/usr/lib/python3/dist-packages/matplotlib/cm.py is in python3-matplotlib 2.1.1-2ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 | """
This module provides a large set of colormaps, functions for
registering new colormaps and for getting a colormap by name,
and a mixin class for adding color mapping functionality.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import six
import os
import numpy as np
from numpy import ma
import matplotlib as mpl
import matplotlib.colors as colors
import matplotlib.cbook as cbook
from matplotlib._cm import datad, _deprecation_datad
from matplotlib._cm import cubehelix
from matplotlib._cm_listed import cmaps as cmaps_listed
cmap_d = _deprecation_datad()
# reverse all the colormaps.
# reversed colormaps have '_r' appended to the name.
def _reverser(f):
def freversed(x):
return f(1 - x)
return freversed
def revcmap(data):
"""Can only handle specification *data* in dictionary format."""
data_r = {}
for key, val in six.iteritems(data):
if callable(val):
valnew = _reverser(val)
# This doesn't work: lambda x: val(1-x)
# The same "val" (the first one) is used
# each time, so the colors are identical
# and the result is shades of gray.
else:
# Flip x and exchange the y values facing x = 0 and x = 1.
valnew = [(1.0 - x, y1, y0) for x, y0, y1 in reversed(val)]
data_r[key] = valnew
return data_r
def _reverse_cmap_spec(spec):
"""Reverses cmap specification *spec*, can handle both dict and tuple
type specs."""
if 'listed' in spec:
return {'listed': spec['listed'][::-1]}
if 'red' in spec:
return revcmap(spec)
else:
revspec = list(reversed(spec))
if len(revspec[0]) == 2: # e.g., (1, (1.0, 0.0, 1.0))
revspec = [(1.0 - a, b) for a, b in revspec]
return revspec
def _generate_cmap(name, lutsize):
"""Generates the requested cmap from its *name*. The lut size is
*lutsize*."""
# Use superclass method to avoid deprecation warnings during initial load.
spec = dict.__getitem__(datad, name)
# Generate the colormap object.
if 'red' in spec:
return colors.LinearSegmentedColormap(name, spec, lutsize)
elif 'listed' in spec:
return colors.ListedColormap(spec['listed'], name)
else:
return colors.LinearSegmentedColormap.from_list(name, spec, lutsize)
LUTSIZE = mpl.rcParams['image.lut']
# Generate the reversed specifications (all at once, to avoid
# modify-when-iterating).
datad.update({cmapname + '_r': _reverse_cmap_spec(spec)
for cmapname, spec in six.iteritems(datad)})
# Precache the cmaps with ``lutsize = LUTSIZE``.
# Also add the reversed ones added in the section above:
for cmapname in datad:
cmap_d[cmapname] = _generate_cmap(cmapname, LUTSIZE)
cmap_d.update(cmaps_listed)
locals().update(cmap_d)
# Continue with definitions ...
def register_cmap(name=None, cmap=None, data=None, lut=None):
"""
Add a colormap to the set recognized by :func:`get_cmap`.
It can be used in two ways::
register_cmap(name='swirly', cmap=swirly_cmap)
register_cmap(name='choppy', data=choppydata, lut=128)
In the first case, *cmap* must be a :class:`matplotlib.colors.Colormap`
instance. The *name* is optional; if absent, the name will
be the :attr:`~matplotlib.colors.Colormap.name` attribute of the *cmap*.
In the second case, the three arguments are passed to
the :class:`~matplotlib.colors.LinearSegmentedColormap` initializer,
and the resulting colormap is registered.
"""
if name is None:
try:
name = cmap.name
except AttributeError:
raise ValueError("Arguments must include a name or a Colormap")
if not isinstance(name, six.string_types):
raise ValueError("Colormap name must be a string")
if isinstance(cmap, colors.Colormap):
cmap_d[name] = cmap
return
# For the remainder, let exceptions propagate.
if lut is None:
lut = mpl.rcParams['image.lut']
cmap = colors.LinearSegmentedColormap(name, data, lut)
cmap_d[name] = cmap
def get_cmap(name=None, lut=None):
"""
Get a colormap instance, defaulting to rc values if *name* is None.
Colormaps added with :func:`register_cmap` take precedence over
built-in colormaps.
If *name* is a :class:`matplotlib.colors.Colormap` instance, it will be
returned.
If *lut* is not None it must be an integer giving the number of
entries desired in the lookup table, and *name* must be a standard
mpl colormap name.
"""
if name is None:
name = mpl.rcParams['image.cmap']
if isinstance(name, colors.Colormap):
return name
if name in cmap_d:
if lut is None:
return cmap_d[name]
else:
return cmap_d[name]._resample(lut)
else:
raise ValueError(
"Colormap %s is not recognized. Possible values are: %s"
% (name, ', '.join(sorted(cmap_d))))
class ScalarMappable(object):
"""
This is a mixin class to support scalar data to RGBA mapping.
The ScalarMappable makes use of data normalization before returning
RGBA colors from the given colormap.
"""
def __init__(self, norm=None, cmap=None):
r"""
Parameters
----------
norm : :class:`matplotlib.colors.Normalize` instance
The normalizing object which scales data, typically into the
interval ``[0, 1]``.
If *None*, *norm* defaults to a *colors.Normalize* object which
initializes its scaling based on the first data processed.
cmap : str or :class:`~matplotlib.colors.Colormap` instance
The colormap used to map normalized data values to RGBA colors.
"""
self.callbacksSM = cbook.CallbackRegistry()
if cmap is None:
cmap = get_cmap()
if norm is None:
norm = colors.Normalize()
self._A = None
#: The Normalization instance of this ScalarMappable.
self.norm = norm
#: The Colormap instance of this ScalarMappable.
self.cmap = get_cmap(cmap)
#: The last colorbar associated with this ScalarMappable. May be None.
self.colorbar = None
self.update_dict = {'array': False}
def to_rgba(self, x, alpha=None, bytes=False, norm=True):
"""
Return a normalized rgba array corresponding to *x*.
In the normal case, *x* is a 1-D or 2-D sequence of scalars, and
the corresponding ndarray of rgba values will be returned,
based on the norm and colormap set for this ScalarMappable.
There is one special case, for handling images that are already
rgb or rgba, such as might have been read from an image file.
If *x* is an ndarray with 3 dimensions,
and the last dimension is either 3 or 4, then it will be
treated as an rgb or rgba array, and no mapping will be done.
The array can be uint8, or it can be floating point with
values in the 0-1 range; otherwise a ValueError will be raised.
If it is a masked array, the mask will be ignored.
If the last dimension is 3, the *alpha* kwarg (defaulting to 1)
will be used to fill in the transparency. If the last dimension
is 4, the *alpha* kwarg is ignored; it does not
replace the pre-existing alpha. A ValueError will be raised
if the third dimension is other than 3 or 4.
In either case, if *bytes* is *False* (default), the rgba
array will be floats in the 0-1 range; if it is *True*,
the returned rgba array will be uint8 in the 0 to 255 range.
If norm is False, no normalization of the input data is
performed, and it is assumed to be in the range (0-1).
"""
# First check for special case, image input:
try:
if x.ndim == 3:
if x.shape[2] == 3:
if alpha is None:
alpha = 1
if x.dtype == np.uint8:
alpha = np.uint8(alpha * 255)
m, n = x.shape[:2]
xx = np.empty(shape=(m, n, 4), dtype=x.dtype)
xx[:, :, :3] = x
xx[:, :, 3] = alpha
elif x.shape[2] == 4:
xx = x
else:
raise ValueError("third dimension must be 3 or 4")
if xx.dtype.kind == 'f':
if norm and xx.max() > 1 or xx.min() < 0:
raise ValueError("Floating point image RGB values "
"must be in the 0..1 range.")
if bytes:
xx = (xx * 255).astype(np.uint8)
elif xx.dtype == np.uint8:
if not bytes:
xx = xx.astype(float) / 255
else:
raise ValueError("Image RGB array must be uint8 or "
"floating point; found %s" % xx.dtype)
return xx
except AttributeError:
# e.g., x is not an ndarray; so try mapping it
pass
# This is the normal case, mapping a scalar array:
x = ma.asarray(x)
if norm:
x = self.norm(x)
rgba = self.cmap(x, alpha=alpha, bytes=bytes)
return rgba
def set_array(self, A):
"""Set the image array from numpy array *A*.
..
ACCEPTS: ndarray
Parameters
----------
A : ndarray
"""
self._A = A
self.update_dict['array'] = True
def get_array(self):
'Return the array'
return self._A
def get_cmap(self):
'return the colormap'
return self.cmap
def get_clim(self):
'return the min, max of the color limits for image scaling'
return self.norm.vmin, self.norm.vmax
def set_clim(self, vmin=None, vmax=None):
"""
set the norm limits for image scaling; if *vmin* is a length2
sequence, interpret it as ``(vmin, vmax)`` which is used to
support setp
ACCEPTS: a length 2 sequence of floats
"""
if vmax is None:
try:
vmin, vmax = vmin
except (TypeError, ValueError):
pass
if vmin is not None:
self.norm.vmin = vmin
if vmax is not None:
self.norm.vmax = vmax
self.changed()
def set_cmap(self, cmap):
"""
set the colormap for luminance data
ACCEPTS: a colormap or registered colormap name
"""
cmap = get_cmap(cmap)
self.cmap = cmap
self.changed()
def set_norm(self, norm):
"""Set the normalization instance.
..
ACCEPTS: `~.Normalize`
Parameters
----------
norm : `~.Normalize`
"""
if norm is None:
norm = colors.Normalize()
self.norm = norm
self.changed()
def autoscale(self):
"""
Autoscale the scalar limits on the norm instance using the
current array
"""
if self._A is None:
raise TypeError('You must first set_array for mappable')
self.norm.autoscale(self._A)
self.changed()
def autoscale_None(self):
"""
Autoscale the scalar limits on the norm instance using the
current array, changing only limits that are None
"""
if self._A is None:
raise TypeError('You must first set_array for mappable')
self.norm.autoscale_None(self._A)
self.changed()
def add_checker(self, checker):
"""
Add an entry to a dictionary of boolean flags
that are set to True when the mappable is changed.
"""
self.update_dict[checker] = False
def check_update(self, checker):
"""
If mappable has changed since the last check,
return True; else return False
"""
if self.update_dict[checker]:
self.update_dict[checker] = False
return True
return False
def changed(self):
"""
Call this whenever the mappable is changed to notify all the
callbackSM listeners to the 'changed' signal
"""
self.callbacksSM.process('changed', self)
for key in self.update_dict:
self.update_dict[key] = True
self.stale = True
|