/usr/lib/python3/dist-packages/matplotlib/streamplot.py is in python3-matplotlib 2.1.1-2ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 | """
Streamline plotting for 2D vector fields.
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import six
from six.moves import xrange
import numpy as np
import matplotlib
import matplotlib.cm as cm
import matplotlib.colors as mcolors
import matplotlib.collections as mcollections
import matplotlib.lines as mlines
import matplotlib.patches as patches
__all__ = ['streamplot']
def streamplot(axes, x, y, u, v, density=1, linewidth=None, color=None,
cmap=None, norm=None, arrowsize=1, arrowstyle='-|>',
minlength=0.1, transform=None, zorder=None, start_points=None,
maxlength=4.0, integration_direction='both'):
"""Draws streamlines of a vector flow.
*x*, *y* : 1d arrays
an *evenly spaced* grid.
*u*, *v* : 2d arrays
x and y-velocities. Number of rows should match length of y, and
the number of columns should match x.
*density* : float or 2-tuple
Controls the closeness of streamlines. When `density = 1`, the domain
is divided into a 30x30 grid---*density* linearly scales this grid.
Each cell in the grid can have, at most, one traversing streamline.
For different densities in each direction, use [density_x, density_y].
*linewidth* : numeric or 2d array
vary linewidth when given a 2d array with the same shape as velocities.
*color* : matplotlib color code, or 2d array
Streamline color. When given an array with the same shape as
velocities, *color* values are converted to colors using *cmap*.
*cmap* : :class:`~matplotlib.colors.Colormap`
Colormap used to plot streamlines and arrows. Only necessary when using
an array input for *color*.
*norm* : :class:`~matplotlib.colors.Normalize`
Normalize object used to scale luminance data to 0, 1. If None, stretch
(min, max) to (0, 1). Only necessary when *color* is an array.
*arrowsize* : float
Factor scale arrow size.
*arrowstyle* : str
Arrow style specification.
See :class:`~matplotlib.patches.FancyArrowPatch`.
*minlength* : float
Minimum length of streamline in axes coordinates.
*start_points*: Nx2 array
Coordinates of starting points for the streamlines.
In data coordinates, the same as the ``x`` and ``y`` arrays.
*zorder* : int
any number
*maxlength* : float
Maximum length of streamline in axes coordinates.
*integration_direction* : ['forward', 'backward', 'both']
Integrate the streamline in forward, backward or both directions.
Returns:
*stream_container* : StreamplotSet
Container object with attributes
- lines: `matplotlib.collections.LineCollection` of streamlines
- arrows: collection of `matplotlib.patches.FancyArrowPatch`
objects representing arrows half-way along stream
lines.
This container will probably change in the future to allow changes
to the colormap, alpha, etc. for both lines and arrows, but these
changes should be backward compatible.
"""
grid = Grid(x, y)
mask = StreamMask(density)
dmap = DomainMap(grid, mask)
if zorder is None:
zorder = mlines.Line2D.zorder
# default to data coordinates
if transform is None:
transform = axes.transData
if color is None:
color = axes._get_lines.get_next_color()
if linewidth is None:
linewidth = matplotlib.rcParams['lines.linewidth']
line_kw = {}
arrow_kw = dict(arrowstyle=arrowstyle, mutation_scale=10 * arrowsize)
if integration_direction not in ['both', 'forward', 'backward']:
errstr = ("Integration direction '%s' not recognised. "
"Expected 'both', 'forward' or 'backward'." %
integration_direction)
raise ValueError(errstr)
if integration_direction == 'both':
maxlength /= 2.
use_multicolor_lines = isinstance(color, np.ndarray)
if use_multicolor_lines:
if color.shape != grid.shape:
msg = "If 'color' is given, must have the shape of 'Grid(x,y)'"
raise ValueError(msg)
line_colors = []
color = np.ma.masked_invalid(color)
else:
line_kw['color'] = color
arrow_kw['color'] = color
if isinstance(linewidth, np.ndarray):
if linewidth.shape != grid.shape:
msg = "If 'linewidth' is given, must have the shape of 'Grid(x,y)'"
raise ValueError(msg)
line_kw['linewidth'] = []
else:
line_kw['linewidth'] = linewidth
arrow_kw['linewidth'] = linewidth
line_kw['zorder'] = zorder
arrow_kw['zorder'] = zorder
## Sanity checks.
if (u.shape != grid.shape) or (v.shape != grid.shape):
msg = "'u' and 'v' must be of shape 'Grid(x,y)'"
raise ValueError(msg)
u = np.ma.masked_invalid(u)
v = np.ma.masked_invalid(v)
integrate = get_integrator(u, v, dmap, minlength, maxlength,
integration_direction)
trajectories = []
if start_points is None:
for xm, ym in _gen_starting_points(mask.shape):
if mask[ym, xm] == 0:
xg, yg = dmap.mask2grid(xm, ym)
t = integrate(xg, yg)
if t is not None:
trajectories.append(t)
else:
sp2 = np.asanyarray(start_points, dtype=float).copy()
# Check if start_points are outside the data boundaries
for xs, ys in sp2:
if not (grid.x_origin <= xs <= grid.x_origin + grid.width
and grid.y_origin <= ys <= grid.y_origin + grid.height):
raise ValueError("Starting point ({}, {}) outside of data "
"boundaries".format(xs, ys))
# Convert start_points from data to array coords
# Shift the seed points from the bottom left of the data so that
# data2grid works properly.
sp2[:, 0] -= grid.x_origin
sp2[:, 1] -= grid.y_origin
for xs, ys in sp2:
xg, yg = dmap.data2grid(xs, ys)
t = integrate(xg, yg)
if t is not None:
trajectories.append(t)
if use_multicolor_lines:
if norm is None:
norm = mcolors.Normalize(color.min(), color.max())
if cmap is None:
cmap = cm.get_cmap(matplotlib.rcParams['image.cmap'])
else:
cmap = cm.get_cmap(cmap)
streamlines = []
arrows = []
for t in trajectories:
tgx = np.array(t[0])
tgy = np.array(t[1])
# Rescale from grid-coordinates to data-coordinates.
tx, ty = dmap.grid2data(*np.array(t))
tx += grid.x_origin
ty += grid.y_origin
points = np.transpose([tx, ty]).reshape(-1, 1, 2)
streamlines.extend(np.hstack([points[:-1], points[1:]]))
# Add arrows half way along each trajectory.
s = np.cumsum(np.sqrt(np.diff(tx) ** 2 + np.diff(ty) ** 2))
n = np.searchsorted(s, s[-1] / 2.)
arrow_tail = (tx[n], ty[n])
arrow_head = (np.mean(tx[n:n + 2]), np.mean(ty[n:n + 2]))
if isinstance(linewidth, np.ndarray):
line_widths = interpgrid(linewidth, tgx, tgy)[:-1]
line_kw['linewidth'].extend(line_widths)
arrow_kw['linewidth'] = line_widths[n]
if use_multicolor_lines:
color_values = interpgrid(color, tgx, tgy)[:-1]
line_colors.append(color_values)
arrow_kw['color'] = cmap(norm(color_values[n]))
p = patches.FancyArrowPatch(
arrow_tail, arrow_head, transform=transform, **arrow_kw)
axes.add_patch(p)
arrows.append(p)
lc = mcollections.LineCollection(
streamlines, transform=transform, **line_kw)
lc.sticky_edges.x[:] = [grid.x_origin, grid.x_origin + grid.width]
lc.sticky_edges.y[:] = [grid.y_origin, grid.y_origin + grid.height]
if use_multicolor_lines:
lc.set_array(np.ma.hstack(line_colors))
lc.set_cmap(cmap)
lc.set_norm(norm)
axes.add_collection(lc)
axes.autoscale_view()
ac = matplotlib.collections.PatchCollection(arrows)
stream_container = StreamplotSet(lc, ac)
return stream_container
class StreamplotSet(object):
def __init__(self, lines, arrows, **kwargs):
self.lines = lines
self.arrows = arrows
# Coordinate definitions
# ========================
class DomainMap(object):
"""Map representing different coordinate systems.
Coordinate definitions:
* axes-coordinates goes from 0 to 1 in the domain.
* data-coordinates are specified by the input x-y coordinates.
* grid-coordinates goes from 0 to N and 0 to M for an N x M grid,
where N and M match the shape of the input data.
* mask-coordinates goes from 0 to N and 0 to M for an N x M mask,
where N and M are user-specified to control the density of streamlines.
This class also has methods for adding trajectories to the StreamMask.
Before adding a trajectory, run `start_trajectory` to keep track of regions
crossed by a given trajectory. Later, if you decide the trajectory is bad
(e.g., if the trajectory is very short) just call `undo_trajectory`.
"""
def __init__(self, grid, mask):
self.grid = grid
self.mask = mask
# Constants for conversion between grid- and mask-coordinates
self.x_grid2mask = float(mask.nx - 1) / grid.nx
self.y_grid2mask = float(mask.ny - 1) / grid.ny
self.x_mask2grid = 1. / self.x_grid2mask
self.y_mask2grid = 1. / self.y_grid2mask
self.x_data2grid = 1. / grid.dx
self.y_data2grid = 1. / grid.dy
def grid2mask(self, xi, yi):
"""Return nearest space in mask-coords from given grid-coords."""
return (int((xi * self.x_grid2mask) + 0.5),
int((yi * self.y_grid2mask) + 0.5))
def mask2grid(self, xm, ym):
return xm * self.x_mask2grid, ym * self.y_mask2grid
def data2grid(self, xd, yd):
return xd * self.x_data2grid, yd * self.y_data2grid
def grid2data(self, xg, yg):
return xg / self.x_data2grid, yg / self.y_data2grid
def start_trajectory(self, xg, yg):
xm, ym = self.grid2mask(xg, yg)
self.mask._start_trajectory(xm, ym)
def reset_start_point(self, xg, yg):
xm, ym = self.grid2mask(xg, yg)
self.mask._current_xy = (xm, ym)
def update_trajectory(self, xg, yg):
if not self.grid.within_grid(xg, yg):
raise InvalidIndexError
xm, ym = self.grid2mask(xg, yg)
self.mask._update_trajectory(xm, ym)
def undo_trajectory(self):
self.mask._undo_trajectory()
class Grid(object):
"""Grid of data."""
def __init__(self, x, y):
if x.ndim == 1:
pass
elif x.ndim == 2:
x_row = x[0, :]
if not np.allclose(x_row, x):
raise ValueError("The rows of 'x' must be equal")
x = x_row
else:
raise ValueError("'x' can have at maximum 2 dimensions")
if y.ndim == 1:
pass
elif y.ndim == 2:
y_col = y[:, 0]
if not np.allclose(y_col, y.T):
raise ValueError("The columns of 'y' must be equal")
y = y_col
else:
raise ValueError("'y' can have at maximum 2 dimensions")
self.nx = len(x)
self.ny = len(y)
self.dx = x[1] - x[0]
self.dy = y[1] - y[0]
self.x_origin = x[0]
self.y_origin = y[0]
self.width = x[-1] - x[0]
self.height = y[-1] - y[0]
@property
def shape(self):
return self.ny, self.nx
def within_grid(self, xi, yi):
"""Return True if point is a valid index of grid."""
# Note that xi/yi can be floats; so, for example, we can't simply check
# `xi < self.nx` since `xi` can be `self.nx - 1 < xi < self.nx`
return xi >= 0 and xi <= self.nx - 1 and yi >= 0 and yi <= self.ny - 1
class StreamMask(object):
"""Mask to keep track of discrete regions crossed by streamlines.
The resolution of this grid determines the approximate spacing between
trajectories. Streamlines are only allowed to pass through zeroed cells:
When a streamline enters a cell, that cell is set to 1, and no new
streamlines are allowed to enter.
"""
def __init__(self, density):
if np.isscalar(density):
if density <= 0:
raise ValueError("If a scalar, 'density' must be positive")
self.nx = self.ny = int(30 * density)
else:
if len(density) != 2:
raise ValueError("'density' can have at maximum 2 dimensions")
self.nx = int(30 * density[0])
self.ny = int(30 * density[1])
self._mask = np.zeros((self.ny, self.nx))
self.shape = self._mask.shape
self._current_xy = None
def __getitem__(self, *args):
return self._mask.__getitem__(*args)
def _start_trajectory(self, xm, ym):
"""Start recording streamline trajectory"""
self._traj = []
self._update_trajectory(xm, ym)
def _undo_trajectory(self):
"""Remove current trajectory from mask"""
for t in self._traj:
self._mask.__setitem__(t, 0)
def _update_trajectory(self, xm, ym):
"""Update current trajectory position in mask.
If the new position has already been filled, raise `InvalidIndexError`.
"""
if self._current_xy != (xm, ym):
if self[ym, xm] == 0:
self._traj.append((ym, xm))
self._mask[ym, xm] = 1
self._current_xy = (xm, ym)
else:
raise InvalidIndexError
class InvalidIndexError(Exception):
pass
class TerminateTrajectory(Exception):
pass
# Integrator definitions
#========================
def get_integrator(u, v, dmap, minlength, maxlength, integration_direction):
# rescale velocity onto grid-coordinates for integrations.
u, v = dmap.data2grid(u, v)
# speed (path length) will be in axes-coordinates
u_ax = u / dmap.grid.nx
v_ax = v / dmap.grid.ny
speed = np.ma.sqrt(u_ax ** 2 + v_ax ** 2)
def forward_time(xi, yi):
ds_dt = interpgrid(speed, xi, yi)
if ds_dt == 0:
raise TerminateTrajectory()
dt_ds = 1. / ds_dt
ui = interpgrid(u, xi, yi)
vi = interpgrid(v, xi, yi)
return ui * dt_ds, vi * dt_ds
def backward_time(xi, yi):
dxi, dyi = forward_time(xi, yi)
return -dxi, -dyi
def integrate(x0, y0):
"""Return x, y grid-coordinates of trajectory based on starting point.
Integrate both forward and backward in time from starting point in
grid coordinates.
Integration is terminated when a trajectory reaches a domain boundary
or when it crosses into an already occupied cell in the StreamMask. The
resulting trajectory is None if it is shorter than `minlength`.
"""
stotal, x_traj, y_traj = 0., [], []
try:
dmap.start_trajectory(x0, y0)
except InvalidIndexError:
return None
if integration_direction in ['both', 'backward']:
s, xt, yt = _integrate_rk12(x0, y0, dmap, backward_time, maxlength)
stotal += s
x_traj += xt[::-1]
y_traj += yt[::-1]
if integration_direction in ['both', 'forward']:
dmap.reset_start_point(x0, y0)
s, xt, yt = _integrate_rk12(x0, y0, dmap, forward_time, maxlength)
if len(x_traj) > 0:
xt = xt[1:]
yt = yt[1:]
stotal += s
x_traj += xt
y_traj += yt
if stotal > minlength:
return x_traj, y_traj
else: # reject short trajectories
dmap.undo_trajectory()
return None
return integrate
def _integrate_rk12(x0, y0, dmap, f, maxlength):
"""2nd-order Runge-Kutta algorithm with adaptive step size.
This method is also referred to as the improved Euler's method, or Heun's
method. This method is favored over higher-order methods because:
1. To get decent looking trajectories and to sample every mask cell
on the trajectory we need a small timestep, so a lower order
solver doesn't hurt us unless the data is *very* high resolution.
In fact, for cases where the user inputs
data smaller or of similar grid size to the mask grid, the higher
order corrections are negligible because of the very fast linear
interpolation used in `interpgrid`.
2. For high resolution input data (i.e. beyond the mask
resolution), we must reduce the timestep. Therefore, an adaptive
timestep is more suited to the problem as this would be very hard
to judge automatically otherwise.
This integrator is about 1.5 - 2x as fast as both the RK4 and RK45
solvers in most setups on my machine. I would recommend removing the
other two to keep things simple.
"""
# This error is below that needed to match the RK4 integrator. It
# is set for visual reasons -- too low and corners start
# appearing ugly and jagged. Can be tuned.
maxerror = 0.003
# This limit is important (for all integrators) to avoid the
# trajectory skipping some mask cells. We could relax this
# condition if we use the code which is commented out below to
# increment the location gradually. However, due to the efficient
# nature of the interpolation, this doesn't boost speed by much
# for quite a bit of complexity.
maxds = min(1. / dmap.mask.nx, 1. / dmap.mask.ny, 0.1)
ds = maxds
stotal = 0
xi = x0
yi = y0
xf_traj = []
yf_traj = []
while dmap.grid.within_grid(xi, yi):
xf_traj.append(xi)
yf_traj.append(yi)
try:
k1x, k1y = f(xi, yi)
k2x, k2y = f(xi + ds * k1x,
yi + ds * k1y)
except IndexError:
# Out of the domain on one of the intermediate integration steps.
# Take an Euler step to the boundary to improve neatness.
ds, xf_traj, yf_traj = _euler_step(xf_traj, yf_traj, dmap, f)
stotal += ds
break
except TerminateTrajectory:
break
dx1 = ds * k1x
dy1 = ds * k1y
dx2 = ds * 0.5 * (k1x + k2x)
dy2 = ds * 0.5 * (k1y + k2y)
nx, ny = dmap.grid.shape
# Error is normalized to the axes coordinates
error = np.sqrt(((dx2 - dx1) / nx) ** 2 + ((dy2 - dy1) / ny) ** 2)
# Only save step if within error tolerance
if error < maxerror:
xi += dx2
yi += dy2
try:
dmap.update_trajectory(xi, yi)
except InvalidIndexError:
break
if (stotal + ds) > maxlength:
break
stotal += ds
# recalculate stepsize based on step error
if error == 0:
ds = maxds
else:
ds = min(maxds, 0.85 * ds * (maxerror / error) ** 0.5)
return stotal, xf_traj, yf_traj
def _euler_step(xf_traj, yf_traj, dmap, f):
"""Simple Euler integration step that extends streamline to boundary."""
ny, nx = dmap.grid.shape
xi = xf_traj[-1]
yi = yf_traj[-1]
cx, cy = f(xi, yi)
if cx == 0:
dsx = np.inf
elif cx < 0:
dsx = xi / -cx
else:
dsx = (nx - 1 - xi) / cx
if cy == 0:
dsy = np.inf
elif cy < 0:
dsy = yi / -cy
else:
dsy = (ny - 1 - yi) / cy
ds = min(dsx, dsy)
xf_traj.append(xi + cx * ds)
yf_traj.append(yi + cy * ds)
return ds, xf_traj, yf_traj
# Utility functions
# ========================
def interpgrid(a, xi, yi):
"""Fast 2D, linear interpolation on an integer grid"""
Ny, Nx = np.shape(a)
if isinstance(xi, np.ndarray):
x = xi.astype(int)
y = yi.astype(int)
# Check that xn, yn don't exceed max index
xn = np.clip(x + 1, 0, Nx - 1)
yn = np.clip(y + 1, 0, Ny - 1)
else:
x = int(xi)
y = int(yi)
# conditional is faster than clipping for integers
if x == (Nx - 2):
xn = x
else:
xn = x + 1
if y == (Ny - 2):
yn = y
else:
yn = y + 1
a00 = a[y, x]
a01 = a[y, xn]
a10 = a[yn, x]
a11 = a[yn, xn]
xt = xi - x
yt = yi - y
a0 = a00 * (1 - xt) + a01 * xt
a1 = a10 * (1 - xt) + a11 * xt
ai = a0 * (1 - yt) + a1 * yt
if not isinstance(xi, np.ndarray):
if np.ma.is_masked(ai):
raise TerminateTrajectory
return ai
def _gen_starting_points(shape):
"""Yield starting points for streamlines.
Trying points on the boundary first gives higher quality streamlines.
This algorithm starts with a point on the mask corner and spirals inward.
This algorithm is inefficient, but fast compared to rest of streamplot.
"""
ny, nx = shape
xfirst = 0
yfirst = 1
xlast = nx - 1
ylast = ny - 1
x, y = 0, 0
i = 0
direction = 'right'
for i in xrange(nx * ny):
yield x, y
if direction == 'right':
x += 1
if x >= xlast:
xlast -= 1
direction = 'up'
elif direction == 'up':
y += 1
if y >= ylast:
ylast -= 1
direction = 'left'
elif direction == 'left':
x -= 1
if x <= xfirst:
xfirst += 1
direction = 'down'
elif direction == 'down':
y -= 1
if y <= yfirst:
yfirst += 1
direction = 'right'
|