/usr/lib/python3/dist-packages/matplotlib/pyplot.py is in python3-matplotlib 2.1.1-2ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 | # Note: The first part of this file can be modified in place, but the latter
# part is autogenerated by the boilerplate.py script.
"""
`matplotlib.pyplot` is a state-based interface to matplotlib. It provides
a MATLAB-like way of plotting.
pyplot is mainly intended for interactive plots and simple cases of programmatic
plot generation::
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0, 5, 0.1)
y = np.sin(x)
plt.plot(x, y)
The object-oriented API is recommended for more complex plots.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import six
import sys
import warnings
import time
import types
from cycler import cycler
import matplotlib
import matplotlib.colorbar
from matplotlib import style
from matplotlib import _pylab_helpers, interactive
from matplotlib.cbook import dedent, silent_list, is_numlike
from matplotlib.cbook import _string_to_bool
from matplotlib.cbook import deprecated
from matplotlib import docstring
from matplotlib.backend_bases import FigureCanvasBase
from matplotlib.figure import Figure, figaspect
from matplotlib.gridspec import GridSpec
from matplotlib.image import imread as _imread
from matplotlib.image import imsave as _imsave
from matplotlib import rcParams, rcParamsDefault, get_backend
from matplotlib import rc_context
from matplotlib.rcsetup import interactive_bk as _interactive_bk
from matplotlib.artist import getp, get, Artist
from matplotlib.artist import setp as _setp
from matplotlib.axes import Axes, Subplot
from matplotlib.projections import PolarAxes
from matplotlib import mlab # for csv2rec, detrend_none, window_hanning
from matplotlib.scale import get_scale_docs, get_scale_names
from matplotlib import cm
from matplotlib.cm import get_cmap, register_cmap
import numpy as np
# We may not need the following imports here:
from matplotlib.colors import Normalize
from matplotlib.lines import Line2D
from matplotlib.text import Text, Annotation
from matplotlib.patches import Polygon, Rectangle, Circle, Arrow
from matplotlib.widgets import SubplotTool, Button, Slider, Widget
from .ticker import TickHelper, Formatter, FixedFormatter, NullFormatter,\
FuncFormatter, FormatStrFormatter, ScalarFormatter,\
LogFormatter, LogFormatterExponent, LogFormatterMathtext,\
Locator, IndexLocator, FixedLocator, NullLocator,\
LinearLocator, LogLocator, AutoLocator, MultipleLocator,\
MaxNLocator
from matplotlib.backends import pylab_setup
## Backend detection ##
def _backend_selection():
""" If rcParams['backend_fallback'] is true, check to see if the
current backend is compatible with the current running event
loop, and if not switches to a compatible one.
"""
backend = rcParams['backend']
if not rcParams['backend_fallback'] or backend not in _interactive_bk:
return
is_agg_backend = rcParams['backend'].endswith('Agg')
if 'wx' in sys.modules and not backend in ('WX', 'WXAgg'):
import wx
if wx.App.IsMainLoopRunning():
rcParams['backend'] = 'wx' + 'Agg' * is_agg_backend
elif 'PyQt4.QtCore' in sys.modules and not backend == 'Qt4Agg':
import PyQt4.QtGui
if not PyQt4.QtGui.qApp.startingUp():
# The mainloop is running.
rcParams['backend'] = 'qt4Agg'
elif 'PyQt5.QtCore' in sys.modules and not backend == 'Qt5Agg':
import PyQt5.QtWidgets
if not PyQt5.QtWidgets.qApp.startingUp():
# The mainloop is running.
rcParams['backend'] = 'qt5Agg'
elif ('gtk' in sys.modules and
backend not in ('GTK', 'GTKAgg', 'GTKCairo')):
if 'gi' in sys.modules:
from gi.repository import GObject
ml = GObject.MainLoop
else:
import gobject
ml = gobject.MainLoop
if ml().is_running():
rcParams['backend'] = 'gtk' + 'Agg' * is_agg_backend
elif 'Tkinter' in sys.modules and not backend == 'TkAgg':
# import Tkinter
pass # what if anything do we need to do for tkinter?
_backend_selection()
## Global ##
_backend_mod, new_figure_manager, draw_if_interactive, _show = pylab_setup()
_IP_REGISTERED = None
_INSTALL_FIG_OBSERVER = False
def install_repl_displayhook():
"""
Install a repl display hook so that any stale figure are automatically
redrawn when control is returned to the repl.
This works with IPython terminals and kernels,
as well as vanilla python shells.
"""
global _IP_REGISTERED
global _INSTALL_FIG_OBSERVER
class _NotIPython(Exception):
pass
# see if we have IPython hooks around, if use them
try:
if 'IPython' in sys.modules:
from IPython import get_ipython
ip = get_ipython()
if ip is None:
raise _NotIPython()
if _IP_REGISTERED:
return
def post_execute():
if matplotlib.is_interactive():
draw_all()
# IPython >= 2
try:
ip.events.register('post_execute', post_execute)
except AttributeError:
# IPython 1.x
ip.register_post_execute(post_execute)
_IP_REGISTERED = post_execute
_INSTALL_FIG_OBSERVER = False
# trigger IPython's eventloop integration, if available
from IPython.core.pylabtools import backend2gui
ipython_gui_name = backend2gui.get(get_backend())
if ipython_gui_name:
ip.enable_gui(ipython_gui_name)
else:
_INSTALL_FIG_OBSERVER = True
# import failed or ipython is not running
except (ImportError, _NotIPython):
_INSTALL_FIG_OBSERVER = True
def uninstall_repl_displayhook():
"""
Uninstalls the matplotlib display hook.
.. warning
Need IPython >= 2 for this to work. For IPython < 2 will raise a
``NotImplementedError``
.. warning
If you are using vanilla python and have installed another
display hook this will reset ``sys.displayhook`` to what ever
function was there when matplotlib installed it's displayhook,
possibly discarding your changes.
"""
global _IP_REGISTERED
global _INSTALL_FIG_OBSERVER
if _IP_REGISTERED:
from IPython import get_ipython
ip = get_ipython()
try:
ip.events.unregister('post_execute', _IP_REGISTERED)
except AttributeError:
raise NotImplementedError("Can not unregister events "
"in IPython < 2.0")
_IP_REGISTERED = None
if _INSTALL_FIG_OBSERVER:
_INSTALL_FIG_OBSERVER = False
draw_all = _pylab_helpers.Gcf.draw_all
@docstring.copy_dedent(Artist.findobj)
def findobj(o=None, match=None, include_self=True):
if o is None:
o = gcf()
return o.findobj(match, include_self=include_self)
def switch_backend(newbackend):
"""
Switch the default backend. This feature is **experimental**, and
is only expected to work switching to an image backend. e.g., if
you have a bunch of PostScript scripts that you want to run from
an interactive ipython session, you may want to switch to the PS
backend before running them to avoid having a bunch of GUI windows
popup. If you try to interactively switch from one GUI backend to
another, you will explode.
Calling this command will close all open windows.
"""
close('all')
global _backend_mod, new_figure_manager, draw_if_interactive, _show
matplotlib.use(newbackend, warn=False, force=True)
from matplotlib.backends import pylab_setup
_backend_mod, new_figure_manager, draw_if_interactive, _show = pylab_setup()
def show(*args, **kw):
"""
Display a figure.
When running in ipython with its pylab mode, display all
figures and return to the ipython prompt.
In non-interactive mode, display all figures and block until
the figures have been closed; in interactive mode it has no
effect unless figures were created prior to a change from
non-interactive to interactive mode (not recommended). In
that case it displays the figures but does not block.
A single experimental keyword argument, *block*, may be
set to True or False to override the blocking behavior
described above.
"""
global _show
return _show(*args, **kw)
def isinteractive():
"""
Return status of interactive mode.
"""
return matplotlib.is_interactive()
def ioff():
"""Turn interactive mode off."""
matplotlib.interactive(False)
uninstall_repl_displayhook()
def ion():
"""Turn interactive mode on."""
matplotlib.interactive(True)
install_repl_displayhook()
def pause(interval):
"""
Pause for *interval* seconds.
If there is an active figure, it will be updated and displayed before the
pause, and the GUI event loop (if any) will run during the pause.
This can be used for crude animation. For more complex animation, see
:mod:`matplotlib.animation`.
Note
----
This function is experimental; its behavior may be changed or extended in a
future release.
"""
manager = _pylab_helpers.Gcf.get_active()
if manager is not None:
canvas = manager.canvas
if canvas.figure.stale:
canvas.draw_idle()
show(block=False)
canvas.start_event_loop(interval)
else:
time.sleep(interval)
@docstring.copy_dedent(matplotlib.rc)
def rc(*args, **kwargs):
matplotlib.rc(*args, **kwargs)
@docstring.copy_dedent(matplotlib.rc_context)
def rc_context(rc=None, fname=None):
return matplotlib.rc_context(rc, fname)
@docstring.copy_dedent(matplotlib.rcdefaults)
def rcdefaults():
matplotlib.rcdefaults()
if matplotlib.is_interactive():
draw_all()
# The current "image" (ScalarMappable) is retrieved or set
# only via the pyplot interface using the following two
# functions:
def gci():
"""
Get the current colorable artist. Specifically, returns the
current :class:`~matplotlib.cm.ScalarMappable` instance (image or
patch collection), or *None* if no images or patch collections
have been defined. The commands :func:`~matplotlib.pyplot.imshow`
and :func:`~matplotlib.pyplot.figimage` create
:class:`~matplotlib.image.Image` instances, and the commands
:func:`~matplotlib.pyplot.pcolor` and
:func:`~matplotlib.pyplot.scatter` create
:class:`~matplotlib.collections.Collection` instances. The
current image is an attribute of the current axes, or the nearest
earlier axes in the current figure that contains an image.
"""
return gcf()._gci()
def sci(im):
"""
Set the current image. This image will be the target of colormap
commands like :func:`~matplotlib.pyplot.jet`,
:func:`~matplotlib.pyplot.hot` or
:func:`~matplotlib.pyplot.clim`). The current image is an
attribute of the current axes.
"""
gca()._sci(im)
## Any Artist ##
# (getp is simply imported)
@docstring.copy(_setp)
def setp(*args, **kwargs):
return _setp(*args, **kwargs)
def xkcd(scale=1, length=100, randomness=2):
"""
Turns on `xkcd <https://xkcd.com/>`_ sketch-style drawing mode.
This will only have effect on things drawn after this function is
called.
For best results, the "Humor Sans" font should be installed: it is
not included with matplotlib.
Parameters
----------
scale : float, optional
The amplitude of the wiggle perpendicular to the source line.
length : float, optional
The length of the wiggle along the line.
randomness : float, optional
The scale factor by which the length is shrunken or expanded.
Notes
-----
This function works by a number of rcParams, so it will probably
override others you have set before.
If you want the effects of this function to be temporary, it can
be used as a context manager, for example::
with plt.xkcd():
# This figure will be in XKCD-style
fig1 = plt.figure()
# ...
# This figure will be in regular style
fig2 = plt.figure()
"""
if rcParams['text.usetex']:
raise RuntimeError(
"xkcd mode is not compatible with text.usetex = True")
from matplotlib import patheffects
context = rc_context()
try:
rcParams['font.family'] = ['xkcd', 'Humor Sans', 'Comic Sans MS', 'StayPuft']
rcParams['font.size'] = 14.0
rcParams['path.sketch'] = (scale, length, randomness)
rcParams['path.effects'] = [
patheffects.withStroke(linewidth=4, foreground="w")]
rcParams['axes.linewidth'] = 1.5
rcParams['lines.linewidth'] = 2.0
rcParams['figure.facecolor'] = 'white'
rcParams['grid.linewidth'] = 0.0
rcParams['axes.grid'] = False
rcParams['axes.unicode_minus'] = False
rcParams['axes.edgecolor'] = 'black'
rcParams['xtick.major.size'] = 8
rcParams['xtick.major.width'] = 3
rcParams['ytick.major.size'] = 8
rcParams['ytick.major.width'] = 3
except:
context.__exit__(*sys.exc_info())
raise
return context
## Figures ##
def figure(num=None, # autoincrement if None, else integer from 1-N
figsize=None, # defaults to rc figure.figsize
dpi=None, # defaults to rc figure.dpi
facecolor=None, # defaults to rc figure.facecolor
edgecolor=None, # defaults to rc figure.edgecolor
frameon=True,
FigureClass=Figure,
clear=False,
**kwargs
):
"""
Creates a new figure.
Parameters
----------
num : integer or string, optional, default: none
If not provided, a new figure will be created, and the figure number
will be incremented. The figure objects holds this number in a `number`
attribute.
If num is provided, and a figure with this id already exists, make
it active, and returns a reference to it. If this figure does not
exists, create it and returns it.
If num is a string, the window title will be set to this figure's
`num`.
figsize : tuple of integers, optional, default: None
width, height in inches. If not provided, defaults to rc
figure.figsize.
dpi : integer, optional, default: None
resolution of the figure. If not provided, defaults to rc figure.dpi.
facecolor :
the background color. If not provided, defaults to rc figure.facecolor.
edgecolor :
the border color. If not provided, defaults to rc figure.edgecolor.
frameon : bool, optional, default: True
If False, suppress drawing the figure frame.
FigureClass : class derived from matplotlib.figure.Figure
Optionally use a custom Figure instance.
clear : bool, optional, default: False
If True and the figure already exists, then it is cleared.
Returns
-------
figure : Figure
The Figure instance returned will also be passed to new_figure_manager
in the backends, which allows to hook custom Figure classes into the
pylab interface. Additional kwargs will be passed to the figure init
function.
Notes
-----
If you are creating many figures, make sure you explicitly call "close"
on the figures you are not using, because this will enable pylab
to properly clean up the memory.
rcParams defines the default values, which can be modified in the
matplotlibrc file
"""
if figsize is None:
figsize = rcParams['figure.figsize']
if dpi is None:
dpi = rcParams['figure.dpi']
if facecolor is None:
facecolor = rcParams['figure.facecolor']
if edgecolor is None:
edgecolor = rcParams['figure.edgecolor']
allnums = get_fignums()
next_num = max(allnums) + 1 if allnums else 1
figLabel = ''
if num is None:
num = next_num
elif isinstance(num, six.string_types):
figLabel = num
allLabels = get_figlabels()
if figLabel not in allLabels:
if figLabel == 'all':
warnings.warn("close('all') closes all existing figures")
num = next_num
else:
inum = allLabels.index(figLabel)
num = allnums[inum]
else:
num = int(num) # crude validation of num argument
figManager = _pylab_helpers.Gcf.get_fig_manager(num)
if figManager is None:
max_open_warning = rcParams['figure.max_open_warning']
if (max_open_warning >= 1 and len(allnums) >= max_open_warning):
warnings.warn(
"More than %d figures have been opened. Figures "
"created through the pyplot interface "
"(`matplotlib.pyplot.figure`) are retained until "
"explicitly closed and may consume too much memory. "
"(To control this warning, see the rcParam "
"`figure.max_open_warning`)." %
max_open_warning, RuntimeWarning)
if get_backend().lower() == 'ps':
dpi = 72
figManager = new_figure_manager(num, figsize=figsize,
dpi=dpi,
facecolor=facecolor,
edgecolor=edgecolor,
frameon=frameon,
FigureClass=FigureClass,
**kwargs)
if figLabel:
figManager.set_window_title(figLabel)
figManager.canvas.figure.set_label(figLabel)
# make this figure current on button press event
def make_active(event):
_pylab_helpers.Gcf.set_active(figManager)
cid = figManager.canvas.mpl_connect('button_press_event', make_active)
figManager._cidgcf = cid
_pylab_helpers.Gcf.set_active(figManager)
fig = figManager.canvas.figure
fig.number = num
# make sure backends (inline) that we don't ship that expect this
# to be called in plotting commands to make the figure call show
# still work. There is probably a better way to do this in the
# FigureManager base class.
if matplotlib.is_interactive():
draw_if_interactive()
if _INSTALL_FIG_OBSERVER:
fig.stale_callback = _auto_draw_if_interactive
if clear:
figManager.canvas.figure.clear()
return figManager.canvas.figure
def _auto_draw_if_interactive(fig, val):
"""
This is an internal helper function for making sure that auto-redrawing
works as intended in the plain python repl.
Parameters
----------
fig : Figure
A figure object which is assumed to be associated with a canvas
"""
if val and matplotlib.is_interactive() and not fig.canvas.is_saving():
fig.canvas.draw_idle()
def gcf():
"""Get a reference to the current figure."""
figManager = _pylab_helpers.Gcf.get_active()
if figManager is not None:
return figManager.canvas.figure
else:
return figure()
def fignum_exists(num):
return _pylab_helpers.Gcf.has_fignum(num) or num in get_figlabels()
def get_fignums():
"""Return a list of existing figure numbers."""
return sorted(_pylab_helpers.Gcf.figs)
def get_figlabels():
"""Return a list of existing figure labels."""
figManagers = _pylab_helpers.Gcf.get_all_fig_managers()
figManagers.sort(key=lambda m: m.num)
return [m.canvas.figure.get_label() for m in figManagers]
def get_current_fig_manager():
figManager = _pylab_helpers.Gcf.get_active()
if figManager is None:
gcf() # creates an active figure as a side effect
figManager = _pylab_helpers.Gcf.get_active()
return figManager
@docstring.copy_dedent(FigureCanvasBase.mpl_connect)
def connect(s, func):
return get_current_fig_manager().canvas.mpl_connect(s, func)
@docstring.copy_dedent(FigureCanvasBase.mpl_disconnect)
def disconnect(cid):
return get_current_fig_manager().canvas.mpl_disconnect(cid)
def close(*args):
"""
Close a figure window.
``close()`` by itself closes the current figure
``close(fig)`` closes the `~.Figure` instance *fig*
``close(num)`` closes the figure number *num*
``close(name)`` where *name* is a string, closes figure with that label
``close('all')`` closes all the figure windows
"""
if len(args) == 0:
figManager = _pylab_helpers.Gcf.get_active()
if figManager is None:
return
else:
_pylab_helpers.Gcf.destroy(figManager.num)
elif len(args) == 1:
arg = args[0]
if arg == 'all':
_pylab_helpers.Gcf.destroy_all()
elif isinstance(arg, six.integer_types):
_pylab_helpers.Gcf.destroy(arg)
elif hasattr(arg, 'int'):
# if we are dealing with a type UUID, we
# can use its integer representation
_pylab_helpers.Gcf.destroy(arg.int)
elif isinstance(arg, six.string_types):
allLabels = get_figlabels()
if arg in allLabels:
num = get_fignums()[allLabels.index(arg)]
_pylab_helpers.Gcf.destroy(num)
elif isinstance(arg, Figure):
_pylab_helpers.Gcf.destroy_fig(arg)
else:
raise TypeError('Unrecognized argument type %s to close' % type(arg))
else:
raise TypeError('close takes 0 or 1 arguments')
def clf():
"""
Clear the current figure.
"""
gcf().clf()
def draw():
"""Redraw the current figure.
This is used to update a figure that has been altered, but not
automatically re-drawn. If interactive mode is on (:func:`.ion()`), this
should be only rarely needed, but there may be ways to modify the state of
a figure without marking it as `stale`. Please report these cases as
bugs.
A more object-oriented alternative, given any
:class:`~matplotlib.figure.Figure` instance, :attr:`fig`, that
was created using a :mod:`~matplotlib.pyplot` function, is::
fig.canvas.draw_idle()
"""
get_current_fig_manager().canvas.draw_idle()
@docstring.copy_dedent(Figure.savefig)
def savefig(*args, **kwargs):
fig = gcf()
res = fig.savefig(*args, **kwargs)
fig.canvas.draw_idle() # need this if 'transparent=True' to reset colors
return res
@docstring.copy_dedent(Figure.ginput)
def ginput(*args, **kwargs):
"""
Blocking call to interact with the figure.
This will wait for *n* clicks from the user and return a list of the
coordinates of each click.
If *timeout* is negative, does not timeout.
"""
return gcf().ginput(*args, **kwargs)
@docstring.copy_dedent(Figure.waitforbuttonpress)
def waitforbuttonpress(*args, **kwargs):
"""
Blocking call to interact with the figure.
This will wait for *n* key or mouse clicks from the user and
return a list containing True's for keyboard clicks and False's
for mouse clicks.
If *timeout* is negative, does not timeout.
"""
return gcf().waitforbuttonpress(*args, **kwargs)
# Putting things in figures
@docstring.copy_dedent(Figure.text)
def figtext(*args, **kwargs):
return gcf().text(*args, **kwargs)
@docstring.copy_dedent(Figure.suptitle)
def suptitle(*args, **kwargs):
return gcf().suptitle(*args, **kwargs)
@docstring.copy_dedent(Figure.figimage)
def figimage(*args, **kwargs):
return gcf().figimage(*args, **kwargs)
def figlegend(*args, **kwargs):
"""
Place a legend in the figure.
*labels*
a sequence of strings
*handles*
a sequence of :class:`~matplotlib.lines.Line2D` or
:class:`~matplotlib.patches.Patch` instances
*loc*
can be a string or an integer specifying the legend
location
A :class:`matplotlib.legend.Legend` instance is returned.
Examples
--------
To make a legend from existing artists on every axes::
figlegend()
To make a legend for a list of lines and labels::
figlegend( (line1, line2, line3),
('label1', 'label2', 'label3'),
'upper right' )
.. seealso::
:func:`~matplotlib.pyplot.legend`
"""
return gcf().legend(*args, **kwargs)
## Figure and Axes hybrid ##
_hold_msg = """pyplot.hold is deprecated.
Future behavior will be consistent with the long-time default:
plot commands add elements without first clearing the
Axes and/or Figure."""
@deprecated("2.0", message=_hold_msg)
def hold(b=None):
"""
Set the hold state. If *b* is None (default), toggle the
hold state, else set the hold state to boolean value *b*::
hold() # toggle hold
hold(True) # hold is on
hold(False) # hold is off
When *hold* is *True*, subsequent plot commands will add elements to
the current axes. When *hold* is *False*, the current axes and
figure will be cleared on the next plot command.
"""
fig = gcf()
ax = fig.gca()
if b is not None:
b = bool(b)
fig._hold = b
ax._hold = b
# b=None toggles the hold state, so let's get get the current hold
# state; but should pyplot hold toggle the rc setting - me thinks
# not
b = ax._hold
# The comment above looks ancient; and probably the line below,
# contrary to the comment, is equally ancient. It will trigger
# a second warning, but "Oh, well...".
rc('axes', hold=b)
@deprecated("2.0", message=_hold_msg)
def ishold():
"""
Return the hold status of the current axes.
"""
return gca()._hold
@deprecated("2.0", message=_hold_msg)
def over(func, *args, **kwargs):
"""
Call a function with hold(True).
Calls::
func(*args, **kwargs)
with ``hold(True)`` and then restores the hold state.
"""
ax = gca()
h = ax._hold
ax._hold = True
func(*args, **kwargs)
ax._hold = h
## Axes ##
def axes(*args, **kwargs):
"""
Add an axes to the figure.
The axes is added at position *rect* specified by:
- ``axes()`` by itself creates a default full ``subplot(111)`` window axis.
- ``axes(rect, facecolor='w')`` where *rect* = [left, bottom, width,
height] in normalized (0, 1) units. *facecolor* is the background
color for the axis, default white.
- ``axes(h)`` where *h* is an axes instance makes *h* the current
axis and the parent of *h* the current figure.
An :class:`~matplotlib.axes.Axes` instance is returned.
========= ============== ==============================================
kwarg Accepts Description
========= ============== ==============================================
facecolor color the axes background color
frameon [True|False] display the frame?
sharex otherax current axes shares xaxis attribute
with otherax
sharey otherax current axes shares yaxis attribute
with otherax
polar [True|False] use a polar axes?
aspect [str | num] ['equal', 'auto'] or a number. If a number
the ratio of y-unit/x-unit in screen-space.
Also see
:meth:`~matplotlib.axes.Axes.set_aspect`.
========= ============== ==============================================
Examples:
* :file:`examples/pylab_examples/axes_demo.py` places custom axes.
* :file:`examples/pylab_examples/shared_axis_demo.py` uses
*sharex* and *sharey*.
"""
nargs = len(args)
if len(args) == 0:
return subplot(111, **kwargs)
if nargs > 1:
raise TypeError('Only one non keyword arg to axes allowed')
arg = args[0]
if isinstance(arg, Axes):
sca(arg)
a = arg
else:
rect = arg
a = gcf().add_axes(rect, **kwargs)
return a
def delaxes(*args):
"""
Remove an axes from the current figure. If *ax*
doesn't exist, an error will be raised.
``delaxes()``: delete the current axes
"""
if not len(args):
ax = gca()
else:
ax = args[0]
ret = gcf().delaxes(ax)
return ret
def sca(ax):
"""
Set the current Axes instance to *ax*.
The current Figure is updated to the parent of *ax*.
"""
managers = _pylab_helpers.Gcf.get_all_fig_managers()
for m in managers:
if ax in m.canvas.figure.axes:
_pylab_helpers.Gcf.set_active(m)
m.canvas.figure.sca(ax)
return
raise ValueError("Axes instance argument was not found in a figure.")
def gca(**kwargs):
"""
Get the current :class:`~matplotlib.axes.Axes` instance on the
current figure matching the given keyword args, or create one.
Examples
--------
To get the current polar axes on the current figure::
plt.gca(projection='polar')
If the current axes doesn't exist, or isn't a polar one, the appropriate
axes will be created and then returned.
See Also
--------
matplotlib.figure.Figure.gca : The figure's gca method.
"""
return gcf().gca(**kwargs)
# More ways of creating axes:
def subplot(*args, **kwargs):
"""
Return a subplot axes at the given grid position.
Call signature::
subplot(nrows, ncols, index, **kwargs)
In the current figure, create and return an `~.Axes`, at position *index*
of a (virtual) grid of *nrows* by *ncols* axes. Indexes go from 1 to
``nrows * ncols``, incrementing in row-major order.
If *nrows*, *ncols* and *index* are all less than 10, they can also be
given as a single, concatenated, three-digit number.
For example, ``subplot(2, 3, 3)`` and ``subplot(233)`` both create an
`~.Axes` at the top right corner of the current figure, occupying half of
the figure height and a third of the figure width.
.. note::
Creating a subplot will delete any pre-existing subplot that overlaps
with it beyond sharing a boundary::
import matplotlib.pyplot as plt
# plot a line, implicitly creating a subplot(111)
plt.plot([1,2,3])
# now create a subplot which represents the top plot of a grid
# with 2 rows and 1 column. Since this subplot will overlap the
# first, the plot (and its axes) previously created, will be removed
plt.subplot(211)
plt.plot(range(12))
plt.subplot(212, facecolor='y') # creates 2nd subplot with yellow background
If you do not want this behavior, use the
:meth:`~matplotlib.figure.Figure.add_subplot` method or the
:func:`~matplotlib.pyplot.axes` function instead.
Keyword arguments:
*facecolor*:
The background color of the subplot, which can be any valid
color specifier. See :mod:`matplotlib.colors` for more
information.
*polar*:
A boolean flag indicating whether the subplot plot should be
a polar projection. Defaults to *False*.
*projection*:
A string giving the name of a custom projection to be used
for the subplot. This projection must have been previously
registered. See :mod:`matplotlib.projections`.
.. seealso::
:func:`~matplotlib.pyplot.axes`
For additional information on :func:`axes` and
:func:`subplot` keyword arguments.
:file:`gallery/pie_and_polar_charts/polar_scatter.py`
For an example
**Example:**
.. plot:: gallery/subplots_axes_and_figures/subplot.py
"""
# if subplot called without arguments, create subplot(1,1,1)
if len(args)==0:
args=(1,1,1)
# This check was added because it is very easy to type
# subplot(1, 2, False) when subplots(1, 2, False) was intended
# (sharex=False, that is). In most cases, no error will
# ever occur, but mysterious behavior can result because what was
# intended to be the sharex argument is instead treated as a
# subplot index for subplot()
if len(args) >= 3 and isinstance(args[2], bool) :
warnings.warn("The subplot index argument to subplot() appears"
" to be a boolean. Did you intend to use subplots()?")
fig = gcf()
a = fig.add_subplot(*args, **kwargs)
bbox = a.bbox
byebye = []
for other in fig.axes:
if other==a: continue
if bbox.fully_overlaps(other.bbox):
byebye.append(other)
for ax in byebye: delaxes(ax)
return a
def subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True,
subplot_kw=None, gridspec_kw=None, **fig_kw):
"""
Create a figure and a set of subplots
This utility wrapper makes it convenient to create common layouts of
subplots, including the enclosing figure object, in a single call.
Parameters
----------
nrows, ncols : int, optional, default: 1
Number of rows/columns of the subplot grid.
sharex, sharey : bool or {'none', 'all', 'row', 'col'}, default: False
Controls sharing of properties among x (`sharex`) or y (`sharey`)
axes:
- True or 'all': x- or y-axis will be shared among all
subplots.
- False or 'none': each subplot x- or y-axis will be
independent.
- 'row': each subplot row will share an x- or y-axis.
- 'col': each subplot column will share an x- or y-axis.
When subplots have a shared x-axis along a column, only the x tick
labels of the bottom subplot are visible. Similarly, when subplots
have a shared y-axis along a row, only the y tick labels of the first
column subplot are visible.
squeeze : bool, optional, default: True
- If True, extra dimensions are squeezed out from the returned Axes
object:
- if only one subplot is constructed (nrows=ncols=1), the
resulting single Axes object is returned as a scalar.
- for Nx1 or 1xN subplots, the returned object is a 1D numpy
object array of Axes objects are returned as numpy 1D arrays.
- for NxM, subplots with N>1 and M>1 are returned as a 2D arrays.
- If False, no squeezing at all is done: the returned Axes object is
always a 2D array containing Axes instances, even if it ends up
being 1x1.
subplot_kw : dict, optional
Dict with keywords passed to the
:meth:`~matplotlib.figure.Figure.add_subplot` call used to create each
subplot.
gridspec_kw : dict, optional
Dict with keywords passed to the
:class:`~matplotlib.gridspec.GridSpec` constructor used to create the
grid the subplots are placed on.
**fig_kw :
All additional keyword arguments are passed to the :func:`figure` call.
Returns
-------
fig : :class:`matplotlib.figure.Figure` object
ax : Axes object or array of Axes objects.
ax can be either a single :class:`matplotlib.axes.Axes` object or an
array of Axes objects if more than one subplot was created. The
dimensions of the resulting array can be controlled with the squeeze
keyword, see above.
Examples
--------
First create some toy data:
>>> x = np.linspace(0, 2*np.pi, 400)
>>> y = np.sin(x**2)
Creates just a figure and only one subplot
>>> fig, ax = plt.subplots()
>>> ax.plot(x, y)
>>> ax.set_title('Simple plot')
Creates two subplots and unpacks the output array immediately
>>> f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
>>> ax1.plot(x, y)
>>> ax1.set_title('Sharing Y axis')
>>> ax2.scatter(x, y)
Creates four polar axes, and accesses them through the returned array
>>> fig, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True))
>>> axes[0, 0].plot(x, y)
>>> axes[1, 1].scatter(x, y)
Share a X axis with each column of subplots
>>> plt.subplots(2, 2, sharex='col')
Share a Y axis with each row of subplots
>>> plt.subplots(2, 2, sharey='row')
Share both X and Y axes with all subplots
>>> plt.subplots(2, 2, sharex='all', sharey='all')
Note that this is the same as
>>> plt.subplots(2, 2, sharex=True, sharey=True)
See Also
--------
figure
subplot
"""
fig = figure(**fig_kw)
axs = fig.subplots(nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey,
squeeze=squeeze, subplot_kw=subplot_kw,
gridspec_kw=gridspec_kw)
return fig, axs
def subplot2grid(shape, loc, rowspan=1, colspan=1, fig=None, **kwargs):
"""
Create an axis at specific location inside a regular grid.
Parameters
----------
shape : sequence of 2 ints
Shape of grid in which to place axis.
First entry is number of rows, second entry is number of columns.
loc : sequence of 2 ints
Location to place axis within grid.
First entry is row number, second entry is column number.
rowspan : int
Number of rows for the axis to span to the right.
colspan : int
Number of columns for the axis to span downwards.
fig : `Figure`, optional
Figure to place axis in. Defaults to current figure.
**kwargs
Additional keyword arguments are handed to `add_subplot`.
Notes
-----
The following call ::
subplot2grid(shape, loc, rowspan=1, colspan=1)
is identical to ::
gridspec=GridSpec(shape[0], shape[1])
subplotspec=gridspec.new_subplotspec(loc, rowspan, colspan)
subplot(subplotspec)
"""
if fig is None:
fig = gcf()
s1, s2 = shape
subplotspec = GridSpec(s1, s2).new_subplotspec(loc,
rowspan=rowspan,
colspan=colspan)
a = fig.add_subplot(subplotspec, **kwargs)
bbox = a.bbox
byebye = []
for other in fig.axes:
if other == a:
continue
if bbox.fully_overlaps(other.bbox):
byebye.append(other)
for ax in byebye:
delaxes(ax)
return a
def twinx(ax=None):
"""
Make a second axes that shares the *x*-axis. The new axes will
overlay *ax* (or the current axes if *ax* is *None*). The ticks
for *ax2* will be placed on the right, and the *ax2* instance is
returned.
.. seealso::
:file:`examples/api_examples/two_scales.py`
For an example
"""
if ax is None:
ax=gca()
ax1 = ax.twinx()
return ax1
def twiny(ax=None):
"""
Make a second axes that shares the *y*-axis. The new axis will
overlay *ax* (or the current axes if *ax* is *None*). The ticks
for *ax2* will be placed on the top, and the *ax2* instance is
returned.
"""
if ax is None:
ax=gca()
ax1 = ax.twiny()
return ax1
def subplots_adjust(*args, **kwargs):
"""
Tune the subplot layout.
call signature::
subplots_adjust(left=None, bottom=None, right=None, top=None,
wspace=None, hspace=None)
The parameter meanings (and suggested defaults) are::
left = 0.125 # the left side of the subplots of the figure
right = 0.9 # the right side of the subplots of the figure
bottom = 0.1 # the bottom of the subplots of the figure
top = 0.9 # the top of the subplots of the figure
wspace = 0.2 # the amount of width reserved for blank space between subplots,
# expressed as a fraction of the average axis width
hspace = 0.2 # the amount of height reserved for white space between subplots,
# expressed as a fraction of the average axis height
The actual defaults are controlled by the rc file
"""
fig = gcf()
fig.subplots_adjust(*args, **kwargs)
def subplot_tool(targetfig=None):
"""
Launch a subplot tool window for a figure.
A :class:`matplotlib.widgets.SubplotTool` instance is returned.
"""
tbar = rcParams['toolbar'] # turn off the navigation toolbar for the toolfig
rcParams['toolbar'] = 'None'
if targetfig is None:
manager = get_current_fig_manager()
targetfig = manager.canvas.figure
else:
# find the manager for this figure
for manager in _pylab_helpers.Gcf._activeQue:
if manager.canvas.figure==targetfig: break
else: raise RuntimeError('Could not find manager for targetfig')
toolfig = figure(figsize=(6,3))
toolfig.subplots_adjust(top=0.9)
ret = SubplotTool(targetfig, toolfig)
rcParams['toolbar'] = tbar
_pylab_helpers.Gcf.set_active(manager) # restore the current figure
return ret
def tight_layout(pad=1.08, h_pad=None, w_pad=None, rect=None):
"""
Automatically adjust subplot parameters to give specified padding.
Parameters
----------
pad : float
padding between the figure edge and the edges of subplots, as a fraction of the font-size.
h_pad, w_pad : float
padding (height/width) between edges of adjacent subplots.
Defaults to `pad_inches`.
rect : if rect is given, it is interpreted as a rectangle
(left, bottom, right, top) in the normalized figure
coordinate that the whole subplots area (including
labels) will fit into. Default is (0, 0, 1, 1).
"""
fig = gcf()
fig.tight_layout(pad=pad, h_pad=h_pad, w_pad=w_pad, rect=rect)
def box(on=None):
"""
Turn the axes box on or off. *on* may be a boolean or a string,
'on' or 'off'.
If *on* is *None*, toggle state.
"""
ax = gca()
on = _string_to_bool(on)
if on is None:
on = not ax.get_frame_on()
ax.set_frame_on(on)
def title(s, *args, **kwargs):
"""
Set a title of the current axes.
Set one of the three available axes titles. The available titles are
positioned above the axes in the center, flush with the left edge,
and flush with the right edge.
.. seealso::
See :func:`~matplotlib.pyplot.text` for adding text
to the current axes
Parameters
----------
label : str
Text to use for the title
fontdict : dict
A dictionary controlling the appearance of the title text,
the default `fontdict` is:
{'fontsize': rcParams['axes.titlesize'],
'fontweight' : rcParams['axes.titleweight'],
'verticalalignment': 'baseline',
'horizontalalignment': loc}
loc : {'center', 'left', 'right'}, str, optional
Which title to set, defaults to 'center'
Returns
-------
text : :class:`~matplotlib.text.Text`
The matplotlib text instance representing the title
Other parameters
----------------
kwargs : text properties
Other keyword arguments are text properties, see
:class:`~matplotlib.text.Text` for a list of valid text
properties.
"""
return gca().set_title(s, *args, **kwargs)
## Axis ##
def axis(*v, **kwargs):
"""
Convenience method to get or set axis properties.
Calling with no arguments::
>>> axis()
returns the current axes limits ``[xmin, xmax, ymin, ymax]``.::
>>> axis(v)
sets the min and max of the x and y axes, with
``v = [xmin, xmax, ymin, ymax]``.::
>>> axis('off')
turns off the axis lines and labels.::
>>> axis('equal')
changes limits of *x* or *y* axis so that equal increments of *x*
and *y* have the same length; a circle is circular.::
>>> axis('scaled')
achieves the same result by changing the dimensions of the plot box instead
of the axis data limits.::
>>> axis('tight')
changes *x* and *y* axis limits such that all data is shown. If
all data is already shown, it will move it to the center of the
figure without modifying (*xmax* - *xmin*) or (*ymax* -
*ymin*). Note this is slightly different than in MATLAB.::
>>> axis('image')
is 'scaled' with the axis limits equal to the data limits.::
>>> axis('auto')
and::
>>> axis('normal')
are deprecated. They restore default behavior; axis limits are automatically
scaled to make the data fit comfortably within the plot box.
if ``len(*v)==0``, you can pass in *xmin*, *xmax*, *ymin*, *ymax*
as kwargs selectively to alter just those limits without changing
the others.
>>> axis('square')
changes the limit ranges (*xmax*-*xmin*) and (*ymax*-*ymin*) of
the *x* and *y* axes to be the same, and have the same scaling,
resulting in a square plot.
The xmin, xmax, ymin, ymax tuple is returned
.. seealso::
:func:`xlim`, :func:`ylim`
For setting the x- and y-limits individually.
"""
return gca().axis(*v, **kwargs)
def xlabel(s, *args, **kwargs):
"""
Set the *x* axis label of the current axis.
Default override is::
override = {
'fontsize' : 'small',
'verticalalignment' : 'top',
'horizontalalignment' : 'center'
}
.. seealso::
:func:`~matplotlib.pyplot.text`
For information on how override and the optional args work
"""
return gca().set_xlabel(s, *args, **kwargs)
def ylabel(s, *args, **kwargs):
"""
Set the *y* axis label of the current axis.
Defaults override is::
override = {
'fontsize' : 'small',
'verticalalignment' : 'center',
'horizontalalignment' : 'right',
'rotation'='vertical' : }
.. seealso::
:func:`~matplotlib.pyplot.text`
For information on how override and the optional args
work.
"""
return gca().set_ylabel(s, *args, **kwargs)
def xlim(*args, **kwargs):
"""
Get or set the *x* limits of the current axes.
::
xmin, xmax = xlim() # return the current xlim
xlim( (xmin, xmax) ) # set the xlim to xmin, xmax
xlim( xmin, xmax ) # set the xlim to xmin, xmax
If you do not specify args, you can pass the xmin and xmax as
kwargs, e.g.::
xlim(xmax=3) # adjust the max leaving min unchanged
xlim(xmin=1) # adjust the min leaving max unchanged
Setting limits turns autoscaling off for the x-axis.
The new axis limits are returned as a length 2 tuple.
"""
ax = gca()
if not args and not kwargs:
return ax.get_xlim()
ret = ax.set_xlim(*args, **kwargs)
return ret
def ylim(*args, **kwargs):
"""
Get or set the *y*-limits of the current axes.
::
ymin, ymax = ylim() # return the current ylim
ylim( (ymin, ymax) ) # set the ylim to ymin, ymax
ylim( ymin, ymax ) # set the ylim to ymin, ymax
If you do not specify args, you can pass the *ymin* and *ymax* as
kwargs, e.g.::
ylim(ymax=3) # adjust the max leaving min unchanged
ylim(ymin=1) # adjust the min leaving max unchanged
Setting limits turns autoscaling off for the y-axis.
The new axis limits are returned as a length 2 tuple.
"""
ax = gca()
if not args and not kwargs:
return ax.get_ylim()
ret = ax.set_ylim(*args, **kwargs)
return ret
@docstring.dedent_interpd
def xscale(*args, **kwargs):
"""
Set the scaling of the *x*-axis.
call signature::
xscale(scale, **kwargs)
The available scales are: %(scale)s
Different keywords may be accepted, depending on the scale:
%(scale_docs)s
"""
gca().set_xscale(*args, **kwargs)
@docstring.dedent_interpd
def yscale(*args, **kwargs):
"""
Set the scaling of the *y*-axis.
call signature::
yscale(scale, **kwargs)
The available scales are: %(scale)s
Different keywords may be accepted, depending on the scale:
%(scale_docs)s
"""
gca().set_yscale(*args, **kwargs)
def xticks(*args, **kwargs):
"""
Get or set the *x*-limits of the current tick locations and labels.
::
# return locs, labels where locs is an array of tick locations and
# labels is an array of tick labels.
locs, labels = xticks()
# set the locations of the xticks
xticks( arange(6) )
# set the locations and labels of the xticks
xticks( arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue') )
The keyword args, if any, are :class:`~matplotlib.text.Text`
properties. For example, to rotate long labels::
xticks( arange(12), calendar.month_name[1:13], rotation=17 )
"""
ax = gca()
if len(args)==0:
locs = ax.get_xticks()
labels = ax.get_xticklabels()
elif len(args)==1:
locs = ax.set_xticks(args[0])
labels = ax.get_xticklabels()
elif len(args)==2:
locs = ax.set_xticks(args[0])
labels = ax.set_xticklabels(args[1], **kwargs)
else: raise TypeError('Illegal number of arguments to xticks')
if len(kwargs):
for l in labels:
l.update(kwargs)
return locs, silent_list('Text xticklabel', labels)
def yticks(*args, **kwargs):
"""
Get or set the *y*-limits of the current tick locations and labels.
::
# return locs, labels where locs is an array of tick locations and
# labels is an array of tick labels.
locs, labels = yticks()
# set the locations of the yticks
yticks( arange(6) )
# set the locations and labels of the yticks
yticks( arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue') )
The keyword args, if any, are :class:`~matplotlib.text.Text`
properties. For example, to rotate long labels::
yticks( arange(12), calendar.month_name[1:13], rotation=45 )
"""
ax = gca()
if len(args)==0:
locs = ax.get_yticks()
labels = ax.get_yticklabels()
elif len(args)==1:
locs = ax.set_yticks(args[0])
labels = ax.get_yticklabels()
elif len(args)==2:
locs = ax.set_yticks(args[0])
labels = ax.set_yticklabels(args[1], **kwargs)
else: raise TypeError('Illegal number of arguments to yticks')
if len(kwargs):
for l in labels:
l.update(kwargs)
return ( locs,
silent_list('Text yticklabel', labels)
)
def minorticks_on():
"""
Display minor ticks on the current plot.
Displaying minor ticks reduces performance; turn them off using
minorticks_off() if drawing speed is a problem.
"""
gca().minorticks_on()
def minorticks_off():
"""
Remove minor ticks from the current plot.
"""
gca().minorticks_off()
def rgrids(*args, **kwargs):
"""
Get or set the radial gridlines on a polar plot.
call signatures::
lines, labels = rgrids()
lines, labels = rgrids(radii, labels=None, angle=22.5, **kwargs)
When called with no arguments, :func:`rgrid` simply returns the
tuple (*lines*, *labels*), where *lines* is an array of radial
gridlines (:class:`~matplotlib.lines.Line2D` instances) and
*labels* is an array of tick labels
(:class:`~matplotlib.text.Text` instances). When called with
arguments, the labels will appear at the specified radial
distances and angles.
*labels*, if not *None*, is a len(*radii*) list of strings of the
labels to use at each angle.
If *labels* is None, the rformatter will be used
Examples::
# set the locations of the radial gridlines and labels
lines, labels = rgrids( (0.25, 0.5, 1.0) )
# set the locations and labels of the radial gridlines and labels
lines, labels = rgrids( (0.25, 0.5, 1.0), ('Tom', 'Dick', 'Harry' )
"""
ax = gca()
if not isinstance(ax, PolarAxes):
raise RuntimeError('rgrids only defined for polar axes')
if len(args)==0:
lines = ax.yaxis.get_gridlines()
labels = ax.yaxis.get_ticklabels()
else:
lines, labels = ax.set_rgrids(*args, **kwargs)
return ( silent_list('Line2D rgridline', lines),
silent_list('Text rgridlabel', labels) )
def thetagrids(*args, **kwargs):
"""
Get or set the theta locations of the gridlines in a polar plot.
If no arguments are passed, return a tuple (*lines*, *labels*)
where *lines* is an array of radial gridlines
(:class:`~matplotlib.lines.Line2D` instances) and *labels* is an
array of tick labels (:class:`~matplotlib.text.Text` instances)::
lines, labels = thetagrids()
Otherwise the syntax is::
lines, labels = thetagrids(angles, labels=None, fmt='%d', frac = 1.1)
set the angles at which to place the theta grids (these gridlines
are equal along the theta dimension).
*angles* is in degrees.
*labels*, if not *None*, is a len(angles) list of strings of the
labels to use at each angle.
If *labels* is *None*, the labels will be ``fmt%angle``.
*frac* is the fraction of the polar axes radius at which to place
the label (1 is the edge). e.g., 1.05 is outside the axes and 0.95
is inside the axes.
Return value is a list of tuples (*lines*, *labels*):
- *lines* are :class:`~matplotlib.lines.Line2D` instances
- *labels* are :class:`~matplotlib.text.Text` instances.
Note that on input, the *labels* argument is a list of strings,
and on output it is a list of :class:`~matplotlib.text.Text`
instances.
Examples::
# set the locations of the radial gridlines and labels
lines, labels = thetagrids( range(45,360,90) )
# set the locations and labels of the radial gridlines and labels
lines, labels = thetagrids( range(45,360,90), ('NE', 'NW', 'SW','SE') )
"""
ax = gca()
if not isinstance(ax, PolarAxes):
raise RuntimeError('rgrids only defined for polar axes')
if len(args)==0:
lines = ax.xaxis.get_ticklines()
labels = ax.xaxis.get_ticklabels()
else:
lines, labels = ax.set_thetagrids(*args, **kwargs)
return (silent_list('Line2D thetagridline', lines),
silent_list('Text thetagridlabel', labels)
)
## Plotting Info ##
def plotting():
pass
def get_plot_commands():
"""
Get a sorted list of all of the plotting commands.
"""
# This works by searching for all functions in this module and
# removing a few hard-coded exclusions, as well as all of the
# colormap-setting functions, and anything marked as private with
# a preceding underscore.
import inspect
exclude = {'colormaps', 'colors', 'connect', 'disconnect',
'get_plot_commands', 'get_current_fig_manager', 'ginput',
'plotting', 'waitforbuttonpress'}
exclude |= set(colormaps())
this_module = inspect.getmodule(get_plot_commands)
commands = set()
for name, obj in list(six.iteritems(globals())):
if name.startswith('_') or name in exclude:
continue
if inspect.isfunction(obj) and inspect.getmodule(obj) is this_module:
commands.add(name)
return sorted(commands)
@deprecated('2.1')
def colors():
"""
This is a do-nothing function to provide you with help on how
matplotlib handles colors.
Commands which take color arguments can use several formats to
specify the colors. For the basic built-in colors, you can use a
single letter
===== =======
Alias Color
===== =======
'b' blue
'g' green
'r' red
'c' cyan
'm' magenta
'y' yellow
'k' black
'w' white
===== =======
For a greater range of colors, you have two options. You can
specify the color using an html hex string, as in::
color = '#eeefff'
or you can pass an R,G,B tuple, where each of R,G,B are in the
range [0,1].
You can also use any legal html name for a color, for example::
color = 'red'
color = 'burlywood'
color = 'chartreuse'
The example below creates a subplot with a dark
slate gray background::
subplot(111, facecolor=(0.1843, 0.3098, 0.3098))
Here is an example that creates a pale turquoise title::
title('Is this the best color?', color='#afeeee')
"""
pass
def colormaps():
"""
Matplotlib provides a number of colormaps, and others can be added using
:func:`~matplotlib.cm.register_cmap`. This function documents the built-in
colormaps, and will also return a list of all registered colormaps if called.
You can set the colormap for an image, pcolor, scatter, etc,
using a keyword argument::
imshow(X, cmap=cm.hot)
or using the :func:`set_cmap` function::
imshow(X)
pyplot.set_cmap('hot')
pyplot.set_cmap('jet')
In interactive mode, :func:`set_cmap` will update the colormap post-hoc,
allowing you to see which one works best for your data.
All built-in colormaps can be reversed by appending ``_r``: For instance,
``gray_r`` is the reverse of ``gray``.
There are several common color schemes used in visualization:
Sequential schemes
for unipolar data that progresses from low to high
Diverging schemes
for bipolar data that emphasizes positive or negative deviations from a
central value
Cyclic schemes
meant for plotting values that wrap around at the
endpoints, such as phase angle, wind direction, or time of day
Qualitative schemes
for nominal data that has no inherent ordering, where color is used
only to distinguish categories
Matplotlib ships with 4 perceptually uniform color maps which are
the recommended color maps for sequential data:
========= ===================================================
Colormap Description
========= ===================================================
inferno perceptually uniform shades of black-red-yellow
magma perceptually uniform shades of black-red-white
plasma perceptually uniform shades of blue-red-yellow
viridis perceptually uniform shades of blue-green-yellow
========= ===================================================
The following colormaps are based on the `ColorBrewer
<http://colorbrewer2.org>`_ color specifications and designs developed by
Cynthia Brewer:
ColorBrewer Diverging (luminance is highest at the midpoint, and
decreases towards differently-colored endpoints):
======== ===================================
Colormap Description
======== ===================================
BrBG brown, white, blue-green
PiYG pink, white, yellow-green
PRGn purple, white, green
PuOr orange, white, purple
RdBu red, white, blue
RdGy red, white, gray
RdYlBu red, yellow, blue
RdYlGn red, yellow, green
Spectral red, orange, yellow, green, blue
======== ===================================
ColorBrewer Sequential (luminance decreases monotonically):
======== ====================================
Colormap Description
======== ====================================
Blues white to dark blue
BuGn white, light blue, dark green
BuPu white, light blue, dark purple
GnBu white, light green, dark blue
Greens white to dark green
Greys white to black (not linear)
Oranges white, orange, dark brown
OrRd white, orange, dark red
PuBu white, light purple, dark blue
PuBuGn white, light purple, dark green
PuRd white, light purple, dark red
Purples white to dark purple
RdPu white, pink, dark purple
Reds white to dark red
YlGn light yellow, dark green
YlGnBu light yellow, light green, dark blue
YlOrBr light yellow, orange, dark brown
YlOrRd light yellow, orange, dark red
======== ====================================
ColorBrewer Qualitative:
(For plotting nominal data, :class:`ListedColormap` is used,
not :class:`LinearSegmentedColormap`. Different sets of colors are
recommended for different numbers of categories.)
* Accent
* Dark2
* Paired
* Pastel1
* Pastel2
* Set1
* Set2
* Set3
A set of colormaps derived from those of the same name provided
with Matlab are also included:
========= =======================================================
Colormap Description
========= =======================================================
autumn sequential linearly-increasing shades of red-orange-yellow
bone sequential increasing black-white color map with
a tinge of blue, to emulate X-ray film
cool linearly-decreasing shades of cyan-magenta
copper sequential increasing shades of black-copper
flag repetitive red-white-blue-black pattern (not cyclic at
endpoints)
gray sequential linearly-increasing black-to-white
grayscale
hot sequential black-red-yellow-white, to emulate blackbody
radiation from an object at increasing temperatures
hsv cyclic red-yellow-green-cyan-blue-magenta-red, formed
by changing the hue component in the HSV color space
jet a spectral map with dark endpoints, blue-cyan-yellow-red;
based on a fluid-jet simulation by NCSA [#]_
pink sequential increasing pastel black-pink-white, meant
for sepia tone colorization of photographs
prism repetitive red-yellow-green-blue-purple-...-green pattern
(not cyclic at endpoints)
spring linearly-increasing shades of magenta-yellow
summer sequential linearly-increasing shades of green-yellow
winter linearly-increasing shades of blue-green
========= =======================================================
A set of palettes from the `Yorick scientific visualisation
package <https://dhmunro.github.io/yorick-doc/>`_, an evolution of
the GIST package, both by David H. Munro are included:
============ =======================================================
Colormap Description
============ =======================================================
gist_earth mapmaker's colors from dark blue deep ocean to green
lowlands to brown highlands to white mountains
gist_heat sequential increasing black-red-orange-white, to emulate
blackbody radiation from an iron bar as it grows hotter
gist_ncar pseudo-spectral black-blue-green-yellow-red-purple-white
colormap from National Center for Atmospheric
Research [#]_
gist_rainbow runs through the colors in spectral order from red to
violet at full saturation (like *hsv* but not cyclic)
gist_stern "Stern special" color table from Interactive Data
Language software
============ =======================================================
Other miscellaneous schemes:
============= =======================================================
Colormap Description
============= =======================================================
afmhot sequential black-orange-yellow-white blackbody
spectrum, commonly used in atomic force microscopy
brg blue-red-green
bwr diverging blue-white-red
coolwarm diverging blue-gray-red, meant to avoid issues with 3D
shading, color blindness, and ordering of colors [#]_
CMRmap "Default colormaps on color images often reproduce to
confusing grayscale images. The proposed colormap
maintains an aesthetically pleasing color image that
automatically reproduces to a monotonic grayscale with
discrete, quantifiable saturation levels." [#]_
cubehelix Unlike most other color schemes cubehelix was designed
by D.A. Green to be monotonically increasing in terms
of perceived brightness. Also, when printed on a black
and white postscript printer, the scheme results in a
greyscale with monotonically increasing brightness.
This color scheme is named cubehelix because the r,g,b
values produced can be visualised as a squashed helix
around the diagonal in the r,g,b color cube.
gnuplot gnuplot's traditional pm3d scheme
(black-blue-red-yellow)
gnuplot2 sequential color printable as gray
(black-blue-violet-yellow-white)
ocean green-blue-white
rainbow spectral purple-blue-green-yellow-orange-red colormap
with diverging luminance
seismic diverging blue-white-red
nipy_spectral black-purple-blue-green-yellow-red-white spectrum,
originally from the Neuroimaging in Python project
terrain mapmaker's colors, blue-green-yellow-brown-white,
originally from IGOR Pro
============= =======================================================
The following colormaps are redundant and may be removed in future
versions. It's recommended to use the names in the descriptions
instead, which produce identical output:
========= =======================================================
Colormap Description
========= =======================================================
gist_gray identical to *gray*
gist_yarg identical to *gray_r*
binary identical to *gray_r*
spectral identical to *nipy_spectral* [#]_
========= =======================================================
.. rubric:: Footnotes
.. [#] Rainbow colormaps, ``jet`` in particular, are considered a poor
choice for scientific visualization by many researchers: `Rainbow Color
Map (Still) Considered Harmful
<http://ieeexplore.ieee.org/document/4118486/?arnumber=4118486>`_
.. [#] Resembles "BkBlAqGrYeOrReViWh200" from NCAR Command
Language. See `Color Table Gallery
<https://www.ncl.ucar.edu/Document/Graphics/color_table_gallery.shtml>`_
.. [#] See `Diverging Color Maps for Scientific Visualization
<http://www.kennethmoreland.com/color-maps/>`_ by Kenneth Moreland.
.. [#] See `A Color Map for Effective Black-and-White Rendering of
Color-Scale Images
<https://www.mathworks.com/matlabcentral/fileexchange/2662-cmrmap-m>`_
by Carey Rappaport
.. [#] Changed to distinguish from ColorBrewer's *Spectral* map.
:func:`spectral` still works, but
``set_cmap('nipy_spectral')`` is recommended for clarity.
"""
return sorted(cm.cmap_d)
def _setup_pyplot_info_docstrings():
"""
Generates the plotting and docstring.
These must be done after the entire module is imported, so it is
called from the end of this module, which is generated by
boilerplate.py.
"""
# Generate the plotting docstring
import re
def pad(s, l):
"""Pad string *s* to length *l*."""
if l < len(s):
return s[:l]
return s + ' ' * (l - len(s))
commands = get_plot_commands()
first_sentence = re.compile(r"(?:\s*).+?\.(?:\s+|$)", flags=re.DOTALL)
# Collect the first sentence of the docstring for all of the
# plotting commands.
rows = []
max_name = 0
max_summary = 0
for name in commands:
doc = globals()[name].__doc__
summary = ''
if doc is not None:
match = first_sentence.match(doc)
if match is not None:
summary = match.group(0).strip().replace('\n', ' ')
name = '`%s`' % name
rows.append([name, summary])
max_name = max(max_name, len(name))
max_summary = max(max_summary, len(summary))
lines = []
sep = '=' * max_name + ' ' + '=' * max_summary
lines.append(sep)
lines.append(' '.join([pad("Function", max_name),
pad("Description", max_summary)]))
lines.append(sep)
for name, summary in rows:
lines.append(' '.join([pad(name, max_name),
pad(summary, max_summary)]))
lines.append(sep)
plotting.__doc__ = '\n'.join(lines)
## Plotting part 1: manually generated functions and wrappers ##
def colorbar(mappable=None, cax=None, ax=None, **kw):
if mappable is None:
mappable = gci()
if mappable is None:
raise RuntimeError('No mappable was found to use for colorbar '
'creation. First define a mappable such as '
'an image (with imshow) or a contour set ('
'with contourf).')
if ax is None:
ax = gca()
ret = gcf().colorbar(mappable, cax = cax, ax=ax, **kw)
return ret
colorbar.__doc__ = matplotlib.colorbar.colorbar_doc
def clim(vmin=None, vmax=None):
"""
Set the color limits of the current image.
To apply clim to all axes images do::
clim(0, 0.5)
If either *vmin* or *vmax* is None, the image min/max respectively
will be used for color scaling.
If you want to set the clim of multiple images,
use, for example::
for im in gca().get_images():
im.set_clim(0, 0.05)
"""
im = gci()
if im is None:
raise RuntimeError('You must first define an image, e.g., with imshow')
im.set_clim(vmin, vmax)
def set_cmap(cmap):
"""
Set the default colormap. Applies to the current image if any.
See help(colormaps) for more information.
*cmap* must be a :class:`~matplotlib.colors.Colormap` instance, or
the name of a registered colormap.
See :func:`matplotlib.cm.register_cmap` and
:func:`matplotlib.cm.get_cmap`.
"""
cmap = cm.get_cmap(cmap)
rc('image', cmap=cmap.name)
im = gci()
if im is not None:
im.set_cmap(cmap)
@docstring.copy_dedent(_imread)
def imread(*args, **kwargs):
return _imread(*args, **kwargs)
@docstring.copy_dedent(_imsave)
def imsave(*args, **kwargs):
return _imsave(*args, **kwargs)
def matshow(A, fignum=None, **kw):
"""
Display an array as a matrix in a new figure window.
The origin is set at the upper left hand corner and rows (first
dimension of the array) are displayed horizontally. The aspect
ratio of the figure window is that of the array, unless this would
make an excessively short or narrow figure.
Tick labels for the xaxis are placed on top.
With the exception of *fignum*, keyword arguments are passed to
:func:`~matplotlib.pyplot.imshow`. You may set the *origin*
kwarg to "lower" if you want the first row in the array to be
at the bottom instead of the top.
*fignum*: [ None | integer | False ]
By default, :func:`matshow` creates a new figure window with
automatic numbering. If *fignum* is given as an integer, the
created figure will use this figure number. Because of how
:func:`matshow` tries to set the figure aspect ratio to be the
one of the array, if you provide the number of an already
existing figure, strange things may happen.
If *fignum* is *False* or 0, a new figure window will **NOT** be created.
"""
A = np.asanyarray(A)
if fignum is False or fignum is 0:
ax = gca()
else:
# Extract actual aspect ratio of array and make appropriately sized figure
fig = figure(fignum, figsize=figaspect(A))
ax = fig.add_axes([0.15, 0.09, 0.775, 0.775])
im = ax.matshow(A, **kw)
sci(im)
return im
def polar(*args, **kwargs):
"""
Make a polar plot.
call signature::
polar(theta, r, **kwargs)
Multiple *theta*, *r* arguments are supported, with format
strings, as in :func:`~matplotlib.pyplot.plot`.
"""
# If an axis already exists, check if it has a polar projection
if gcf().get_axes():
if not isinstance(gca(), PolarAxes):
warnings.warn('Trying to create polar plot on an axis that does '
'not have a polar projection.')
ax = gca(polar=True)
ret = ax.plot(*args, **kwargs)
return ret
def plotfile(fname, cols=(0,), plotfuncs=None,
comments='#', skiprows=0, checkrows=5, delimiter=',',
names=None, subplots=True, newfig=True, **kwargs):
"""
Plot the data in a file.
*cols* is a sequence of column identifiers to plot. An identifier
is either an int or a string. If it is an int, it indicates the
column number. If it is a string, it indicates the column header.
matplotlib will make column headers lower case, replace spaces with
underscores, and remove all illegal characters; so ``'Adj Close*'``
will have name ``'adj_close'``.
- If len(*cols*) == 1, only that column will be plotted on the *y* axis.
- If len(*cols*) > 1, the first element will be an identifier for
data for the *x* axis and the remaining elements will be the
column indexes for multiple subplots if *subplots* is *True*
(the default), or for lines in a single subplot if *subplots*
is *False*.
*plotfuncs*, if not *None*, is a dictionary mapping identifier to
an :class:`~matplotlib.axes.Axes` plotting function as a string.
Default is 'plot', other choices are 'semilogy', 'fill', 'bar',
etc. You must use the same type of identifier in the *cols*
vector as you use in the *plotfuncs* dictionary, e.g., integer
column numbers in both or column names in both. If *subplots*
is *False*, then including any function such as 'semilogy'
that changes the axis scaling will set the scaling for all
columns.
*comments*, *skiprows*, *checkrows*, *delimiter*, and *names*
are all passed on to :func:`matplotlib.pylab.csv2rec` to
load the data into a record array.
If *newfig* is *True*, the plot always will be made in a new figure;
if *False*, it will be made in the current figure if one exists,
else in a new figure.
kwargs are passed on to plotting functions.
Example usage::
# plot the 2nd and 4th column against the 1st in two subplots
plotfile(fname, (0,1,3))
# plot using column names; specify an alternate plot type for volume
plotfile(fname, ('date', 'volume', 'adj_close'),
plotfuncs={'volume': 'semilogy'})
Note: plotfile is intended as a convenience for quickly plotting
data from flat files; it is not intended as an alternative
interface to general plotting with pyplot or matplotlib.
"""
if newfig:
fig = figure()
else:
fig = gcf()
if len(cols)<1:
raise ValueError('must have at least one column of data')
if plotfuncs is None:
plotfuncs = dict()
r = mlab.csv2rec(fname, comments=comments, skiprows=skiprows,
checkrows=checkrows, delimiter=delimiter, names=names)
def getname_val(identifier):
'return the name and column data for identifier'
if isinstance(identifier, six.string_types):
return identifier, r[identifier]
elif is_numlike(identifier):
name = r.dtype.names[int(identifier)]
return name, r[name]
else:
raise TypeError('identifier must be a string or integer')
xname, x = getname_val(cols[0])
ynamelist = []
if len(cols)==1:
ax1 = fig.add_subplot(1,1,1)
funcname = plotfuncs.get(cols[0], 'plot')
func = getattr(ax1, funcname)
func(x, **kwargs)
ax1.set_ylabel(xname)
else:
N = len(cols)
for i in range(1,N):
if subplots:
if i==1:
ax = ax1 = fig.add_subplot(N-1,1,i)
else:
ax = fig.add_subplot(N-1,1,i, sharex=ax1)
elif i==1:
ax = fig.add_subplot(1,1,1)
yname, y = getname_val(cols[i])
ynamelist.append(yname)
funcname = plotfuncs.get(cols[i], 'plot')
func = getattr(ax, funcname)
func(x, y, **kwargs)
if subplots:
ax.set_ylabel(yname)
if ax.is_last_row():
ax.set_xlabel(xname)
else:
ax.set_xlabel('')
if not subplots:
ax.legend(ynamelist, loc='best')
if xname=='date':
fig.autofmt_xdate()
def _autogen_docstring(base):
"""Autogenerated wrappers will get their docstring from a base function
with an addendum."""
#msg = "\n\nAdditional kwargs: hold = [True|False] overrides default hold state"
msg = ''
addendum = docstring.Appender(msg, '\n\n')
return lambda func: addendum(docstring.copy_dedent(base)(func))
# This function cannot be generated by boilerplate.py because it may
# return an image or a line.
@_autogen_docstring(Axes.spy)
def spy(Z, precision=0, marker=None, markersize=None, aspect='equal', **kwargs):
ax = gca()
hold = kwargs.pop('hold', None)
# allow callers to override the hold state by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.spy(Z, precision, marker, markersize, aspect, **kwargs)
finally:
ax._hold = washold
if isinstance(ret, cm.ScalarMappable):
sci(ret)
return ret
# just to be safe. Interactive mode can be turned on without
# calling `plt.ion()` so register it again here.
# This is safe because multiple calls to `install_repl_displayhook`
# are no-ops and the registered function respect `mpl.is_interactive()`
# to determine if they should trigger a draw.
install_repl_displayhook()
################# REMAINING CONTENT GENERATED BY boilerplate.py ##############
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.acorr)
def acorr(x, hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.acorr(x, data=data, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.angle_spectrum)
def angle_spectrum(x, Fs=None, Fc=None, window=None, pad_to=None, sides=None,
hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.angle_spectrum(x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to,
sides=sides, data=data, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.arrow)
def arrow(x, y, dx, dy, hold=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.arrow(x, y, dx, dy, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.axhline)
def axhline(y=0, xmin=0, xmax=1, hold=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.axhline(y=y, xmin=xmin, xmax=xmax, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.axhspan)
def axhspan(ymin, ymax, xmin=0, xmax=1, hold=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.axhspan(ymin, ymax, xmin=xmin, xmax=xmax, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.axvline)
def axvline(x=0, ymin=0, ymax=1, hold=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.axvline(x=x, ymin=ymin, ymax=ymax, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.axvspan)
def axvspan(xmin, xmax, ymin=0, ymax=1, hold=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.axvspan(xmin, xmax, ymin=ymin, ymax=ymax, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.bar)
def bar(*args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.bar(*args, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.barh)
def barh(*args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.barh(*args, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.broken_barh)
def broken_barh(xranges, yrange, hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.broken_barh(xranges, yrange, data=data, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.boxplot)
def boxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None,
widths=None, patch_artist=None, bootstrap=None, usermedians=None,
conf_intervals=None, meanline=None, showmeans=None, showcaps=None,
showbox=None, showfliers=None, boxprops=None, labels=None,
flierprops=None, medianprops=None, meanprops=None, capprops=None,
whiskerprops=None, manage_xticks=True, autorange=False, zorder=None,
hold=None, data=None):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.boxplot(x, notch=notch, sym=sym, vert=vert, whis=whis,
positions=positions, widths=widths,
patch_artist=patch_artist, bootstrap=bootstrap,
usermedians=usermedians,
conf_intervals=conf_intervals, meanline=meanline,
showmeans=showmeans, showcaps=showcaps,
showbox=showbox, showfliers=showfliers,
boxprops=boxprops, labels=labels,
flierprops=flierprops, medianprops=medianprops,
meanprops=meanprops, capprops=capprops,
whiskerprops=whiskerprops,
manage_xticks=manage_xticks, autorange=autorange,
zorder=zorder, data=data)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.cohere)
def cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none,
window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default',
scale_by_freq=None, hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.cohere(x, y, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend,
window=window, noverlap=noverlap, pad_to=pad_to,
sides=sides, scale_by_freq=scale_by_freq, data=data,
**kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.clabel)
def clabel(CS, *args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.clabel(CS, *args, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.contour)
def contour(*args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.contour(*args, **kwargs)
finally:
ax._hold = washold
if ret._A is not None: sci(ret)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.contourf)
def contourf(*args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.contourf(*args, **kwargs)
finally:
ax._hold = washold
if ret._A is not None: sci(ret)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.csd)
def csd(x, y, NFFT=None, Fs=None, Fc=None, detrend=None, window=None,
noverlap=None, pad_to=None, sides=None, scale_by_freq=None,
return_line=None, hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.csd(x, y, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend,
window=window, noverlap=noverlap, pad_to=pad_to,
sides=sides, scale_by_freq=scale_by_freq,
return_line=return_line, data=data, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.errorbar)
def errorbar(x, y, yerr=None, xerr=None, fmt='', ecolor=None, elinewidth=None,
capsize=None, barsabove=False, lolims=False, uplims=False,
xlolims=False, xuplims=False, errorevery=1, capthick=None,
hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.errorbar(x, y, yerr=yerr, xerr=xerr, fmt=fmt, ecolor=ecolor,
elinewidth=elinewidth, capsize=capsize,
barsabove=barsabove, lolims=lolims, uplims=uplims,
xlolims=xlolims, xuplims=xuplims,
errorevery=errorevery, capthick=capthick, data=data,
**kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.eventplot)
def eventplot(positions, orientation='horizontal', lineoffsets=1, linelengths=1,
linewidths=None, colors=None, linestyles='solid', hold=None,
data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.eventplot(positions, orientation=orientation,
lineoffsets=lineoffsets, linelengths=linelengths,
linewidths=linewidths, colors=colors,
linestyles=linestyles, data=data, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.fill)
def fill(*args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.fill(*args, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.fill_between)
def fill_between(x, y1, y2=0, where=None, interpolate=False, step=None,
hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.fill_between(x, y1, y2=y2, where=where,
interpolate=interpolate, step=step, data=data,
**kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.fill_betweenx)
def fill_betweenx(y, x1, x2=0, where=None, step=None, interpolate=False,
hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.fill_betweenx(y, x1, x2=x2, where=where, step=step,
interpolate=interpolate, data=data, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.hexbin)
def hexbin(x, y, C=None, gridsize=100, bins=None, xscale='linear',
yscale='linear', extent=None, cmap=None, norm=None, vmin=None,
vmax=None, alpha=None, linewidths=None, edgecolors='face',
reduce_C_function=np.mean, mincnt=None, marginals=False, hold=None,
data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.hexbin(x, y, C=C, gridsize=gridsize, bins=bins, xscale=xscale,
yscale=yscale, extent=extent, cmap=cmap, norm=norm,
vmin=vmin, vmax=vmax, alpha=alpha,
linewidths=linewidths, edgecolors=edgecolors,
reduce_C_function=reduce_C_function, mincnt=mincnt,
marginals=marginals, data=data, **kwargs)
finally:
ax._hold = washold
sci(ret)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.hist)
def hist(x, bins=None, range=None, density=None, weights=None, cumulative=False,
bottom=None, histtype='bar', align='mid', orientation='vertical',
rwidth=None, log=False, color=None, label=None, stacked=False,
normed=None, hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.hist(x, bins=bins, range=range, density=density,
weights=weights, cumulative=cumulative, bottom=bottom,
histtype=histtype, align=align, orientation=orientation,
rwidth=rwidth, log=log, color=color, label=label,
stacked=stacked, normed=normed, data=data, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.hist2d)
def hist2d(x, y, bins=10, range=None, normed=False, weights=None, cmin=None,
cmax=None, hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.hist2d(x, y, bins=bins, range=range, normed=normed,
weights=weights, cmin=cmin, cmax=cmax, data=data,
**kwargs)
finally:
ax._hold = washold
sci(ret[-1])
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.hlines)
def hlines(y, xmin, xmax, colors='k', linestyles='solid', label='', hold=None,
data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.hlines(y, xmin, xmax, colors=colors, linestyles=linestyles,
label=label, data=data, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.imshow)
def imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None,
vmin=None, vmax=None, origin=None, extent=None, shape=None,
filternorm=1, filterrad=4.0, imlim=None, resample=None, url=None,
hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.imshow(X, cmap=cmap, norm=norm, aspect=aspect,
interpolation=interpolation, alpha=alpha, vmin=vmin,
vmax=vmax, origin=origin, extent=extent, shape=shape,
filternorm=filternorm, filterrad=filterrad,
imlim=imlim, resample=resample, url=url, data=data,
**kwargs)
finally:
ax._hold = washold
sci(ret)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.loglog)
def loglog(*args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.loglog(*args, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.magnitude_spectrum)
def magnitude_spectrum(x, Fs=None, Fc=None, window=None, pad_to=None,
sides=None, scale=None, hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.magnitude_spectrum(x, Fs=Fs, Fc=Fc, window=window,
pad_to=pad_to, sides=sides, scale=scale,
data=data, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.pcolor)
def pcolor(*args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.pcolor(*args, **kwargs)
finally:
ax._hold = washold
sci(ret)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.pcolormesh)
def pcolormesh(*args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.pcolormesh(*args, **kwargs)
finally:
ax._hold = washold
sci(ret)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.phase_spectrum)
def phase_spectrum(x, Fs=None, Fc=None, window=None, pad_to=None, sides=None,
hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.phase_spectrum(x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to,
sides=sides, data=data, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.pie)
def pie(x, explode=None, labels=None, colors=None, autopct=None,
pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None,
radius=None, counterclock=True, wedgeprops=None, textprops=None,
center=(0, 0), frame=False, rotatelabels=False, hold=None, data=None):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.pie(x, explode=explode, labels=labels, colors=colors,
autopct=autopct, pctdistance=pctdistance, shadow=shadow,
labeldistance=labeldistance, startangle=startangle,
radius=radius, counterclock=counterclock,
wedgeprops=wedgeprops, textprops=textprops, center=center,
frame=frame, rotatelabels=rotatelabels, data=data)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.plot)
def plot(*args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.plot(*args, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.plot_date)
def plot_date(x, y, fmt='o', tz=None, xdate=True, ydate=False, hold=None,
data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.plot_date(x, y, fmt=fmt, tz=tz, xdate=xdate, ydate=ydate,
data=data, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.psd)
def psd(x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None,
noverlap=None, pad_to=None, sides=None, scale_by_freq=None,
return_line=None, hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.psd(x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend,
window=window, noverlap=noverlap, pad_to=pad_to,
sides=sides, scale_by_freq=scale_by_freq,
return_line=return_line, data=data, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.quiver)
def quiver(*args, **kw):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kw.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.quiver(*args, **kw)
finally:
ax._hold = washold
sci(ret)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.quiverkey)
def quiverkey(*args, **kw):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kw.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.quiverkey(*args, **kw)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.scatter)
def scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None,
vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None,
hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.scatter(x, y, s=s, c=c, marker=marker, cmap=cmap, norm=norm,
vmin=vmin, vmax=vmax, alpha=alpha,
linewidths=linewidths, verts=verts,
edgecolors=edgecolors, data=data, **kwargs)
finally:
ax._hold = washold
sci(ret)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.semilogx)
def semilogx(*args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.semilogx(*args, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.semilogy)
def semilogy(*args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.semilogy(*args, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.specgram)
def specgram(x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None,
noverlap=None, cmap=None, xextent=None, pad_to=None, sides=None,
scale_by_freq=None, mode=None, scale=None, vmin=None, vmax=None,
hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.specgram(x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend,
window=window, noverlap=noverlap, cmap=cmap,
xextent=xextent, pad_to=pad_to, sides=sides,
scale_by_freq=scale_by_freq, mode=mode, scale=scale,
vmin=vmin, vmax=vmax, data=data, **kwargs)
finally:
ax._hold = washold
sci(ret[-1])
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.stackplot)
def stackplot(x, *args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.stackplot(x, *args, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.stem)
def stem(*args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.stem(*args, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.step)
def step(x, y, *args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.step(x, y, *args, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.streamplot)
def streamplot(x, y, u, v, density=1, linewidth=None, color=None, cmap=None,
norm=None, arrowsize=1, arrowstyle='-|>', minlength=0.1,
transform=None, zorder=None, start_points=None, maxlength=4.0,
integration_direction='both', hold=None, data=None):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.streamplot(x, y, u, v, density=density, linewidth=linewidth,
color=color, cmap=cmap, norm=norm,
arrowsize=arrowsize, arrowstyle=arrowstyle,
minlength=minlength, transform=transform,
zorder=zorder, start_points=start_points,
maxlength=maxlength,
integration_direction=integration_direction,
data=data)
finally:
ax._hold = washold
sci(ret.lines)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.tricontour)
def tricontour(*args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.tricontour(*args, **kwargs)
finally:
ax._hold = washold
if ret._A is not None: sci(ret)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.tricontourf)
def tricontourf(*args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.tricontourf(*args, **kwargs)
finally:
ax._hold = washold
if ret._A is not None: sci(ret)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.tripcolor)
def tripcolor(*args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.tripcolor(*args, **kwargs)
finally:
ax._hold = washold
sci(ret)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.triplot)
def triplot(*args, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kwargs.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.triplot(*args, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.violinplot)
def violinplot(dataset, positions=None, vert=True, widths=0.5, showmeans=False,
showextrema=True, showmedians=False, points=100, bw_method=None,
hold=None, data=None):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.violinplot(dataset, positions=positions, vert=vert,
widths=widths, showmeans=showmeans,
showextrema=showextrema, showmedians=showmedians,
points=points, bw_method=bw_method, data=data)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.vlines)
def vlines(x, ymin, ymax, colors='k', linestyles='solid', label='', hold=None,
data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.vlines(x, ymin, ymax, colors=colors, linestyles=linestyles,
label=label, data=data, **kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.xcorr)
def xcorr(x, y, normed=True, detrend=mlab.detrend_none, usevlines=True,
maxlags=10, hold=None, data=None, **kwargs):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.xcorr(x, y, normed=normed, detrend=detrend,
usevlines=usevlines, maxlags=maxlags, data=data,
**kwargs)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@_autogen_docstring(Axes.barbs)
def barbs(*args, **kw):
ax = gca()
# Deprecated: allow callers to override the hold state
# by passing hold=True|False
washold = ax._hold
hold = kw.pop('hold', None)
if hold is not None:
ax._hold = hold
from matplotlib.cbook import mplDeprecation
warnings.warn("The 'hold' keyword argument is deprecated since 2.0.",
mplDeprecation)
try:
ret = ax.barbs(*args, **kw)
finally:
ax._hold = washold
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.cla)
def cla():
ret = gca().cla()
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.grid)
def grid(b=None, which='major', axis='both', **kwargs):
ret = gca().grid(b=b, which=which, axis=axis, **kwargs)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.legend)
def legend(*args, **kwargs):
ret = gca().legend(*args, **kwargs)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.table)
def table(**kwargs):
ret = gca().table(**kwargs)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.text)
def text(x, y, s, fontdict=None, withdash=False, **kwargs):
ret = gca().text(x, y, s, fontdict=fontdict, withdash=withdash, **kwargs)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.annotate)
def annotate(*args, **kwargs):
ret = gca().annotate(*args, **kwargs)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.ticklabel_format)
def ticklabel_format(**kwargs):
ret = gca().ticklabel_format(**kwargs)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.locator_params)
def locator_params(axis='both', tight=None, **kwargs):
ret = gca().locator_params(axis=axis, tight=tight, **kwargs)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.tick_params)
def tick_params(axis='both', **kwargs):
ret = gca().tick_params(axis=axis, **kwargs)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.margins)
def margins(*args, **kw):
ret = gca().margins(*args, **kw)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
@docstring.copy_dedent(Axes.autoscale)
def autoscale(enable=True, axis='both', tight=None):
ret = gca().autoscale(enable=enable, axis=axis, tight=tight)
return ret
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def autumn():
'''
set the default colormap to autumn and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='autumn')
im = gci()
if im is not None:
im.set_cmap(cm.autumn)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def bone():
'''
set the default colormap to bone and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='bone')
im = gci()
if im is not None:
im.set_cmap(cm.bone)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def cool():
'''
set the default colormap to cool and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='cool')
im = gci()
if im is not None:
im.set_cmap(cm.cool)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def copper():
'''
set the default colormap to copper and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='copper')
im = gci()
if im is not None:
im.set_cmap(cm.copper)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def flag():
'''
set the default colormap to flag and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='flag')
im = gci()
if im is not None:
im.set_cmap(cm.flag)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def gray():
'''
set the default colormap to gray and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='gray')
im = gci()
if im is not None:
im.set_cmap(cm.gray)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def hot():
'''
set the default colormap to hot and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='hot')
im = gci()
if im is not None:
im.set_cmap(cm.hot)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def hsv():
'''
set the default colormap to hsv and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='hsv')
im = gci()
if im is not None:
im.set_cmap(cm.hsv)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def jet():
'''
set the default colormap to jet and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='jet')
im = gci()
if im is not None:
im.set_cmap(cm.jet)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def pink():
'''
set the default colormap to pink and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='pink')
im = gci()
if im is not None:
im.set_cmap(cm.pink)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def prism():
'''
set the default colormap to prism and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='prism')
im = gci()
if im is not None:
im.set_cmap(cm.prism)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def spring():
'''
set the default colormap to spring and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='spring')
im = gci()
if im is not None:
im.set_cmap(cm.spring)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def summer():
'''
set the default colormap to summer and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='summer')
im = gci()
if im is not None:
im.set_cmap(cm.summer)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def winter():
'''
set the default colormap to winter and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='winter')
im = gci()
if im is not None:
im.set_cmap(cm.winter)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def magma():
'''
set the default colormap to magma and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='magma')
im = gci()
if im is not None:
im.set_cmap(cm.magma)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def inferno():
'''
set the default colormap to inferno and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='inferno')
im = gci()
if im is not None:
im.set_cmap(cm.inferno)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def plasma():
'''
set the default colormap to plasma and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='plasma')
im = gci()
if im is not None:
im.set_cmap(cm.plasma)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def viridis():
'''
set the default colormap to viridis and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='viridis')
im = gci()
if im is not None:
im.set_cmap(cm.viridis)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def nipy_spectral():
'''
set the default colormap to nipy_spectral and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='nipy_spectral')
im = gci()
if im is not None:
im.set_cmap(cm.nipy_spectral)
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
def spectral():
'''
set the default colormap to spectral and apply to current image if any.
See help(colormaps) for more information
'''
from matplotlib.cbook import warn_deprecated
warn_deprecated(
"2.0",
name="spectral",
obj_type="colormap"
)
rc('image', cmap='spectral')
im = gci()
if im is not None:
im.set_cmap(cm.spectral)
_setup_pyplot_info_docstrings()
|