for step in range(min(n-1, len(self._merges))):
membs = community_to_membership(self._merges, n, step)
q = self._graph.modularity(membs, **self._modularity_params)
if q > max_q:
optimal_count = n-step
max_q = q
self._optimal_count = optimal_count
return optimal_count
@optimal_count.setter
def optimal_count(self, value):
self._optimal_count = max(int(value), 1)
def __plot__(self, context, bbox, palette, *args, **kwds):
"""Draws the vertex dendrogram on the given Cairo context
See L{Dendrogram.__plot__} for the list of supported keyword
arguments."""
from igraph.drawing.metamagic import AttributeCollectorBase
class VisualVertexBuilder(AttributeCollectorBase):
_kwds_prefix = "vertex_"
label = None
builder = VisualVertexBuilder(self._graph.vs, kwds)
self._names = [vertex.label for vertex in builder]
self._names = [name if name is not None else str(idx)
for idx, name in enumerate(self._names)]
result = Dendrogram.__plot__(self, context, bbox, palette, \
*args, **kwds)
del self._names
return result
###############################################################################
class Cover(object):
"""Class representing a cover of an arbitrary ordered set.
Covers are similar to clusterings, but each element of the set may
belong to more than one cluster in a cover, and elements not belonging
to any cluster are also allowed.
L{Cover} instances provide a similar API as L{Clustering} instances;
for instance, iterating over a L{Cover} will iterate over the clusters
just like with a regular L{Clustering} instance. However, they are not
derived from each other or from a common superclass, and there might
be functions that exist only in one of them or the other.
Clusters of an individual cover can be accessed by the C{[]} operator:
>>> cl = Cover([[0,1,2,3], [2,3,4], [0,1,6]])
>>> cl[0]
[0, 1, 2, 3]
The membership vector can be accessed by the C{membership} property.
Note that contrary to L{Clustering} instances, the membership vector
will contain lists that contain the cluster indices each item belongs
to:
>>> cl.membership
[[0, 2], [0, 2], [0, 1], [0, 1], [1], [], [2]]
The number of clusters can be retrieved by the C{len} function:
>>> len(cl)
3
You can iterate over the cover as if it were a regular list of
clusters:
>>> for cluster in cl:
... print(" ".join(str(idx) for idx in cluster))
...
0 1 2 3
2 3 4
0 1 6
If you need all the clusters at once as lists, you can simply convert
the cover to a list:
>>> cluster_list = list(cl)
>>> print(cluster_list)
[[0, 1, 2, 3], [2, 3, 4], [0, 1, 6]]
L{Clustering} objects can readily be converted to L{Cover} objects
using the constructor:
>>> clustering = Clustering([0, 0, 0, 0, 1, 1, 1, 2, 2, 2])
>>> cover = Cover(clustering)
>>> list(clustering) == list(cover)
True
@undocumented: _formatted_cluster_iterator
"""
def __init__(self, clusters, n=0):
"""Constructs a cover with the given clusters.
@param clusters: the clusters in this cover, as a list or iterable.
Each cluster is specified by a list or tuple that contains the
IDs of the items in this cluster. IDs start from zero.
@param n: the total number of elements in the set that is covered
by this cover. If it is less than the number of unique elements
found in all the clusters, we will simply use the number of unique
elements, so it is safe to leave this at zero. You only have to
specify this parameter if there are some elements that are covered
by none of the clusters.
"""
self._clusters = [list(cluster) for cluster in clusters]
try:
self._n = max(max(cluster)+1 for cluster in self._clusters if cluster)
except ValueError:
self._n = 0
self._n = max(n, self._n)
def __getitem__(self, index):
"""Returns the cluster with the given index."""
return self._clusters[index]
def __iter__(self):
"""Iterates over the clusters in this cover."""
return iter(self._clusters)
def __len__(self):
"""Returns the number of clusters in this cover."""
return len(self._clusters)
def __str__(self):
"""Returns a string representation of the cover."""
return self.summary(verbosity=1, width=78)
@property
def membership(self):
"""Returns the membership vector of this cover.
The membership vector of a cover covering I{n} elements is a list of
length I{n}, where element I{i} contains the cluster indices of the
I{i}th item.
"""
result = [[] for _ in range(self._n)]
for idx, cluster in enumerate(self):
for item in cluster:
result[item].append(idx)
return result
@property
def n(self):
"""Returns the number of elements in the set covered by this cover."""
return self._n
def size(self, idx):
"""Returns the size of a given cluster.
@param idx: the cluster in which we are interested.
"""
return len(self[idx])
def sizes(self, *args):
"""Returns the size of given clusters.
The indices are given as positional arguments. If there are no
positional arguments, the function will return the sizes of all clusters.
"""
if args:
return [len(self._clusters[idx]) for idx in args]
return [len(cluster) for cluster in self]
def size_histogram(self, bin_width = 1):
"""Returns the histogram of cluster sizes.
@param bin_width: the bin width of the histogram
@return: a L{Histogram} object
"""
return Histogram(bin_width, self.sizes())
def summary(self, verbosity=0, width=None):
"""Returns the summary of the cover.
The summary includes the number of items and clusters, and also the
list of members for each of the clusters if the verbosity is nonzero.
@param verbosity: determines whether the cluster members should be
printed. Zero verbosity prints the number of items and clusters only.
@return: the summary of the cover as a string.
"""
out = StringIO()
print("Cover with %d clusters" % len(self), file=out)
if verbosity < 1:
return out.getvalue().strip()
ndigits = len(str(len(self)))
wrapper = _get_wrapper_for_width(width,
subsequent_indent = " " * (ndigits+3))
for idx, cluster in enumerate(self._formatted_cluster_iterator()):
wrapper.initial_indent = "[%*d] " % (ndigits, idx)
print("\n".join(wrapper.wrap(cluster)), file=out)
return out.getvalue().strip()
def _formatted_cluster_iterator(self):
"""Iterates over the clusters and formats them into a string to be
presented in the summary."""
for cluster in self:
yield ", ".join(str(member) for member in cluster)
class VertexCover(Cover):
"""The cover of the vertex set of a graph.
This class extends L{Cover} by linking it to a specific L{Graph} object.
It also provides some handy methods like getting the subgraph corresponding
to a cluster and such.
@note: since this class is linked to a L{Graph}, destroying the graph by the
C{del} operator does not free the memory occupied by the graph if there
exists a L{VertexCover} that references the L{Graph}.
@undocumented: _formatted_cluster_iterator
"""
def __init__(self, graph, clusters = None):
"""Creates a cover object for a given graph.
@param graph: the graph that will be associated to the cover
@param clusters: the list of clusters. If C{None}, it is assumed
that there is only a single cluster that covers the whole graph.
"""
if clusters is None:
clusters = [list(range(graph.vcount()))]
Cover.__init__(self, clusters, n = graph.vcount())
if self._n > graph.vcount():
raise ValueError("cluster list contains vertex ID larger than the "
"number of vertices in the graph")
self._graph = graph
def crossing(self):
"""Returns a boolean vector where element M{i} is C{True} iff edge
M{i} lies between clusters, C{False} otherwise."""
membership = [frozenset(cluster) for cluster in self.membership]
return [membership[v1].isdisjoint(membership[v2]) \
for v1, v2 in self.graph.get_edgelist()]
@property
def graph(self):
"""Returns the graph belonging to this object"""
return self._graph
def subgraph(self, idx):
"""Get the subgraph belonging to a given cluster.
@param idx: the cluster index
@return: a copy of the subgraph
@precondition: the vertex set of the graph hasn't been modified since
the moment the cover was constructed.
"""
return self._graph.subgraph(self[idx])
def subgraphs(self):
"""Gets all the subgraphs belonging to each of the clusters.
@return: a list containing copies of the subgraphs
@precondition: the vertex set of the graph hasn't been modified since
the moment the cover was constructed.
"""
return [self._graph.subgraph(cl) for cl in self]
def __plot__(self, context, bbox, palette, *args, **kwds):
"""Plots the cover to the given Cairo context in the given
bounding box.
This is done by calling L{Graph.__plot__()} with the same arguments, but
drawing nice colored blobs around the vertex groups.
This method understands all the positional and keyword arguments that
are understood by L{Graph.__plot__()}, only the differences will be
highlighted here:
- C{mark_groups}: whether to highlight the vertex clusters by
colored polygons. Besides the values accepted by L{Graph.__plot__}
(i.e., a dict mapping colors to vertex indices, a list containing
lists of vertex indices, or C{False}), the following are also
accepted:
- C{True}: all the clusters will be highlighted, the colors matching
the corresponding color indices from the current palette
(see the C{palette} keyword argument of L{Graph.__plot__}.
- A dict mapping cluster indices or tuples of vertex indices to
color names. The given clusters or vertex groups will be
highlighted by the given colors.
- A list of cluster indices. This is equivalent to passing a
dict mapping numeric color indices from the current palette
to cluster indices; therefore, the cluster referred to by element
I{i} of the list will be highlighted by color I{i} from the
palette.
The value of the C{plotting.mark_groups} configuration key is also
taken into account here; if that configuration key is C{True} and
C{mark_groups} is not given explicitly, it will automatically be set
to C{True}.
In place of lists of vertex indices, you may also use L{VertexSeq}
instances.
In place of color names, you may also use color indices into the
current palette. C{None} as a color name will mean that the
corresponding group is ignored.
- C{palette}: the palette used to resolve numeric color indices to RGBA
values. By default, this is an instance of L{ClusterColoringPalette}.
@see: L{Graph.__plot__()} for more supported keyword arguments.
"""
if "edge_color" not in kwds and "color" not in self.graph.edge_attributes():
# Set up a default edge coloring based on internal vs external edges
colors = ["grey20", "grey80"]
kwds["edge_color"] = [colors[is_crossing]
for is_crossing in self.crossing()]
if "palette" in kwds:
palette = kwds["palette"]
else:
palette = ClusterColoringPalette(len(self))
if "mark_groups" not in kwds:
if Configuration.instance()["plotting.mark_groups"]:
kwds["mark_groups"] = enumerate(self)
else:
kwds["mark_groups"] = _handle_mark_groups_arg_for_clustering(
kwds["mark_groups"], self)
return self._graph.__plot__(context, bbox, palette, *args, **kwds)
def _formatted_cluster_iterator(self):
"""Iterates over the clusters and formats them into a string to be
presented in the summary."""
if self._graph.is_named():
names = self._graph.vs["name"]
for cluster in self:
yield ", ".join(str(names[member]) for member in cluster)
else:
for cluster in self:
yield ", ".join(str(member) for member in cluster)
class CohesiveBlocks(VertexCover):
"""The cohesive block structure of a graph.
Instances of this type are created by L{Graph.cohesive_blocks()}. See
the documentation of L{Graph.cohesive_blocks()} for an explanation of
what cohesive blocks are.
This class provides a few more methods that make handling of cohesive
block structures easier.
"""
def __init__(self, graph, blocks = None, cohesion = None, parent = None):
"""Constructs a new cohesive block structure for the given graph.
If any of I{blocks}, I{cohesion} or I{parent} is C{None}, all the
arguments will be ignored and L{Graph.cohesive_blocks()} will be
called to calculate the cohesive blocks. Otherwise, these three
variables should describe the *result* of a cohesive block structure
calculation. Chances are that you never have to construct L{CohesiveBlocks}
instances directly, just use L{Graph.cohesive_blocks()}.
@param graph: the graph itself
@param blocks: a list containing the blocks; each block is described
as a list containing vertex IDs.
@param cohesion: the cohesion of each block. The length of this list
must be equal to the length of I{blocks}.
@param parent: the parent block of each block. Negative values or
C{None} mean that there is no parent block for that block. There
should be only one parent block, which covers the entire graph.
@see: Graph.cohesive_blocks()
"""
if blocks is None or cohesion is None or parent is None:
blocks, cohesion, parent = graph.cohesive_blocks()
VertexCover.__init__(self, graph, blocks)
self._cohesion = cohesion
self._parent = parent
for idx, p in enumerate(self._parent):
if p < 0:
self._parent[idx] = None
def cohesion(self, idx):
"""Returns the cohesion of the group with the given index."""
return self._cohesion[idx]
def cohesions(self):
"""Returns the list of cohesion values for each group."""
return self._cohesion[:]
def hierarchy(self):
"""Returns a new graph that describes the hierarchical relationships
between the groups.
The new graph will be a directed tree; an edge will point from
vertex M{i} to vertex M{j} if group M{i} is a superset of group M{j}.
In other words, the edges point downwards.
"""
from igraph import Graph
edges = [pair for pair in zip(self._parent, range(len(self)))
if pair[0] is not None]
return Graph(edges, directed=True)
def max_cohesion(self, idx):
"""Finds the maximum cohesion score among all the groups that contain
the given vertex."""
result = 0
for cohesion, cluster in zip(self._cohesion, self._clusters):
if idx in cluster:
result = max(result, cohesion)
return result
def max_cohesions(self):
"""For each vertex in the graph, returns the maximum cohesion score
among all the groups that contain the vertex."""
result = [0] * self._graph.vcount()
for cohesion, cluster in zip(self._cohesion, self._clusters):
for idx in cluster:
result[idx] = max(result[idx], cohesion)
return result
def parent(self, idx):
"""Returns the parent group index of the group with the given index
or C{None} if the given group is the root."""
return self._parent[idx]
def parents(self):
"""Returns the list of parent group indices for each group or C{None}
if the given group is the root."""
return self._parent[:]
def __plot__(self, context, bbox, palette, *args, **kwds):
"""Plots the cohesive block structure to the given Cairo context in
the given bounding box.
Since a L{CohesiveBlocks} instance is also a L{VertexCover}, keyword
arguments accepted by L{VertexCover.__plot__()} are also accepted here.
The only difference is that the vertices are colored according to their
maximal cohesions by default, and groups are marked by colored blobs
except the last group which encapsulates the whole graph.
See the documentation of L{VertexCover.__plot__()} for more details.
"""
prepare_groups = False
if "mark_groups" not in kwds:
if Configuration.instance()["plotting.mark_groups"]:
prepare_groups = True
elif kwds["mark_groups"] == True:
prepare_groups = True
if prepare_groups:
colors = [pair for pair in enumerate(self.cohesions())
if pair[1] > 1]
kwds["mark_groups"] = colors
if "vertex_color" not in kwds:
kwds["vertex_color"] = self.max_cohesions()
return VertexCover.__plot__(self, context, bbox, palette, *args, **kwds)
def _handle_mark_groups_arg_for_clustering(mark_groups, clustering):
"""Handles the mark_groups=... keyword argument in plotting methods of
clusterings.
This is an internal method, you shouldn't need to mess around with it.
Its purpose is to handle the extended semantics of the mark_groups=...
keyword argument in the C{__plot__} method of L{VertexClustering} and
L{VertexCover} instances, namely the feature that numeric IDs are resolved
to clusters automatically.
"""
# Handle the case of mark_groups = True, mark_groups containing a list or
# tuple of cluster IDs, and and mark_groups yielding (cluster ID, color)
# pairs
if mark_groups is True:
group_iter = ((group, color) for color, group in enumerate(clustering))
elif isinstance(mark_groups, dict):
group_iter = iter(mark_groups.items())
elif hasattr(mark_groups, "__getitem__") and hasattr(mark_groups, "__len__"):
# Lists, tuples
try:
first = mark_groups[0]
except:
# Hmm. Maybe not a list or tuple?
first = None
if first is not None:
# Okay. Is the first element of the list a single number?
if isinstance(first, int):
# Yes. Seems like we have a list of cluster indices.
# Assign color indices automatically.
group_iter = ((group, color)
for color, group in enumerate(mark_groups))
else:
# No. Seems like we have good ol' group-color pairs.
group_iter = mark_groups
else:
group_iter = mark_groups
elif hasattr(mark_groups, "__iter__"):
# Iterators etc
group_iter = mark_groups
else:
group_iter = iter({}.items())
def cluster_index_resolver():
for group, color in group_iter:
if isinstance(group, int):
group = clustering[group]
yield group, color
return cluster_index_resolver()
##############################################################
def _prepare_community_comparison(comm1, comm2, remove_none=False):
"""Auxiliary method that takes two community structures either as
membership lists or instances of L{Clustering}, and returns a
tuple whose two elements are membership lists.
This is used by L{compare_communities} and L{split_join_distance}.
@param comm1: the first community structure as a membership list or
as a L{Clustering} object.
@param comm2: the second community structure as a membership list or
as a L{Clustering} object.
@param remove_none: whether to remove C{None} entries from the membership
lists. If C{remove_none} is C{False}, a C{None} entry in either C{comm1}
or C{comm2} will result in an exception. If C{remove_none} is C{True},
C{None} values are filtered away and only the remaining lists are
compared.
"""
def _ensure_list(obj):
if isinstance(obj, Clustering):
return obj.membership
return list(obj)
vec1, vec2 = _ensure_list(comm1), _ensure_list(comm2)
if len(vec1) != len(vec2):
raise ValueError("the two membership vectors must be equal in length")
if remove_none and (None in vec1 or None in vec2):
idxs_to_remove = [i for i in range(len(vec1)) \
if vec1[i] is None or vec2[i] is None]
idxs_to_remove.reverse()
n = len(vec1)
for i in idxs_to_remove:
n -= 1
vec1[i], vec1[n] = vec1[n], vec1[i]
vec2[i], vec2[n] = vec2[n], vec2[i]
del vec1[n:]
del vec2[n:]
return vec1, vec2
def compare_communities(comm1, comm2, method="vi", remove_none=False):
"""Compares two community structures using various distance measures.
@param comm1: the first community structure as a membership list or
as a L{Clustering} object.
@param comm2: the second community structure as a membership list or
as a L{Clustering} object.
@param method: the measure to use. C{"vi"} or C{"meila"} means the
variation of information metric of Meila (2003), C{"nmi"} or C{"danon"}
means the normalized mutual information as defined by Danon et al (2005),
C{"split-join"} means the split-join distance of van Dongen (2000),
C{"rand"} means the Rand index of Rand (1971), C{"adjusted_rand"}
means the adjusted Rand index of Hubert and Arabie (1985).
@param remove_none: whether to remove C{None} entries from the membership
lists. This is handy if your L{Clustering} object was constructed using
L{VertexClustering.FromAttribute} using an attribute which was not defined
for all the vertices. If C{remove_none} is C{False}, a C{None} entry in
either C{comm1} or C{comm2} will result in an exception. If C{remove_none}
is C{True}, C{None} values are filtered away and only the remaining lists
are compared.
@return: the calculated measure.
@newfield ref: Reference
@ref: Meila M: Comparing clusterings by the variation of information.
In: Scholkopf B, Warmuth MK (eds). Learning Theory and Kernel
Machines: 16th Annual Conference on Computational Learning Theory
and 7th Kernel Workship, COLT/Kernel 2003, Washington, DC, USA.
Lecture Notes in Computer Science, vol. 2777, Springer, 2003.
ISBN: 978-3-540-40720-1.
@ref: Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community
structure identification. J Stat Mech P09008, 2005.
@ref: van Dongen D: Performance criteria for graph clustering and Markov
cluster experiments. Technical Report INS-R0012, National Research
Institute for Mathematics and Computer Science in the Netherlands,
Amsterdam, May 2000.
@ref: Rand WM: Objective criteria for the evaluation of clustering
methods. J Am Stat Assoc 66(336):846-850, 1971.
@ref: Hubert L and Arabie P: Comparing partitions. Journal of
Classification 2:193-218, 1985.
"""
import igraph._igraph
vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none)
return igraph._igraph._compare_communities(vec1, vec2, method)
def split_join_distance(comm1, comm2, remove_none=False):
"""Calculates the split-join distance between two community structures.
The split-join distance is a distance measure defined on the space of
partitions of a given set. It is the sum of the projection distance of
one partition from the other and vice versa, where the projection
number of A from B is if calculated as follows:
1. For each set in A, find the set in B with which it has the
maximal overlap, and take note of the size of the overlap.
2. Take the sum of the maximal overlap sizes for each set in A.
3. Subtract the sum from M{n}, the number of elements in the
partition.
Note that the projection distance is asymmetric, that's why it has to be
calculated in both directions and then added together. This function
returns the projection distance of C{comm1} from C{comm2} and the
projection distance of C{comm2} from C{comm1}, and returns them in a pair.
The actual split-join distance is the sum of the two distances. The reason
why it is presented this way is that one of the elements being zero then
implies that one of the partitions is a subpartition of the other (and if
it is close to zero, then one of the partitions is close to being a
subpartition of the other).
@param comm1: the first community structure as a membership list or
as a L{Clustering} object.
@param comm2: the second community structure as a membership list or
as a L{Clustering} object.
@param remove_none: whether to remove C{None} entries from the membership
lists. This is handy if your L{Clustering} object was constructed using
L{VertexClustering.FromAttribute} using an attribute which was not defined
for all the vertices. If C{remove_none} is C{False}, a C{None} entry in
either C{comm1} or C{comm2} will result in an exception. If C{remove_none}
is C{True}, C{None} values are filtered away and only the remaining lists
are compared.
@return: the projection distance of C{comm1} from C{comm2} and vice versa
in a tuple. The split-join distance is the sum of the two.
@newfield ref: Reference
@ref: van Dongen D: Performance criteria for graph clustering and Markov
cluster experiments. Technical Report INS-R0012, National Research
Institute for Mathematics and Computer Science in the Netherlands,
Amsterdam, May 2000.
@see: L{compare_communities()} with C{method = "split-join"} if you are
not interested in the individual projection distances but only the
sum of them.
"""
import igraph._igraph
vec1, vec2 = _prepare_community_comparison(comm1, comm2, remove_none)
return igraph._igraph._split_join_distance(vec1, vec2)
|